(5)一般型の展開 2(解答) | 学習日 月 日( ) | |||||
|
乗法公式を使って,次の式を展開しなさい。 | |||
1 | (x+2y)(x+4y) = x2+6xy+8y2 |
2 | (x+5y)(x+7y) = x2+12xy+35y2 |
3 | (x+4y)(x+y) = x2+5xy+4y2 |
4 | (x+8y)(x+3y) = x2+11xy+24y2 |
5 | (a+3b)(a+2b) = a2+5ab+6b2 |
6 | (a+b)(a+5b) = a2+6ab+5b2 |
7 | (x−2y)(x−6y) = x2−8xy+12y2 |
8 | (x−5y)(x−4y) = x2−9xy+20y2 |
9 | (a−7b)(a−9b) = a2−16ab+63b2 |
10 | (a−b)(a−2b) = a2−3ab+2b2 |
11 | (x+4y)(x−2y) = x2+2xy−8y2 |
12 | (x−y)(x+2y) = x2+xy−2y2 |
13 | (x+y)(x−3y) = x2−2xy−3y2 |
14 | (x−6y)(x−8y) = x2−14xy+48y2 |
15 | (a−7b)(a+4b) = a2−3ab−28b2 |
16 | (a+20b)(a+30b) = a2+50ab+600b2 |
17 | (2x+3)(2x+5) = (2x)2+8(2x)+15 = 4x2+16x+15 |
18 | (3x+1)(3x−2) = (3x)2−(3x)−2 = 9x2−3x−2 |
19 | (5a−1)(5a−2) = (5a)2−3(5a)+2 = 25a2−15a+2 |
20 | (2y−7)(2y+4) = (2y)2−3(2y)−28 = 4y2−6y−28 |
[トップに戻る] [問題に戻る] |