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Abstract

We consider a zero-sum game of optimal stopping in which each of the opponents
has the right to stop a one dimensional diffusion process. There are two types of
costs. The first is accumulated continuously at the rate H(Xt) where Xt is the current
position of the process. In addition there is a cost associated with the stopping of the
process. It is given by the function f1(x) for the first player and the function f2(x)
for the second player, where x is the position of the process when the stopping option
is exercised.

We study the solution of the free boundary problem associated with this game via
Dirichlet forms on the appropriate functional space. Integrating the value function of
the game we get a solution to another free boundary problem which yields the optimal
return function for a singular stochastic control problem.

1 Introduction

The reflecting diffusion processes are interesting objects to be studied from a variety of dif-
ferent points of view . In particular, the reflecting Brownian motion on a one dimensional
interval was characterized as a solution of a singular control problem ([HT 83, T 85]).
More specifically, let (wt, P ) be a one dimensional standard Brownian motion starting at
the origin and let

Xt = x+ σwt + µt+A
(1)
t −A

(2)
t x ∈ R, (1.1)

where σ ̸= 0, µ are constants and S = (A
(1)
t , A

(2)
t ) is a pair of non-anticipating increasing

processes. S represents a strategy under which the cost function

kx(S) = E

(∫ ∞

0
e−αth(Xt)dt+

∫ ∞

0
e−αt(rdA

(1)
t + ℓdA

(2)
t )

)
(1.2)

is to be minimized. Here, α, r, ℓ are preassigned positive constants and h(x) is a given
convex function taking its minimum at the origin. It was then shown by Taksar [T 85]
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that there exists an optimal strategy S̃ such that

W (x) = min
S

kx(S) = kx(S̃),

and that actually S̃ is equal to (ℓat , ℓ
b
t) where ℓ

a, ℓb are local times at points a, b for uniquely
determined a, b, a < 0 < b. Thus the corresponding optimal process (1.1) is the reflecting
diffusion on the closed interval [a, b]. The proof in [T 85] was carried out by solving a
related free boundary problem by making use of a solution of an optimal stopping game
problem, which had been formulated by Gusein-Zade [G 69].

The purpose of the present paper is to extend those results in [T 85] by replacing the
process x+ σwt +µt appearing in (1.1) on the one hand and constant costs r, ℓ appearing
in (1.2) on the other, with a more general diffusion process governed by variable C1-
coefficients σ(x), µ(x) and with variable costs f1(x), f2(x), respectively. To this end, we
shall employ the Dynkin optimal stopping game and its Dirichlet form characterization
due to Zabczyk [Z 84]. As will be explained in §2, the value function of the Dynkin game
for a general symmetric Hunt process was identified in [Z 84] with the solution of a certain
variational inequality in a regular Dirichlet space setting. Such an identification had been
established by Nagai [N 78] for a one-sided optimal stopping problem. This sort of an
analytic characterization of the stopping game was missing in [G 69], making the usage of
[G 69] less simple.

We can then proceed along almost the same line as in [T 85] in getting the solution
of our singular control problem. However, it is more useful to rewrite the infinitesimal

generator
1

2
σ(x)2

d2

dx2
+ µ(x)

d

dx
of the controlled diffusion in the Feller canonical form

d

dm

d

ds
. The conditions on the data h, f1, f2 will be stated in terms of the intrinsic quantities

s and m.
In §3, we shall apply the Dynkin game description of the solution V of a variational

inequality presented in [Z 84] to a one dimensional diffusion with generator
d

ds

d

dm
in

showing that an integral function W of V with respect to ds is a solution of a certain free

boundary problem involving the operator
d

dm

d

ds
, which will then be identified in §4 with

the optimal return function of our singular control of the (σ, µ)-diffusion. The admissible
processes Xt to be optimized will be formulated in §4 by SDE variants of the identity (1.1)
and the optimal process will be shown to be the reflecting (σ, µ)-diffusion on the interval
specified in the free boundary problem.

We emphasize that our Dirichlet form approach automatically guarantees the quasi-
continuity (actually the absolute continuity in the present one-dimensional application) of
the value function V , which, combined with the saddle point characterization of V , readily
implies that its integral function W is the classical solution of the free boundary problem.
As a result we get a classical solution to the one dimensional singular stochastic control
problem as opposed to the viscosity solution guaranteed by a general theory (see [FS 93]).

A slight extension of [T 85] has been considered by Kawabata [K 98], where the costs
r, ℓ were still kept constant however and the method of [Z 84] was not utilized.

2



In a recent paper [KW 01], Karatzas and Wang obtain the same relation as in our
case between the value functions of a Dynkin game and a control problem of general
bounded variation processes. The method in [KW 01] is more direct and pathwise, but
the admissible process to be optimized is purely of bounded variation and the leading
martingale part like in our case is absent.

In what follows, Ck(I) (resp. Ck
0 (I)) will denote the space of k-times continuously

differentiable functions (resp. with compact support) on an interval I ⊂ R, k = 1, 2.

2 Dynkin games via Dirichlet forms

Let X be a locally compact separable metric space and m be a positive Radon measure
on X with full support. L2(X;m) denotes the real L2-space with inner product (·, ·). We
consider a Dirichlet form (E ,F) on L2(X;m). By definition, E is a closed symmetric form
with domain F dense in L2(X;m) such that the unit contraction operates on it:

u ∈ F =⇒ v = 0 ∨ u ∧ 1 ∈ F , E(v, v) ≤ E(u, u).

Recall that a closed symmetric form is a Dirichlet form if and only if the associated L2-
semigroup {Tt, t > 0} is Markovian in the sense that

0 ≤ f ≤ 1 f ∈ L2 =⇒ 0 ≤ Ttf ≤ 1.

We let Eα(u, v) = E(u, v) + α(u, v) for α > 0. We assume that the Dirichlet form (E ,F)
is regular in the sense that F ∩ C0(X) is E1-dense in F and uniformly dense in C0(X),
where C0(X) denotes the space of continuous functions on X with compact support.
There exists then a Hunt process (a right continuous, quasi-left continuous strong Markov
process) M = (Xt, Px) on X such that

ptf(x) = Ex(f(Xt)), x ∈ X,

is a version of Ttf for all f ∈ C0(X) [FOT 94].
In what follows, basic notions and relations concerning the regular Dirichlet form

(E ,F) and the associated Hunt process M shall be taken from [FOT 94]. In particular,
the L2-resolvent {Gα, α > 0} associated with the Dirichlet form (E ,F) satisfies

Gαf ∈ F , Eα(Gαf, v) = (f, v) ∀f ∈ L2(X;m), ∀v ∈ F ,

and further the resolvent {Rα α > 0} of the Hunt process M defined by

Rαf(x) = Ex

(∫ ∞

0
e−αtf(Xt)dt

)
x ∈ X,

is a quasicontinuous modification of Gαf for any Borel function f ∈ L2(X;m). For v ∈ F ,
ṽ will denote a quasicontinuous modification of v.

Given α > 0, H ∈ L2(X;m) and f1, f2 ∈ F with −f1 ≤ f2, we let

K = {u ∈ F : −f1 ≤ u ≤ f2 m−a.e.}. (2.1)
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One looks for a solution V ∈ K of the inequality

Eα(V, u− V ) ≥ (H,u− V ) ∀u ∈ K. (2.2)

Such a variational inequality arises in various contexts and it goes back to Stampacchia[S 64].

Proposition 2.1 There exists a unique function V ∈ K satisfying (2.2).

Proof. This is a well known fact but we reproduce a proof given by Nagai [N 78] in a way
convenient for later use. First consider the special case that H = 0. We can then see the
equivalence of the next inequalities holding for V ∈ K:

Eα(V, u− V ) ≥ 0 ∀u ∈ K, (2.3)

Eα(V, V ) ≤ Eα(u, u) ∀u ∈ K. (2.4)

In fact, (2.3) readily implies (2.4) by the Schwarz inequality. Conversely suppose (2.4).
Take any u ∈ K and put w = u− V. Since K is convex,

V + ϵw = (1− ϵ)V + ϵu ∈ K ∀ϵ ∈ (0, 1).

(2.4) then leads us to
Eα(V, V ) ≤ Eα(V + ϵw, V + ϵw)

and 2Eα(V,w) + ϵEα(w,w) ≥ 0. We get (2.3) by letting ϵ ↓ 0.
Now (2.4) (and equivalently (2.3)) has a unique solution V ∈ K by virtue of the

closedness of the convex set K and the parallelogram law (see for instance the proof of
[FOT 94, Lemma 2.1.2]).

Next consider a general H ∈ L2(X;m). By making use of the L2-resolvent Gα, we can
rewrite the inequality (2.2) as

Eα(V −GαH, (u−GαH)− (V −GαH)) ≥ 0.

in concluding that the solution V of (2.1) and (2.2) is related to the solution V 0 of

K0 = {u ∈ F : −h1 ≤ u ≤ h2 m−a.e.}, h1 = f1 +GαH, h2 = f2 −GαH, (2.5)

V 0 ∈ K0, Eα(V 0, u− V 0) ≥ 0, ∀u ∈ K0, (2.6)

by the relation
V = V 0 +GαH. (2.7)

2

J.Zabczyk has related the solution of the variational inequality (2.2) to the value
function of an optimal stopping game (called a Dynkin game after [D 67]) for the associated
Hunt process M = (Xt, Px) in the following manner ([Z 84, Theorem 1]).
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Theorem 2.1 (Zabczyk) For any Borel function H ∈ L2(X;m) and for any f1, f2 ∈ F
with −f1 ≤ f2, we put

Jx(τ, σ) = Ex

(∫ τ∧σ

0
e−αtH(Xt)dt

)
+ Ex

(
e−α(τ∧σ)(−Iσ≤τ f̃1(Xσ) + Iτ<σf̃2(Xτ ))

)
(2.8)

for x ∈ X and for finite stopping times τ, σ. Then the solution of (2.1) and (2.2) admits
as its quasicontinuous version the value function of the game

V (x) = inf
τ
sup
σ

Jx(τ, σ) = sup
σ

inf
τ
Jx(τ, σ), x ∈ X \N, (2.9)

where N is some properly exceptional set with respect to M.
Furthermore if we let

E1 = {x ∈ X −N : V (x) = −f̃1(x)}, E2 = {x ∈ X −N : V (x) = f̃2(x)},

then the hitting times τ̂ = σE2 , σ̂ = σE1 are the saddle point of the game:

Jx(τ̂ , σ) ≤ Jx(τ̂ , σ̂) ≤ Jx(τ, σ̂) (2.10)

for any x ∈ X −N and for any stopping times τ, σ. In particular

V (x) = Jx(τ̂ , σ̂) ∀x ∈ X \N. (2.11)

.

Actually this theorem was shown in [Z 84] only when H = 0. However, on account of
the proof of Proposition 2.1, the statements of Theorem 2.1 for a general Borel function
H ∈ L2(X;m) can be reduced to this special case. In fact, by what was proved in [Z 84],
the solution of (2.5) and (2.6) admits a quasicontinuous version given by

V 0(x) = inf
τ
sup
σ

J0
x(τ, σ) = sup

σ
inf
τ
J0
x(τ, σ), x ∈ X \N

where N is some properly exceptional set and

J0
x(τ, σ) = Ex

(
e−α(τ∧σ)(−Iσ≤τ h̃1(Xσ) + Iτ<σh̃2(Xτ ))

)
, h̃1 = f̃1+RαH, h̃2 = f̃2−RαH.

In view of (2.7), the solution of (2.1) and (2.2) then admits a quasicontinuous version

V (x) = V 0(x) +RαH(x) x ∈ X \N,

which in turn can be seen to satisfy the identity (2.9), because the Dynkin formula

RαH(x)−Ex

(
e−α(τ∧σ)RαH(Xτ∧σ)

)
= Ex

(∫ τ∧σ

0
e−αtH(Xt)dt

)
,

leads us to
J0
x(τ, σ) +RαH(x) = Jx(τ, σ).

The second statement of Theorem 2.1 is also an immediate consequence of that for V 0

and J0.
We refer to [Z 84] for related literatures prior to [Z 84].
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3 One dimensional Dynkin game and free boundary prob-
lems

When the underlying spaceX is one-dimensional, the solution V of the variational inequal-
ity (2.1),(2.2) can be described as a solution of a certain free boundary problem. The proof
can be carried out using primarily its Dynkin game description (2.9) and (2.10).

More specifically, let ṡ(x) and ṁ(x) be strictly positive C1-functions on R. Denote the
one-dimensional Lebesgue measure by dx and the measures ṡ(x)dx, ṁ(x)dx by ds, dm
respectively. We assume that both −∞ and ∞ are natural (neither exit nor entrance)
boundaries of R with respect to s,m in Feller’s sense ([IM 74]):∫

−∞<y<x<−1
ds(x)dm(y) = ∞ ,

∫
−∞<y<x<−1

dm(x)ds(y) = ∞,∫
1<x<y<∞

ds(x)dm(y) = ∞ ,

∫
1<x<y<∞

dm(x)ds(y) = ∞. (3.1)

For A > 0, we let

F = H1((−A,A); dx)

= {u ∈ L2((−A,A); dx) : u is absolutely continuous, u′ ∈ L2((−A,A); dx)} (3.2)

E(u, v) =
∫ A

−A
u′(x)v′(x)

1

ṁ(x)
dx u, v ∈ F . (3.3)

We can and we shall regard (E ,F) as a regular local Dirichlet form on L2([−A,A]; ds).
The associated Hunt process M = (Xt, Px) on the closed interval [−A,A] is a conser-
vative diffusion process, namely, a strong Markov process with continuous sample paths
and infinite life time, and actually it is a reflecting barrier diffusion on [−A,A] with in-

finitesimal generator
d

ds

d

dm
. Since F is the ordinary Sobolev space H1(−A,A) on the one

dimensional interval (−A,A) and the metric E1 on it is equivalent to the square root of
the Dirichlet integral plus L2-norm, we see that each one point set {x} ⊂ [−A,A] has a
positive capacity, the quasicontinuity reduces to the ordinary continuity and M admits no
non-empty exceptional set ([FOT 94, Example 2.1.2]).

We now let V (x), x ∈ [−A,A], be the solution of the variational inequality (2.1),(2.2)
for the present Dirichlet form (E ,F) on L2([−A,A]; ds) under the following assumptions
on the data H, f1, f2:

Assumption 3.1 H(x) is a continuous function on R such that

H(0) = 0, H(x) is strictly increasing, H(x) → ±∞ as x → ±∞.

f1, f2 are C2-functions with 0 < f1, f2 ≤ M for some M > 0 and

f ′
1(x) ≥ 0, x ∈ R,

d

ds

d

dm
f1 −H is strictly decreasing on (−∞, 0),

f ′
2(x) ≤ 0, x ∈ R,

d

ds

d

dm
f2 +H is strictly increasing on (0,∞).
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Remark 3.1 (i) The assumptions for f1, f2 are trivially satisfied by f1 = r, f2 = ℓ
positive constant functions.
(ii) In the next section, we shall be concerned with controls of a diffusion with generator
d

dm

d

ds
, a diffusion with scale ds and speed measure dm in the sense of W. Feller([IM 74]).

For that purpose, we need to consider in the first part of this section a diffusion with the
roles of ds and dm being interchanged.

Lemma 3.1 There exists A > 0 such that the diffusion M = (Xt, Px) on [−A,A] asso-
ciated with the Dirichlet form (3.2),(3.3) satisfies

Eξ1

(∫ σ0∧σ−A

0
e−αtH(Xt)dt

)
< −2M, Eξ2

(∫ σ0∧σA

0
e−αtH(Xt)dt

)
> 2M, (3.4)

for some ξ1 ∈ (−A, 0) and ξ2 ∈ (0, A). Here σx denotes the hitting time of the one point
set {x}.

Proof. For an open interval I ⊂ R, we denote by DI the absorbing diffusion on I with

infinitesimal generator
d

ds
· d

dm
and by RI

α its resolvent operator. By virtue of the condition

(3.1), DR is conservative and its α-order hitting probability Ex

(
e−ασc

)
for any fixed point

c tends to zero as x → ±∞ ([IM 74]). Hence, by Dynkin’s formula,

lim
x→−∞

R(−∞,c)
α 1(x) =

1

α
, lim

x→∞
R(d,∞)

α 1(x) =
1

α
, (3.5)

for any c and d. By assumption 3.1, we can take ξ < 0 such that

H(x) < −4αM ∀x ≤ ξ.

By (3.5), R
(−∞,ξ)
α 1(ξ1) > 1/(2α) for some ξ1 < ξ. SinceR

(−A,ξ)
α 1(ξ1) increases toR

(−∞,ξ)
α 1(ξ1)

as A → ∞, we have R
(−A,ξ)
α 1(ξ1) > 1/(2α) for a sufficiently large A with −A < ξ1.

For such A, letM be the diffusion on [−A,A] governed by the Dirichlet form (3.2),(3.3).
Since the process obtained from M by killing at time σ0 ∧σ−A coincides with D(−A,0), the

first expectation appearing in (3.4) equals R
(−A,0)
α H(ξ1), which in turn is not greater than

R(−A,ξ)
α H(ξ1) ≤ −4αM ·R(−A,ξ)

α 1(ξ1) < −2M

proving the first inequality in (3.4). The second one can be shown in the same way. 2

In what follows, we shall work with A > 0 for which (3.4) is satisfied.

Theorem 3.1 There exist unique a, b such that −A < a < 0 < b < A and

−f1(x) < V (x) < f2(x), x ∈ (a, b), (3.6)

V (x) = −f1(x), x ∈ [−A, a]; V (x) = f2(x), x ∈ [b, A], (3.7)
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V ′(a) = −f ′
1(a), V ′(b) = f ′

2(b). (3.8)

Furthermore V is C1 on (−A,A), C2 on (a, b) and

αV (x)− d

ds

d

dm
V (x) = H(x) ∀x ∈ [a, b]

> H(x) ∀x ∈ (−A, a)

< H(x) ∀x ∈ (b, A). (3.9)

The theorem is divided into three propositions.

Proposition 3.1 (i) −f1(0) < V (0) < f2(0).
(ii) V (x) > −f1(x) for x > 0 and V (x) < f2(x) for x < 0.
(iii) Let

E1 = {x ∈ [−A,A] : V (x) = −f1(x)}, E2 = {x ∈ [−A,A] : V (x) = f2(x)} (3.10)

and a = supE1, b = inf E2. Then

−A < a < 0 < b < A.

(iv) If
−f1(x) < V (x) < f2(x), β < x < γ,

for some interval (β, γ) ⊂ (−A,A), then V is C2 on (β, γ) and(
α− d

ds

d

dm

)
V (x) = H(x) (3.11)

for x ∈ (β, γ). In particular, this equation holds for x ∈ (a, b).
(v) If, for some β ∈ (−A, 0),

−f1(x) < V (x), −A ≤ x < β,

then V is C2 on (−A, β), V satisfies the equation (3.11) on (−A, β) and V ′(−A) = 0.
(vi) If, for some γ ∈ (0, A),

V (x) < f2(x), γ < x ≤ A,

then V is C2 on (γ,A), V satisfies the equation (3.11) on (γ,A) and V ′(A) = 0.

Proof. Denote by σE the hitting time of the diffusion M for a set E. The hitting time
for the one point set {x} is simply denoted by σx. We let σ̂ = σE1 , τ̂ = σE2 the hitting
times for the sets E1, E2 defined by (3.10).
(i) We give the proof of the first inequality. The second one can be proved similarly. We
have from (2.10) and (2.11) (the exceptional set N is now empty, as was explained in the
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paragraph below (3.3)) that, for any positive ϵ < A,

V (0) ≥ J0(τ̂ , σ−ϵ) = E0

(∫ τ̂∧σ−ϵ

0
e−αtH(Xt)dt

)
− f1(−ϵ)E0

(
e−ασ−ϵ ;σ−ϵ < τ̂

)
+ E0

(
e−ατ̂f2(Xτ̂ );σ−ϵ ≥ τ̂

)
≥ H(−ϵ)E0

(∫ σ−ϵ

0
e−αtdt

)
− f1(0)E0

(
e−ασ−ϵ

)
= −f1(0) + (f1(0) +

H(−ϵ)

α
)
(
1− E0(e

−ασ−ϵ)
)
,

which is greater than −f1(0) for sufficiently small ϵ > 0.
(ii) For x > 0,

V (x) ≥ Jx(τ̂ , σ0) = Ex

(∫ τ̂∧σ0

0
e−αtH(Xt)dt

)
− f1(0)Ex

(
e−ασ0 ;σ0 < τ̂

)
+ Ex

(
e−ατ̂f2(Xτ̂ );σ0 ≥ τ̂

)
≥ −f1(0)Ex

(
e−ασ0

)
> −f1(0) ≥ −f1(x).

The second inequality can be proved similarly.
(iii) Suppose V (x) > −f1(x) for any x ∈ (−A, 0). Then, by (i) and (ii), Px(σ̂ ≥ σ−A) =
1 ∀x. Further Px(τ̂ > σ0) = 1 for any x < 0. Hence

Px(σ̂ ∧ τ̂ ≥ σ−A ∧ σ0) = 1 ∀x < 0,

which implies that the function V (x) = Jx(τ̂ , σ̂) is H-α-harmonic on (−A, 0) in the sense
that, for x ∈ (−A, 0),

V (x) = Ex

(∫ σ0∧σ−A

0
e−αtH(Xt)dt

)
+ Ex

(
e−α(σ0∧σ−A)V (Xσ0∧σ−A)

)
. (3.12)

Since V (x) ≤ M for any x ∈ [−A,A], we get from the above and (3.4)

V (ξ1) < −2M +M = −M,

a contradiction. Hence −A < a < 0. The second inequality can be proved similarly.
(iv) As in the proof of (iii), V is then H-α-harmonic on the interval (β, γ) in the sense
the identity (3.12) with σ0 ∧ σ−A being replaced by σβ ∧ σγ holds for x ∈ (β, γ), which is
equivalent to the validity of the following equation ([FOT 94, §4.3,§4.4]):

Eα(V, v) = (H, v) ∀v ∈ C1
0 ((β, γ)). (3.13)

Since H is continuous, this equation in turn implies that V is C2 on (β, γ) and an inte-
gration by parts yields the equation (3.11) on the same interval.
(v) In this case, the identity (3.12) with σ0∧σ−A being replaced by σβ ∧σ−A holds for x ∈
[−A, β), which is equivalent to the validity of the equation (3.13) for any v ∈ C1

0 ([−A, β)).
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Again, an integration by parts gives the validity of (3.11) on (−A, β) together with the
stated boundary condition.
(vi) analogous to (v).

2

Before proceeding further, we prepare some notations. For ξ ∈ (−A,A) and ϵ > 0,
we denote by τξ,ϵ the first exit time from the interval Iξ,ϵ = (ξ − ϵ, ξ + ϵ), namely, τξ,ϵ =
σ[−A,A]\Iξ,ϵ . We then set

h−α (ξ, ϵ) = Eξ

(
e−ατξ,ϵ ;σξ−ϵ < σξ+ϵ

)
h+α (ξ, ϵ) = Eξ

(
e−ατξ,ϵ ;σξ−ϵ ≥ σξ+ϵ

)
gα(ξ, ϵ) = 1− Eξ

(
e−ατξ,ϵ

)
Lemma 3.2

lim
ϵ↓0

h±α (ξ, ϵ) =
1

2
.

gα(ξ, ϵ) = o(ϵ) as ϵ ↓ 0.

Proof. The first identity for α = 0 is evident because

h−0 (ξ, ϵ) =

∫ ξ+ϵ
ξ ṁ(x)dx∫ ξ+ϵ
ξ−ϵ ṁ(x)dx

. (3.14)

Let u be a C2-function vanishing at −A and A such that

d

ds

d

dm
u(x) = −1 x ∈ (ξ − ϵ, ξ + ϵ).

By Dynkin’s formula applied to the 0-order resolvent of the process obtained from M by
killing at time σ−A ∧ σA,

Eξ(τξ,ϵ) = u(ξ)− h−0 (ξ, ϵ)u(ξ − ϵ)− h+0 (ξ, ϵ)u(ξ + ϵ),

which combined with (3.14) leads us to Eξ(τξ,ϵ) = o(ϵ).
The rest of the proof is obvious since

gα(ξ, ϵ) = αEξ

(∫ τξ,ϵ

0
e−αtdt

)
≤ αEξ(τξ,ϵ).

2

Proposition 3.2 (i) V ′(a) = −f ′
1(a) and V ′(x) is right continuous at a.

(ii) V ′(b) = f ′
2(b) and V ′(x) is left continuous at b.
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Proof. We only give a proof (i). The proof of (ii) is analogous. Take any ϵ > 0 with
(a − ϵ, a + ϵ) ⊂ (−A, 0). Let θt be the shift operator on the probability space Ω for M,
that is Xs(θtω) = Xs+t(ω), ∀ω ∈ Ω ( cf [FOT 94]). If we let σ = τa,ϵ + σ̂ ◦ θτa,ϵ , then

τ̂ ∧ σ = τa,ϵ + (τ̂ ∧ σ̂) ◦ θτa,ϵ ,

because τ̂ = τa,ϵ + τ̂ ◦ θτa,ϵ . Hence we have

V (a) ≥ Ja(τ̂ , σ) = Ea

(∫ τa,ϵ

0
e−αtH(Xt)dt

)
+ h−α (a, ϵ)V (a− ϵ) + h+α (a, ϵ)V (a+ ϵ),

and

h−α (a, ϵ)V (a− ϵ) + h+α (a, ϵ)V (a+ ϵ)− Ea

(
e−ατa,ϵ

)
V (a)

≤ gα(a, ϵ)V (a)− Ea

(∫ τa,ϵ

0
e−αtH(Xt)dt

)
≤ (V (a)− H(a− ϵ)

α
)gα(a, ϵ).

Therefore

h+α (a, ϵ)(−f1(a+ ϵ) + f1(a)) ≤ h+α (a, ϵ)(V (a+ ϵ)− V (a))

≤ h−α (a, ϵ)(V (a)− V (a− ϵ)) + (V (a)− H(a− ϵ)

α
)gα(a, ϵ)

≤ h−α (a, ϵ)(−f1(a) + f1(a− ϵ)) + (V (a)− H(a− ϵ)

α
)gα(a, ϵ).

By dividing each side of the above inequality by ϵ and letting ϵ → 0, we get from the
previous lemma the desired inequality

−D+f1(a) ≤ D+V (a) ≤ D−V (a) ≤ −D−f1(a),

yielding the first half of (i). Since V ′(x) is easily seen to have the right limit at x = a by
virtue of Proposition 3.1 (iv), it is right continuous at a as well.

2

Proposition 3.3 Let E1, E2 be the sets defined by (3.10).
(i) E1 = [−A, a] and (

α− d

ds

d

dm

)
f1(x) > H(x), ∀x ∈ [−A, a).

(ii) E2 = [b, A] and (
α− d

ds

d

dm

)
f2(x) < H(x), ∀x ∈ (b, A].

Proof. We only give the proof of (i). (ii) can be proved similarly. Putting x = a + ϵ in
(3.11) and letting ϵ ↓ 0, we get

αV (a)− d+

ds

dV

dm
(a) = H(a), (3.15)

11



where d+
ds denotes the right derivative. On the other hand,

d+

ds

dV

dm
(a) ≥ − d

ds

d f1
dm

(a). (3.16)

In fact, the function F (x) = V (x) + f1(x) satisfies F (x) ≥ 0, F (a) = 0 and further
F ′(a) = 0, F ′(x) is right continuous at a by the preceding proposition. Taylor’s theorem
applies and

0 ≤ F (a+ ϵ)

ϵ2
= F ′′(a+ θϵ) → d+

dx
F ′(a) as ϵ ↓ 0.

Hence

d+

ds

dF

dm
(a) =

1

ṡ(a)ṁ(a)

d+

dx
F ′(a)− ṁ′(a)

ṡ(a)ṁ(a)2
F ′(a) =

1

ṡ(a)ṁ(a)

d+

dx
F ′(a) ≥ 0.

Now (3.15) and (3.16) and Assumption 3.1 lead us to the inequality

−
(
α− d

ds

d

dm

)
f1(x) > H(x) ∀x ∈ [−A, a). (3.17)

Turning to the proof of E1 = [−A, a] by reduction to a contradiction, we assume that
there exists x0 ∈ [−A, a) such that V (x0) > −f1(x0). Then we have two possibilities:
(I) There exists β, γ ∈ E1 such that −A ≤ β < x0 < γ ≤ a and V (x) > −f1(x) ∀x ∈
(β, γ).
(II) There exists β ∈ E1 such that −A < x0 < β and V (x) > −f1(x) ∀x ∈ [−A, β).

Suppose case (I) occurs. By combining Proposition 3.1 (iv) with (3.17), we then see
that the function F = −f1 − V satisfies(

α− d

ds

d

dm

)
F (x) > 0 (3.18)

for any x ∈ (β, γ). Since F (β) = F (γ) = 0, an integration by parts yields

Eα(F, v) ≥ 0 (3.19)

for any v ∈ C1
0 ((β, γ)) such that v ≥ 0. This means that (the restriction to (β, γ) of ) F

is α-excessive with respect to the part of the Dirichlet form (E ,F) on the interval (β, γ)
([FOT 94, Lem. 2.2.1, Th. 4.4.3]). In particular, F (x0) ≥ 0 a contradiction.

Suppose case (II) occurs. On account of Proposition 3.1 (v), (3.17) and Assumption
3.1, we see then that the function F satisfies inequality (3.18) holding for any x ∈ (−A, β)
as well as the inequality F ′(−A) ≤ 0. Therefore, an integration by parts leads us to the
inequality (3.19) holding for any v ∈ C1

0 ([−A, β)) such that v ≥ 0. F is then α-excessive
with respect to the part of (E ,F) on the interval [−A, β), arriving at a contradiction
F (x0) ≥ 0 again.

2

By the preceding three propositions, the proof of Theorem 3.1 is complete.
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The function V of Theorem 3.1 (the solution of (2.1), (2.2) for the Dirichlet form (3.3)
on L2([−A,A], ds) under the assumption 3.1 for the data (H, f1, f2) gives rise to a solution
of another type of free boundary problem stated below. Let us first extend the function
V to whole R by setting

V (x) = −f1(x) x < −A, V (x) = f2(x) x > A. (3.20)

In view of Assumption 3.1, we see that the extended function V still satisfies the first
inequality of (3.9) on (−∞, a) and the second inequality on (b,∞).

We then let, for x ∈ R,

h(x) =

∫ x

0
H(y)ṡ(y)dy + C. (3.21)

where C is an arbitrarily taken fixed constant. We further let

W (x) =

∫ x

a
V (y)ṡ(y)dy +

1

α
(−f ′

1(a)

ṁ(a)
+ h(a)). (3.22)

Theorem 3.2 W ∈ C2(R) and there exist a, b with a < 0 < b such that

αW (x)− d

dm

d

ds
W (x) = h(x) a < x < b

< h(x) x < a or x > b, (3.23)

−f1 <
d

ds
W < f2 on (a, b), (3.24)

d

ds
W = −f1 on (−∞, a],

d

ds
W = f2 on [b,∞) (3.25)

d

dx

d

ds
W (a) = −f ′

1(a),
d

dx

d

ds
W (b) = f ′

2(b). (3.26)

Proof. For the function

U(x) = αW (x)− d

dm

d

ds
W (x)− h(x),

we have
1

ṡ(x)
U ′(x) = αV (x)− d

ds

d

dm
V (x)−H(x).

Consider a, b of Theorem 3.1. Then, by Theorem 3.1 and the remark made before the
statement of Theorem 3.2,

U(a) = 0; U ′(x) > 0, x < a; U ′(x) = 0, x ∈ (a, b); U ′(x) < 0, x > b,

which implies (3.23). The rest of the proof is obvious. 2
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4 A singular control of the (σ, µ)-diffusion

Let σ(x) and µ(x) be C1-functions on R with σ(x) ̸= 0, ∀x ∈ R. We are concerned with
a diffusion on R with infinitesimal generator

Lu(x) =
1

2
σ(x)2

d2u

dx2
(x) + µ(x)

du

dx
(x), (4.1)

which can be converted into the Feller canonical form
d

dm

du

ds
(x) by setting

ṡ(x) = exp

(
−
∫ x

0

2µ(y)

σ(y)2
dy

)
ṁ(x) =

2

σ(x)2
exp

(∫ x

0

2µ(y)

σ(y)2
dy

)
, (4.2)

and ds(x) = ṡ(x)dx, dm(x) = ṁ(x)dx.We assume that −∞ and∞ are natural boundaries
with respect to the operator (4.1) in the sense that condition (3.1) is satisfied by ṡ, ṁ of
(4.2). Since ṡ, ṁ of (4.2) are strictly positive C1-functions, all results of §3 apply.

Throughout this section, we fix σ(x), µ(x) as above and ṡ(x), ṁ(x) are understood to
be defined by (4.2). We call a triplet (S,X,A) admissible policy or just admissible if the
following conditions are satisfied:

(A.1) S is a compact interval of R.
(A.2) There is a filtered measurable space (Ω, {Ft}t≥0) subject to usual conditions and
probability measures {Px}x∈S on it such that
X = {Xt}t≥0 is an {Ft}-adapted right continuous process and
A = {At}t≥0 is an {Ft}-adapted right continuous process of bounded variation satisfying

Ex

(∫ ∞

0−
e−αtdA

(1)
t

)
< ∞, Ex

(∫ ∞

0−
e−αtdA

(2)
t

)
< ∞, ∀x ∈ S, (4.3)

where A(1) and A(2) are two {Ft}-adapted right continuous increasing processes for which

At = A
(1)
t −A

(2)
t is the minimal decomposition of the bounded variation process A into a

difference of two increasing processes.
(A.3) There is an {Ft}-adapted standard Brownian motion {wt}t≥0 starting at the origin
under Px for any x ∈ S such that the stochastic differential equation

Xt = x+

∫ t

0
σ(Xs)dws +

∫ t

0
µ(Xs)ds+A

(1)
t −A

(2)
t t ≥ 0 (4.4)

holds Px-a.s. for each x ∈ S and further

Px(Xt ∈ S, ∀t ≥ 0) = 1 ∀x ∈ S. (4.5)

We denote by A the totality of admissible triplets (S,X,A). In the sequel we will always
represent A in terms of A(1) and A(2) and thus we will write (S,X,A) and (S,X,A(1), A(2))
interchangeably.
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Remark 4.1 (i) The probability space Ω with the filtration {Ft} in (A.2) is not fixed
a priori. It is a part of an admissible policy. The filtration {Ft} is assumed to be right
continuous and F0 is assumed to contain every Ω-set which is Px-negligible for any x ∈ S.
(ii) We shall use the notations

∆A
(i)
t = A

(i)
t −A

(i)
t−, t ≥ 0 i = 1, 2,

∆Xt = Xt −Xt−, ∆u(X)t = u(Xt)− u(Xt−), t ≥ 0.

Note that, due to the fact that A(1) and A(2) represent the minimal decomposition of A

into two increasing processes, ∆A
(1)
t ∆A

(2)
t = 0 for each t ≥ 0. By convention, we let

wt = 0, A
(i)
t = 0 ∀t < 0, i = 1, 2,

so that
∆A

(i)
0 = A

(i)
0 , i = 1, 2, X0− = x Px−a.s. ∀x ∈ S.

Further we define the continuous part of A(i) by

A
(i),c
t = A

(i)
t −

∑
0≤s≤t

∆A(i)
s , t ≥ 0, i = 1, 2.

(iii) The integrals in t in (4.3) involve the possible jump at 0 so that they are the sum of

the integrals over (0,∞) and A
(i)
0 , i = 1, 2.

Proposition 4.1 Let (S,X,A(1), A(2)) ∈ A. Then, for any u ∈ C2(R), the following
identity holds:

u(x) = Ex

[∫ ∞

0
e−αt

(
α− d

dm

d

ds

)
u(Xt)dt

]
+ Ex

[∫ ∞

0
e−αt

(
−du

ds
(Xt)ṡ(Xt)dA

(1),c
t +

du

ds
(Xt)ṡ(Xt)dA

(2),c
t

)]

− Ex

 ∑
0≤t<∞

e−αt∆u(X)t

 . x ∈ S. (4.6)

All expectations in the right side of (4.6) exist and are finite.

Proof. By a generalized Ito formula ([M 76, p 278], see also [HT 83, §4]) applied to the
semimartingale (4.4), we have

e−αtu(Xt) = u(X0)− α

∫ t

0
e−αsu(Xs)ds+

∫ t

0
e−αsu′(Xs)σ(Xs)dws

+

∫ t

0
e−αsu′(Xs)µ(Xs)ds+

∫ t

0
e−αsu′(Xs)(dA

(1),c
s − dA(2),c

s )

+
1

2

∫ t

0
e−αsu′′(Xs)σ(Xs)

2ds+
∑

0<s≤t

e−αs∆u(X)s. (4.7)
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Rewrite the sum of two terms in the right side of (4.7) as

u(X0) +
∑

0<s≤t

e−αs∆u(X)s = u(X0−) +
∑

0≤s≤t

e−αs∆u(X)s,

then take the expectation of the both hand sides of (4.7) with respect to Px and let t → ∞
to get the identity (4.6). 2

Lemma 4.1 If (S,X,A(1), A(2)) ∈ A, then both A(1) and A(2) are non-trivial in the sense
that, for each T > 0,

Px(A
(i)
t = A

(i)
0 , ∀t ∈ [0, T )) = 0, ∀x ∈ S, i = 1, 2. (4.8)

Proof. (i) Since S is compact, the integrand of the first integral of the right hand side
of (4.4) is bounded and is bounded away from zero, while the integrand of the second
is bounded. If both A(1), A(2) were trivial,the process Xt satisfying (4.4) hits therefore
any point of R almost surely as the Brownian motion does ([IW 89, pp.85, pp.437]), a
contradiction. If either A(1) or A(2) is trivial, the path of Xt can not be concentrated on
a compact set, again a contradiction. 2

Proposition 4.2 For any finite β1 < β2, there exists ([β1, β2], X,A(1), A(2)) ∈ A such
that

A
(i)
t =

∫ t

0
I{βi}(Xs)dA

(i)
s , ∀t ≥ 0, Px − a.s. ∀x ∈ [β1, β2]. i = 1, 2. (4.9)

Such Xt and A
(i)
t , i = 1, 2 are necessarily continuous in t ≥ 0, Px-a.s. for any x ∈ [β1, β2].

Furthermore, the Px-law of such (X,A(1), A(2)) is unique for any x ∈ [β1, β2].

Proof. The equation (4.4) subjected to the conditions (4.5) and (4.9) is called the Skorohod
equation for [β1, β2].

Since σ, µ are C1-functions, the existence and uniqueness of (X,A(1), A(2)) satisfying
(4.9) and all admissibility conditions except for the integrability (4.3) follow from Tanaka
[Tana 79, Th. 4.1], where the unique existence of the strong solution of the Skorohod
equation with Lipschitz continuous coefficients for a multidimensional convex domain was
proved. It was also shown in [Tana 79] that the solution is necessarily continuous. The
integrability (4.3) is then an automatic consequence of the equation (4.7) applied to C2-
function u such that u′(β1) = 1, u′(β2) = 0 (resp. u′(β1) = 0, u′(β2) = 1). 2

The triple (X,A(1), A(2)) of Proportion 4.2 is called a reflecting (σ, µ)-diffusion on the
interval [β1, β2].

We are now in the position to formulate our main theorem about a singular control
problem for the admissible family A.

Let h, f1, f2 be functions on R satisfying the following conditions:
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Assumption 4.1 h(x) is a C1 function on R such that

h′(0) = 0,
dh

ds
(x) is strictly increasing,

dh

ds
(x) → ±∞ as x → ±∞.

f1, f2 are C2-functions with 0 < f1, f2 ≤ M for some M > 0 and

f ′
1(x) ≥ 0, x ∈ R,

d

ds

d

dm
f1 −

dh

ds
is strictly decreasing on (−∞, 0),

f ′
2(x) ≤ 0, x ∈ R,

d

ds

d

dm
f2 +

dh

ds
is strictly increasing on (0,∞).

We note that then h can be expressed as (3.21) via a function H satisfying condition of
Assumption 3.1 and further f1, f2 satisfy the condition of Assumption 3.1 for this function
H. Therefore Theorem 3.2 applies to the present functions h, f1, f2.

For each (S,X,A(1), A(2)) ∈ A, the cost function kx is defined, for x ∈ S, by

kx(S,X,A(1), A(2)) = Ex

(∫ ∞

0
e−αth(Xt)dt

)
+Ex

[∫ ∞

0
e−αt

(
f1(Xt)ṡ(Xt)dA

(1),c
t + f2(Xt)ṡ(Xt)dA

(2),c
t

)]

+Ex

 ∑
0≤t<∞

e−αt

(∫ Xt−+∆A
(1)
t

Xt−

f1(y)ds(y) +

∫ Xt−

Xt−−∆A
(2)
t

f2(y)ds(y)

) . (4.10)

Some remarks about the cost structure are due at this point. The first integral∫∞
0 e−αth(Xt)dt in (4.10) represents the so-called holding cost associated with the po-
sition of the controlled process Xt. Other integrals represent the control cost, which is
associated with the ”efforts” to change the position of the controlled process. The cost
associated with each of the control functionals A(i), i = 1, 2 is proportional to the displace-
ment caused by each of these functionals, however the coefficient of the proportionality is
a function of the position of the control process and is equal to f1(x)ṡ(x) if the controlled
process is at the point x. Thus if A(i) is a continuous functional, we can write an approx-

imation to the control cost as
∑

j e
−αtjfi(Xtj )ṡ(Xtj )δA

(i)
j , where δA

(i)
j is an increment

of A(i) on the interval [tj , tj+1]. In a limit one gets
∫∞
0 e−αtfi(Xt)ṡ(Xt)dA

(i)
t . When the

control functional has a discontinuity at the point t, which results in a jump of the control
process, then we represent this jump as if the real clock is stopped while a new clock is
turned on and the controlled process is moving uniformly in the new time clock up or

down from Xt− to Xt = Xt− + ∆A
(i)
t . In such a representation the control cost of this

displacement is equal to
∫ Xt−+∆A

(i)
t

Xt−
fi(y)ṡ(y)dy, which corresponds to the last two terms

in the right hand side of (4.10). The same expression in the right hand side of (4.10) would
have been obtained as a limit if we had started with continuous functionals A(i) and then
had approximated by them (via a monotone pointwise convergence) discontinuous control
functionals.
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Of course, when fi(x)ṡ(x) is equal to a constant ri, the control cost associated with

the functional A(i) can be written as
∫∞
0 e−αtridA

(i)
t , without a need to have a special

expression associated with the discontinuities of A(i). This was the case treated in [T 85].
We extend kx outside the closed interval S denoted by [ℓ1, ℓ2] as

kx(S,X,A(1), A(2)) = kℓ1(S,X,A(1), A(2)) +

∫ ℓ1

x
f1(y)ds(y), x < ℓ1,

= kℓ2(S,X,A(1), A(2)) +

∫ x

ℓ2

f2(y)ds(y), x > ℓ2. (4.11)

Our problem is to find the function

W ∗(x) = inf
(S,X,A(1),A(2))∈A

kx(S,X,A(1), A(2)), x ∈ R (4.12)

called the optimal return function and find an optimal admissible quadruple (S,X,A(1), A(2)) ∈
A such that

W ∗(x) = kx(S,X,A(1), A(2)) ∀x ∈ R.

The solution will be provided by the function W , the values a, b appearing in Theorem
3.2 and the reflecting (σ, µ)-diffusion on [a, b] appearing in Proposition 4.2.

Here we introduce a subfamily A0 of A by

A0 = {(S,X,A(1), A(2)) ∈ A : A
(i)
0 = 0 Px−a.s. ∀x ∈ S, i = 1, 2}.

The reflecting (σ, µ)-diffusion on a compact interval appearing in Proposition 4.2 is a
member of A0.

Theorem 4.1 Under Assumption 4.1 for functions h, f1, f2, let W,a, b be the function
and values in Theorem 3.2. Then,

(i) W (x) ≤ kx(S,X,A(1), A(2)), ∀x ∈ R, for any (S,X,A(1), A(2)) ∈ A.

(ii) W (x) = kx(S,X,A(1), A(2)), ∀x ∈ R, for (S,X,A(1), A(2)) ∈ A0

if and only if

S = [a, b], (X,A(1), A(2)) is the reflecting (σ, µ)-diffusion on the interval [a, b]. (4.13)

Proof. (i) Take any (S,X,A(1), A(2)) ∈ A. Subtracting from (4.10) the identity (4.6) for
u = W , we have

kx(S,X,A(1), A(2))−W (x) = Ex(I1 + I2 + I3 + I4) x ∈ S. (4.14)

where

I1 =

∫ ∞

0
e−αt

{(
d

dm

d

ds
− α

)
W (Xt) + h(Xt)

}
dt,

I2 =

∫ ∞

0
e−αt

{
dW

ds
(Xt) + f1(Xt)

}
ṡ(Xt)dA

(1),c
t ,
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I3 =

∫ ∞

0
e−αt

{
−dW

ds
(Xt) + f2(Xt)

}
ṡ(Xt)dA

(2),c
t ,

I4 =
∑

0≤t<∞
e−αt

(
∆W (X)t +

∫ Xt−+∆A
(i)
t

Xt−

f1(y)ds(y) +

∫ Xt−

Xt−−∆A
(2)
t

f2(y)ds(y)

)
.

The integrands I1, I2, I3 are non-negative by virtue of Theorem 3.2. To see that I4 is
non-negative, let

Γ+ = {t ≥ 0 : ∆A
(1)
t > 0}, Γ− = {t ≥ 0 : ∆A

(2)
t > 0}.

Since Γ+ ∩ Γ− = ϕ by Remark 4.1, we have for t ∈ Γ+,

∆Xt = ∆A
(1)
t , ∆W (X)t = W (Xt− +∆A

(1)
t )−W (Xt−),

and consequently the sum in I4, taken over all t ∈ Γ+ equals∫ Xt−+∆A
(1)
t

Xt−

(
dW

ds
(y) + f1(y))ds(y).

We have a similar expression for t ∈ Γ− and we get eventually

I4 =
∑
t∈Γ+

e−αt

∫ Xt

Xt−

(
dW

ds
(y)+f1(y))ds(y)+

∑
t∈Γ−

e−αt

∫ Xt−

Xt

(−dW

ds
(y)+f2(y))ds(y). (4.15)

which is non-negative by Theorem 3.2.
We have seen that kx ≥ W (x), x ∈ S. This inequality extends to R by the definition

(4.11) and Theorem 3.2.

(ii) Suppose kx(S,X,A(1), A(2)) = W (x), ∀x ∈ S for some (S,X,A(1), A(2)) ∈ A0. Then
all Px-expectations of I1, I2, I3, I4 must vanish for any x ∈ S. Notice further that X0 =

x Px−a.s.∀x ∈ S, because A
(i)
0 = 0, Px−a.s. ∀x ∈ S, i = 1, 2. We let S = [β, γ].

Suppose that β < a (resp.b < γ). Then Ex(I1) > 0 for x ∈ (β, a)(resp. (b, γ)) by (3.23)
and the right continuity of Xt. Therefore we have that [β, γ] ⊂ [a, b].

In view of Lemma 4.1, both A(1), A(2) are non-trivial. If a < β(resp. γ < b), then
dW

ds
+ f1

(
resp. − dW

ds
+ f2

)
is strictly positive on S by (3.24),(3.25) and hence either

I2 or the first sum of (4.15) (resp. either I3 or the second sum of (4.15)) has a positive
Px-expectation for any x ∈ S. We have proven that S = [a, b].

Then, by virtue of (3.24), we see that Xt or equivalently A
(i)
t i = 1, 2, must be contin-

uous in t ≥ 0 Px-a.s. for any x ∈ S in order to make the expectation of I4 expressed as
(4.15) to be zero. Finally, using (3.24) and (3.25), we see that A(i) = A(i),c, i = 1, 2, must
satisfy the relations (4.9) for β1 = a, β2 = b in order to make both expectations of I2, I3
to be zero. This means that (X,A(1), A(2)) must be the reflecting (σ, µ)-diffusion on the
interval [a, b].

Conversely the cost function kx of the reflecting (σ, µ)-diffusion on the interval [a, b] is
obviously identical with W (x) on R in view of (4.14). 2
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Corollary 4.1 Under Assumption 4.1 for functions h, f1, f2, the solution W ∈ C2(R)
and values a, b (a < b), of the free boundary problem (3.23), (3.24) and (3.25) are unique.
The solution W (x), x ∈ R, coincides with the optimal return function W ∗(x) given by
(4.12).

Proof. In the proof of Theorem 4.1, we have seen that any function W satisfying
(3.23),(3.24) and (3.25) for some a, b (a < b), coincides with the function defined by
(4.12). Further this function determines a, b uniquely according to (3.23). 2
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