全国公立高校入試
 1番問題 【令和4年春】
正 答 3
17 石川県 ~ 24 三重県

17石川県 (1) -3  (2) -3-16=-19
 (3)  6a2b3×5 =10ab
 3ab2
 (4)  4(x+2y)-5(x+3y
 5×4
  = 4x+8y-5x-15y
20
  = x-7y  または, - x+7y
 20 20
 (5) 2√3 2√6 =2√3+√3=3√3
2√2
解の公式より,
 x -(-5)±√(-5)2-4×2×(-1)
2×2
  = 5±√25+8 5±√33
4 4
(右図参照)
円周角は
 弧の長さに比例するから,
 ∠CBD=22×2=44°
xは△EBCの外角で,
x=22+44=66°
変化の割合= (a+3)2a2 =13
(a+3)-a
 6a+9 =13より,6a+9=39で,a=5
 3
6番目と7番目がともに2回で,
 ア+イ=5 となるのは,
(ア,イ)=(2,3) (3,2) (4,1) (5,0)の 4通り

 ~2番問題 (おまけ)~

100円の比率=   27 . 27 9
27+21 48 16
よって,320×=180枚
確率=
表にまとめると,条件に適するのは3通り
100円 × × × ×
50円 × × × ×
50円 × × × ×
ab 200 100 100  0  0 -100 -100 -200
 ( 〇は表 ×は裏 )
22静岡県 (1) 6-24=-18

 (2)  8a2b 36ab2 =2a+9b
 4ab 4ab
 
 (3)  2(4xy)-5(xy)
 5×2
  = 8x+2y-5x+5y
10
  = 3x+7y
10

 (4) 9√7-√7・√73-3√3
  =9√7-7√3-3√3=9√7-10√3

先に展開してから,代入
与式=a2-11a+30-a2-3a=-14a+30
  =-14×+30=-4+30=26

両辺の平方根をとると, x-2=±4
 x=2±4で, x=6,-2



 ~2番問題 (おまけ)~

右図
線分ABの垂直二等分線m
 を引く
Aからl と垂直な直線nを引く
mnの交点をPとする

4L=4000mL (単位に注意!)
 y 4000
x

6個から2個取り出す方法は全部で
    6×5÷2=15通り
和が正となるのは,,次の4通り
  (-1,2) (0,1) (0,2) (1,2)
よって, 確率= 4
15
 
18福井県  【 選択A 】
(1) 7+15=22
 (2)  12xy×(-3x) =-6x2
 6y
 (3)  2×2a-3(ab) a+3b
 3×2 6
(a-3)(a-5)
解の公式より,
 x -3±√32-4×3×(-1)
2×3
  = -3±√9+12 -3±√21
6 6
ア,ウ
(右図参照) 2通り
残りの1辺をxcmとすると,
 x=√49-25=2√6cm
 x=√49+25=√74cm
右図
・Bから垂線l
 を引く
・ABの垂直二  等分線m
 引く
lmの交点を
 中心Oとする

 【 選択B 】
(1)  12xy×(-3x) =-6x2
 6y
 (2)  2×2a-3(ab) a+3b
 3×2 6
3a(x2+4x+3)=3a(x+1)(x+3)
選択Aのと同じ
千と一位をa,百と十位をbとすると,
4桁の整数=1000a+100b+10ba
 =1001a+110b=11(91a+10b)
91a+10bは整数だから,11の倍数となる
選択Aのと同じ
平均値=(2+4+1+…+a+b)÷10=3より,
 
ab=5で,(a,b)=(0,5) (1,4) (2,3)
これらを当てはめて順に並べると,
 0 1 1 2 2 4 4 5 5 6 (中央値は3)
 1 1 1 2 2 4 4 4 5 6 (中央値は3)
 1 1 2 2 2 3 4 4 5 6 (中央値は2.5)
よって,(a,b)=(0,5) (1,4)
選択Aのと同じ
23愛知県  【 A 】

8-6=2
 3(2x-3)-2(3x-2) 6x-9-6x+4
 18 18
 =- 5
18
 5x2×32xy2 =10x
 16x2y2
(√5-√3)×(2√5+2√3)
 =(√5-√3)×2(√5+√3)
 =2(√5-√3)(√5+√3)=2(5-3)=4
10-5xx2-2x-18
 x2+3x-18=
 (x+6)(x-3)=0より, x=-6,3
それぞれの式を求めると,
yx3 (3乗に比例)
y 35  (反比例)
x
y=4x (比例)
y 15  (反比例)
x
 よって, イ,エ
平均値=(1+3+5+a+10+12)÷6
   = a+31 …ア
6
 中央値= 5+a …イ
2
ア=イより, a+31 5+a
6 2
 2(a+31)=6(5+a)で, a=8
A(-3,9) B(6,36)より,
傾き=  36-9 . 27 =3
6-(-3) 9
原点を通るから式は, y=3x
円柱Pと円柱Qで,
 半径を3kと5k, 高さをh1h2とすると,
(3k)2πh1 (5k)2πh2
 約分すると, 9h1=25h2
よって, h2 9
h1 25
10 △ADE∽△CBEより, 3:7=6:BC
 BC=7×6÷3-14cm
19山梨県 -8
36-9=27
7√3  9√3 . =7√3-3√3=4√3
33
 xy×(-18x) =-3x2y
 6
14x-7yx+5y=13x-2y


 ~2番問題 (おまけ)~

解の公式より,
 x -9±√92-4×2×8
2×2
  = -9±√81-64 -9±√17
4 4
弧AC(Bを含まない側)で考える
x=232÷2=116°
右図
Pからl の垂線mを引く
mと円の交点P'をとる
PP'の中点が中心
それぞれの式は,
yx(比例) 
y=50/x(反比例)
y=3x(比例) エ y=0.8x(比例)
 よって,
目の出方は全部で,6×6=36通り
積が10,20,30となるのは次の6通り
 (大,小)=(2,5) (5,2) (4,5) (5,4)
   (5,6) (6,5)
よって, 確率= 6
36
 【 B 】

-3+7=4
12x-16y+15y-12x=-y
x2+3x-10-3x+9=x2-1
  =(x+1)(x-1)
(5+2√10+2)-(5-2√10+2)
  =(7+2√10)-(7-2√10)=4√10
4x2+4x+1-3x2-9xx2-5x+1=0
y>3x
6の約数は,1,2,3,4の4個
 
よって, 確率=
yaxbに,(-3,-8) (1,4)を代入して,
  -3ab=-8
  ab=4
これを解いて,a=3,b=1
 直線の式は,y=3x+1で,
これにx=3を代入すると, y=3×3+1=10
それぞれの体積を計算すると,
ア 13=1
×22×1= (約1.33)
×12π×1=π (約1.05)
エ ()2π×1=π (約0.79)
 よって最大は,
20長野県 5-2=3
-2x+3
84n=2√21nより, n=21
移項すると,x2x=0
 x(x-1)=0より,x=0,1 よって,
5
中央値は8・9番目
 (15+19)÷2=17分
1-
4<√6<√9より,2<√6<3
 √6=2.***だから,a=√6-2
これを代入して,
 a(a+2)=(√6-2)(√6-2+2)
  =(√6-2)×√6=6-2√6
yに(1500,60)を代入すると,
 60=  a . で,a=60×1500=90000
1500
 y 90000 x=600を代入すると,
x
 y=90000÷600=150秒=2分30秒
10
右図
・ABの垂直二等分線
 をとる
11 (1)∠x=120÷2=60°
(2) 62π× 120
360
=36π×=12πcm2
24三重県  【 前 期 】
-9-8=-17
4x+5-x+3=3x+8
両辺を入れ替えると,  ab c
 5
 両辺を5倍して, ab=5c
 aを移項して, b=5ca
上式を下式に代入して,
 4x+5(x-3)=30
 9x-15=30より,x=5
 これを上式に代入して,y=5-3=2
よって, x=5,y=2
2√3 1×√3 =2√3 3 3
33
x2+4x+4=4x+13
 x2-9=0
 (x+3)(x-3)=0より, x=±3
x=-6のとき, y 12 =-2
-6
  x=-3のとき, y 12 =-4
-3
変化の割合= (-4)-(-2) -4+2 =-
(-3)-(-6) -3+6
体積=π×33=36πcm3
(右図参照)
∠BAD=90°より,
 ∠CAD=90-58=32°
∠CAE=∠CAB=58°より,
 ∠EAD=58-32=26°
△EAFで,∠x=90-26=64°
10 右図
△OABが,頂角110°で底角35°の
 二等辺三角形になればよい
・弦ACの垂直二等分線上に中心
  があるから,
 ACの垂直二等分線l を引く
・∠OAC(底角)=35°になれば
  よいから,∠BACの二等分線mを引く
・OとCを結び,
  l mの交点Oを中心に弧ACをかく


 【 後 期 】
-56    12-10 x 2 x   3y
 5×3 15
10a+5b-6a-8b=4a-3b
6-√21±4√21-14=3√21-8
yに(-2,8)を代入すると,
 8=  a . より,a=-16
-2
よって, y=- 16
x
解の公式より,
 x -5±√52-4×2×(-2)
2×2
  = -5±√25+16 -5±√41
4 4
(ウ)≦0.80より, (イ)≦0.80-0.65=0.15
 (ア)は, 20×0.15=3以下
  すなわち, 0,1,2,3人
 21岐阜県 6+8=14
-3x+3y-2xy=-5x+4y
与式=(xy)2=(5+√3+5-√3)2
   =102=100
目の出方は全部で,6×6=36通り
積が5の倍数となるのは
 (1,5) (2,5) (3,5) (4,5) (6,5) とその逆,
  ならびに(5,5) の11通り
よって, 確率= 11
36
上式+下式×2より,11x=22で,x=2
 これを上式に代入して,
  10+2y=4で,y=-3
よって, x=2, y=-3
1辺6cmの正三角形の高さは3√3cm
体積=×62×3√3=36√3cm3


 ~2番問題 (おまけ)~

a=-1を代入して,
 x2x-8=0
解の公式より,
 x -(-1)±√(-1)2-4×1×(-8)
2×1
  = 1±√1+32 1±√33
2 2
(1) x=1を代入すると,
 1+a-8=0で, a=7
(2) x2+7x-8=0
 (x+8)(x-1)=0より, x=-8
トップに戻る] [前ページに戻る] [次ペ-ジに進む