全国公立高校入試
 1番問題 【平成24年春】
(25) 滋賀県  学習日       月     日(    )

〜 印刷して、紙の上でやってネ! (文字サイズを小にするとA4に収まります)〜

 (1) 6÷2−5



                          .

(2) 2(4a−3)−6a



                          .

(3) 82y×2y÷(−4)2



                          .

(4) (+4)2−(+7)



                          .

(5) . 12  2 .
 6  3



                          .
 
 図1のように,半径1の円Oの円周を6等分する点A,B,C,D,E,Fがある。次の(1),(2)の問いに答えなさい。

(1) さいころの6つの面に,図1の円周上の点を表すAからFの文字のシールがはってある。このさいころを2回投げ,出た文字の2つの点を結んだとき,線分の長さが1になる確率を求めなさい。ただし,同じ文字が出たときは線分の長さを0とする。また,どの文字が出ることも同様に確からしいとする。






                       .


(2) 図2のように,線分AB,EFの中点を,それぞれP,Qとするとき,線分PQの長さを求めなさい。






                       .
 
 次の2次方程式を解きなさい。
   2+4−9=−+5






                          .
   
 図3のサッカー場のゴール付近で,シュートを打つ練習をする。図4のように,ゴールエリアの長方形の辺ABを延長し,AC=3ABとなる点をC,ゴールライン上のゴールポストの位置を示す点をD,Eとする。線分AC上の2点C,Pからゴールに向かってシュートを打つとき,∠DCE=∠DPEとなる点Pをコンパスと定規を使って作図しなさい。ただし,作図に使った線は消さないこと。


 y は の2乗に比例し,=2のとき,y=−8となる。=6のとき,y の値を求めなさい。







                          .
   

トップに戻る] [前ページに戻る] [次ペ−ジに進む] [答のペ−ジに進む やさしい ややむずかしい