(9)いろいろな式の展開(解答) | 学習日 月 日( ) | |||||||||||||
|
乗法公式を使って,次の式を展開しなさい。 | |||
1 | 3a(a−5)+(a+1)(a−2) = (3a2−15a)+(a2−a−2) = 4a2−16a−2 |
2 | (x+5)(x+2)+(x+3)(x+1) = (x2+7x+10)+(x2+4x+3) = 2x2+11x+13 |
3 | (x−4)(x+4)+(x−4)2 = (x2−16)+(x2−8x+16) = 2x2−8x |
4 | (x+4)(x+5)−(x2+20) = (x2+9x+20)−(x2+20) = 9x |
5 | (x+3)2+(x+2)(x−1) = (x2+6x+9)+(x2+x−2) = 2x2+7x+7 |
6 | 3x(x−1)−(x+2)(x−2) = (3x2−3x)−(x2−4) = 2x2−3x+4 |
7 | (x−5)2+(x+5)2 = (x2−10x+25)+(x2+10x+25) = 2x2+50 |
8 | 2(x+3)(x−4)−(x+4)2 = 2(x2−x−12)−(x2+8x+16) = x2−10x−40 |
9 | (x+y+2)(x+y−4) = (A+2)(A−4) = A2−2A−8 = (x+y)2−2(x+y)−8 = x2+2xy+y2−2x−2y−8 【ヒント】 x+y=A と置き換えてみよう |
10 | (a−2b+3)(a−2b−3) = (A+3)(A−3) = A2−9 = (a−2b)2−9 = a2−4ab+4b2−9 【ヒント】 a−2b=A と置き換えてみよう |
[トップに戻る] [問題に戻る] |