【 A 】 | ||||||
1 | (1) | -4+(-6)-(-2) |
4 | 2次方程式 x2-8x+4=0 を解きなさい。 |
||
(2) |
|
|||||
(3) | 4ab2÷(-6a3)×9a2b |
5 | 関数y=axについて,xの値が3から9まで増加するときの変化の割合は,関数y=-2x-1の変化の割合と等しい。このときのaの値を求めなさい。 |
|||
(4) |
|
|||||
2 | a個のみかんを一人5個ずつb人に配ったところ,25個より多く余った。この数量の関係を表した不等式として正しいものを,次のア~工から1つ選び,その記号を書きなさい。 ア a-5b>25 イ a-5b≧25 ウ a-5b<25 エ a-5b≦25 |
6 | 右の図のように,円周を9等分する点を,順にA,B,C,D,E. F,G,H, I とし,点Aと点C,点Bと点Hをそれぞれ結び,その交点をPとする。このとき,∠CPHの大きさは何度か。 |
|||
3 | ひかりさんの家から図書館までの道のりは1200mである。ひかりさんは図書館に,分速80mで歩いて向かっていたが,雨が降り出したので,分速200mで走って図書館まで行った。 歩いた時間をa分,走った時間をb分とするとき,bをaの式で表しなさい。 |
7 | 1から5までの数字が1つずつ書かれたの5枚のカードがある。この5枚のカードを裏返してよく混ぜ,そこから続けて2枚のカードをひく。このとき,1枚目のカードはもとに戻さない。ひいた1枚目のカードに書かれた数字を十の位の数,2枚目のカードに書かれた数字をーの位の数として2けたの整数をつくるとき,その整数が3の倍数ではない確率を求めなさい。ただし,どのカードがひかれることも同様に確からしいとする。 |
【 B 】 | ||||
1 | (1) | 3-7-(-8) |
4 | 関数y=ax2について,xの変域が-2≦x≦3のとき,yの変域は0≦y≦18である。このときのaの値を求めなさい。 |
(2) | -22×(-3)+6 |
|||
(3) | 3a2b×4b÷(-6a) |
5 | 次の図のように,線分ACを直径とする円Oがあり,:=7:3とする。このとき,∠ADBの大きさは何度か。 |
|
(4) |
|
|||
2 | 1 辺がacmの正方形を底面とし,高さがbcmである正四角柱の体積が20cm3であった。このとき,bをaの式で表しなさい。 |
6 | 1 から6 までの目が出る2つのさいころA,Bを同時に投げるとき,さいころAの出た目の数をa,さいころBの出た目の数をbとする。このとき, a+b-1 が素数となる確率を求めなさい。ただし,さいころはどの目が出ることも同様に確からしいとする。 |
|
3 | 2次方程式 3x2-12=0 を解きなさい。 |
[トップに戻る] [前ページに戻る] [次ペ-ジに進む] [答のペ-ジに進む] やさしい ややむずかしい |