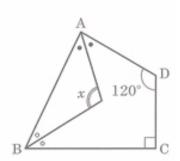
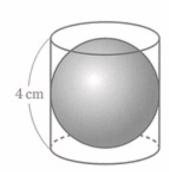
令和 5 年度 徳島県立高校

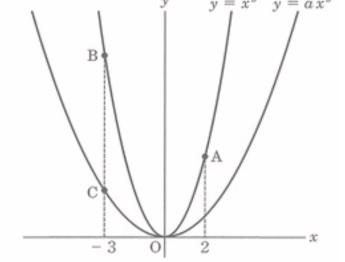
- 1 次の(1)~(10)に答えなさい。
 - (1) (-4)×2 を計算しなさい。
 - (2) 5√3 -√27 を計算しなさい。
 - (3) 二次方程式 $x^2 14x + 49 = 0$ を解きなさい。
 - (4) y はx に比例し、x=-2 のとき y=10 である。x とy の関係を式に表しなさい。
 - (5) 関数 $y = \frac{1}{4}x^2$ について、x の値が2から6まで増加するときの変化の割合を求めなさい。
 - (6) 赤玉3個、白玉2個、青玉1個がはいっている箱から、同時に2個の玉を取り出すとき、取り出した2個の玉の色が異なる確率を求めなさい。ただし、どの玉の取り出し方も、同様に確からしいものとする。
 - (7) ある式に 3a-5b をたす計算を間違えて、ある式から 3a-5b をひいてしまったために、答えが -2a+4b となった。正しく計算をしたときの答えを求めなさい。
 - (8) 右の図のように、 $\angle C = 90^\circ$ 、 $\angle D = 120^\circ$ の四角形 ABCD がある。同じ印をつけた角の大きさが等しいとき、 $\angle x$ の大きさを求めなさい。



- (9) 1から9までの9つの自然数から異なる4つの数を選んでその積を求めると、810になった。 この4つの数をすべて書きなさい。
- (10) 右の図のように、円柱と、その中にちょうどはいる球がある。 円柱の高さが4cmであるとき、円柱の体積と球の体積の差を 求めなさい。ただし、円周率はπとする。



- **2** 下の図のように、2つの関数 $y = x^2$ と $y = ax^2$ (0 < a < 1) のグラフがある。関数 $y = x^2$ の グラフ上に2点A、B、関数 $y = ax^2$ のグラフ上に点Cがあり、点Aのx座標は2、点B、Cのx座標は-3である。(1)~(4)に答えなさい。
 - (1) 関数 $y = x^2$ のグラフとx 軸について線対称となるグラフの式を求めなさい。



(2) 2点A. Bを通る直線の式を求めなさい。

(3) △ABCの面積をaを用いて表しなさい。

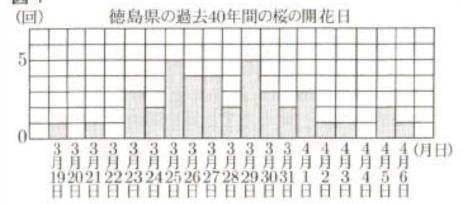
(4) 線分ACと線分OBとの交点をDとし、点Eをy軸上にとる。四角形BDAEが平行四辺形となるとき、 α の値を求めなさい。

3 ゆうきさんとひかるさんは、桜の開花日予想に興味をもち、数学の授業で学んだことを利用して、 今年の桜の開花日を予想しようと話し合っている。(1)・(2)に答えなさい。

【話し合いの一部】

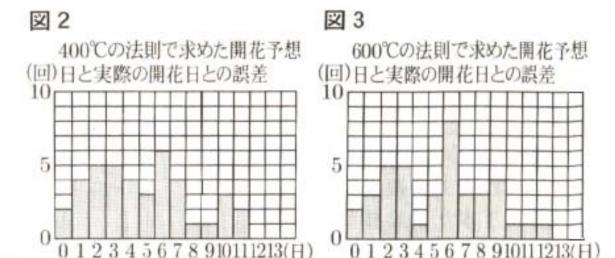
ゆうきさん 気象庁のホームページには、徳島県の桜の開花日のデータがあります。それを 使って過去40年間の桜の開花日をヒストグラムに表すと、図1のようになりま した。

図 1

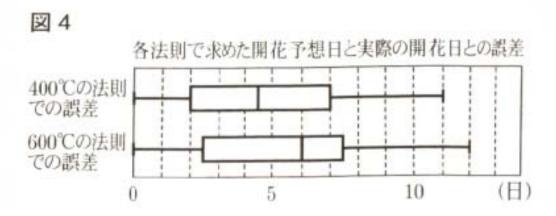


- ひかるさん 開花日が4月1日以降になった年が、(①)回ありますね。
- ゆうきさん そうですね。ほかにも、3月25日から29日の5日間に開花する回数が多い ことが読みとれます。この5日間に開花した割合を求めると(②)%ですね。
- ひかるさん もっと開花日を正確に予想したいですね。
- ゆうきさん 開花日には気温が関係しているかもしれませんね。
- ひかるさん インターネットで調べてみると、気温を用いた予想方法が2つ見つかりました。 400℃の法則と600℃の法則という予想方法です。
- ゆうきさん それは、どんな法則ですか。
- ひかるさん どちらも2月1日を基準とする考え方です。400℃の法則は、2月1日以降 その日の平均気温を毎日たしていき、合計が400℃以上になる最初の日を開花 予想日とします。600℃の法則は、2月1日以降その日の最高気温を毎日たして いき、合計が600℃以上になる最初の日を開花予想日とします。
- ゆうきさん どちらの法則の方が正確に予想できるのでしょうか。
- ひかるさん それぞれの法則で過去の開花予想日を求め、実際の開花日と比べてみましょう。 その誤差をまとめると、どちらの法則の方が正確に予想できるかを調べることが できます。
- ゆうきさん なるほど。気象庁のホームページには、日々の気温のデータもあります。その データを用いて 2022 年の開花予想日を求めると、いつになりますか。
- ひかるさん 平均気温の合計が400℃以上になる最初の日は、3月24日でした。だから、 400℃の法則を使えば、開花予想日は3月24日となります。また、600℃の 法則を使えば、開花予想日は3月22日となります。
- ゆうきさん 実際の開花日は3月25日だったので、400℃の法則での誤差は1日、600℃ の法則での誤差は3日ですね。
- ひかるさん ほかの年ではどうなっているのでしょうか。 2人で手分けして 40 年間分の誤 差を求め、それをヒストグラムに表して、どちらの法則の方が正確に予想できる か考えてみましょう。

- (1) 【話し合いの一部】の(①)・(②) にあてはまる数を、それぞれ書きなさい。
- (2) 図2,図3は、40年間の気温のデータを用いて各法則で求めた開花予想日と、実際の開花日 との誤差をヒストグラムに表したものである。(a)・(b)に答えなさい。ただし、誤差は絶対値で表 している。



- (a) この2つのヒストグラムから読みとれることとして正しいものを、アーエからすべて選びな さい。
 - ア 最頻値は、図2より図3の方が大きい。
 - イ 予想が的中した回数は、図2、図3とも同じである。
 - ウ 誤差が10日以上になる割合は、図2より図3の方が小さい。
 - エ 誤差が3日までの累積相対度数は、図2、図3とも同じである。
- (b) ゆうきさんとひかるさんは、図2、図3のヒストグラムだけでは、どちらの法則の方が正確 に開花日を予想できるのかを判断することが難しいと考え、箱ひげ図で比較することにした。 図4は、図2、図3を作成するためにもとにしたデータを、箱ひげ図に表したものである。 ゆうきさんとひかるさんは、この2つの箱ひげ図から「400℃の法則の方が正確に開花日を 予想できそうだ」と判断した。そのように判断した理由を、2つの箱ひげ図の特徴を比較して 説明しなさい。



4 生徒会役員のはるきさんたちは、次の【決定事項】をもとに文化祭の日程を考えている。(1)・(2) に答えなさい。

【決定事項】

- ・文化祭は学級の出し物から始まり、学級の出し物の時間はすべて同じ長さとする。
- 学級の出し物の間には入れ替えの時間をとり、その時間はすべて同じ長さとする。
- ・すべての学級の出し物が終わった後に昼休みを60分とり、その後、吹奏楽部の発表とグループ発表を行う。
- ・グループ発表の時間はすべて同じ長さとする。
- ・昼休み以降の発表の間には、入れ替えの時間をとらず、発表の時間に含める。

		学級の 出し物	入れ替え	学級の 出し物	入れ替え	3	入れ替え	学級の 出し物	星休み 60分	吹奏楽部 の発表	グル 発力	グルー 発力	\$	グル 発 表 ブ	
--	--	------------	------	------------	------	---	------	------------	------------	-------------	----------	-----------	----	-------------------	--

(1) はるきさんたちは、次の【条件】をもとに文化祭のタイムスケジュールをたてることにした。(a)・(b)に答えなさい。

【条件】

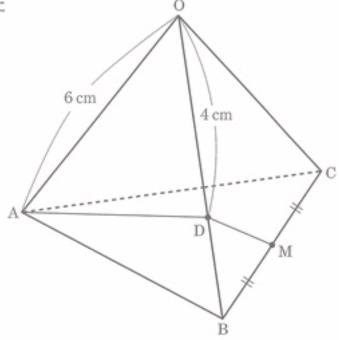
- ・学級の出し物を5つ、グループ発表を10グループとする。
- ・学級の出し物の時間は、入れ替えの時間の4倍とし、吹奏楽部の発表の時間を40分とする。
- ・最初の学級の出し物が午前10時に始まり、最後の学級の出し物が正午に終わるようにする。
- ・最後のグループ発表が午後3時に終わるようにする。
- (a) 学級の出し物の時間と入れ替えの時間は、それぞれ何分か、求めなさい。
- (b) グループ発表の時間は何分か、求めなさい。
- (2) はるきさんたちは、学級の出し物の数を変更し、条件を見直すことにした。次の【見直した条件】 をもとに、受け付けできるグループ発表の数について検討をしている。(a)・(b)に答えなさい。

【見直した条件】

- ・学級の出し物は7つとし、学級の出し物の入れ替えの時間は8分とする。
- ・吹奏楽部の発表の時間は、学級の出し物の時間の3倍とする。
- グループ発表の時間は7分とする。
- ・最初の学級の出し物が午前9時40分に始まる。
- 最後のグループ発表が午後3時20分までに終わる。
- (a) 最後のグループ発表が午後3時20分ちょうどに終わるとき、学級の出し物の時間を α 分、 グループ発表の数をbグループとして、この数量の関係を等式で表しなさい。
- (b) 学級の出し物の時間を15分とするとき、グループ発表は、最大何グループまで受け付けできるか、求めなさい。

- **5** 下の図のように、すべての辺の長さが $6 \, \mathrm{cm}$ の正三角錐 OABC がある。辺 OB上に点 Dをとり、辺 BC の中点を M とする。OD = $4 \, \mathrm{cm}$ のとき、 $(1) \sim (4)$ に答えなさい。
 - 正三角錐 OABCで、辺ABとねじれの位置に ある辺はどれか、書きなさい。

(2) △OAD ∞ △BMD を証明しなさい。



(3) AD + DM の長さを求めなさい。

(4) 辺OC上に点Pをとる。4点O, A, D, Pを頂点とする立体OADPの体積が正三角錐OABCの体積の $\frac{2}{7}$ 倍であるとき、線分OPの長さを求めなさい。

正 答 表 **数 学**

第 2 時 限

[11]	題番	号	正答	部	点				
	(1)	- 8	3					
	(2)	$2\sqrt{3}$	3					
	(3)	x = 7	4					
	(4)		y = -5x	4					
	(5)	2	4					
1	(6)	11 15	4	40				
	(7)	4a - 6b	4					
	(8	;)	105 (度)	4					
	(9)	3, 5, 6, 9	5					
	(10))	$\frac{16}{3}\pi$ (cm ³)	5					
	(1)	$y = -x^2$	3					
	(2	:)	y = -x + 6	4					
2	(3	:)	45-45 a 2	4	16				
	(4)		$a = \frac{7}{27}$	5	5				
	(1)	◎ 50	各2					
^		(a)	イ, ウ	4					
3	(2)	(ъ)	第2四分位数(中央値)を比べると、 400 \mathbb{C} の法則で の誤差の方が左側にある。したがって、 400 \mathbb{C} の法則 の方が誤差が小さい傾向にある。	5	13				
		7-1	学級の出し物の時間 20 (分)	3					
	(1)	(a)	入れ替えの時間 5 (分)	3					
4		(b)	8 (分)	3	15				
	(0)	(a)	10 a + 7 b = 232	3					
	(2) (b)		11 (グループ)	3					
	(1)	辺OC	3					
5	(2)		(証明) △OAD と△BMDで、 仮定より OA = 6, OD = 4, BM = 3, BD = 2 であるから。 OA:BM = 6:3 = 2:1 OD:BD = 4:2 = 2:1 よって。 OA:BM = OD:BD① △OAB と△OBC は正三角形であるから、 ∠AOD = ∠ MBD② ①、②から、2組の辺の比とその間の角が、それぞれ等しいので、 △OAD ⇔ △BMD	4	16				
	(3)		$3\sqrt{7}$ (cm)	4					
	(4)		$\frac{18}{7}$ (cm)	5	5				
			配点合計	-	10				