(13)連立方程式の利用3(略解) | 学習日 月 日( ) | ||||||||||||||||||||||||||||||
|
1 | 家から学校まで1.2kmを,最初は分速60mで歩き,途中から分速120mで走ったら,15分で着いた。走った距離を求めなさい。 [解]xm歩き,ym走ったとすると,
(2)'−(1)より,y=600 (答) 600m |
2 | 1800m離れた駅まで,はじめ分速160mで走っていたが,途中から分速60mで歩いたところ,20分後に着いた。走った道のりと歩いた道のりを求めなさい。 [解]xm走り,ym歩いたとすると,
(2)'−(1)×3より,5y=4200 y=840で,x=1800−840=960 (答) 走った960m, 歩いた840m |
|||||||||||||||||||||||||||||||
3 | 1周10kmの池を,最初は時速6kmで歩き,途中から時速10kmで走ると,1時間12分かかった。走った距離と時間を求めなさい。 [解]xkm歩き,ykm走ったとすると, 1時間12分=時間だから
(1)×5−(2)'より,2y=14
(答) 距離 7km, 時間 42分 (時間も可) |
4 | 家から20kmはなれた博物館へ行くのに,途中まで時速32kmのバスで行き,残りを時速4kmで歩いたら1時間半かかりました。バスで行った距離と歩いた距離を求めなさい。 [解]バスをxkm,徒歩をykmとすると,
(2)'−(1)より,7y=28 y=4で, x=20−4=16 (答) バス16km, 徒歩4km |
[トップに戻る] [問題に戻る] |