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A LOCALIZATION FORMULA IN DIRICHLET FORM THEORY

ZHEN-QING CHEN AND MASATOSHI FUKUSHIMA

(Communicated by Richard C. Bradley)

Abstract. A localization energy formula is established for symmetric Markov
processes on Luzin spaces.

1. Introduction

Let E be a Luzin space, m a σ-finite measure on it and X an m-symmetric right
process on E. Let (E ,F) be the Dirichlet form on L2(E;m) associated with X,
which is known to be quasi regular. In view of the quasi homeomorphism method
in [3], without loss of generality, we may and do assume that E is a locally compact
separable metric space, m is a positive Radon measure on E with supp[m] = E,
(E ,F) is a regular symmetric Dirichlet form in L2(E;m), and X = (Xt,Px, ζ) is an
m-symmetric Hunt process associated with (E ,F). We will use (E ,Fe) to denote
the extended Dirichlet space of (E ,F) and E1 := E +(· , ·)L2(E;m). The expectation
with respect to the probability measure Px will be denoted as Ex. We will use
the convention that any function defined on E is extended to E∂ := E ∪ {∂} by
taking the value 0 at the cemetery point ∂ that is added to E as a one-point
compactification. Every element u in Fe then admits a quasi continuous version
and we will assume that functions in Fe are always represented by their quasi
continuous versions. In the sequel, the abbreviations CAF, PCAF and MAF stands
for “continuous additive functional”, “positive continuous additive functional” and
“martingale additive functional”, respectively, whose definitions can be found both
in [1] and [4]. We also refer readers to the above two books for notions such as
m-polar and E-quasi everywhere (E-q.e. in abbreviation).

Consider a Lévy system (N(x, dy), H) for the m-symmetric Hunt process X on
E. The Revuz measure of the PCAF H of X will be denoted as μH . We define

(1.1) J(dx, dy) = N(x, dy)μH(dx) and κ(dx) = N(x, {∂})μH(dx)

as the jumping measure and the killing measure of X (or, equivalently, of (E ,F)).
For square-integrable martingales M and N , we use [M ] to denote the quadratic
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variation process of M , and define their quadratic covariation process [M,N ] by
([M +N ] − [M −N ])/4. The dual predictable projections of [M ] and [M,N ] are
denoted as 〈M〉 and 〈M,N〉, respectively (cf. [5]). For u ∈ Fe, the following
Fukushima decomposition holds:

u(Xt)− u(X0) = M
[u]
t +N

[u]
t , t ≥ 0,

where M [u] is an MAF of X of finite energy and N [u] is a CAF of X having zero
energy. Let M [u],c be the continuous martingale part of M [u]. 〈M [u]〉 and 〈M [u],c〉
are then PCAFs of X. We use μ〈u〉 and μc

〈u〉 to denote their Revuz measures on E,

respectively. Let {Pt, t ≥ 0} be the transition semigroup of X.
The following facts are well known (see [1, Chapter 4] or [4, Chapter 5]): For

u ∈ L2(E;m), u ∈ F if and only if supt>0
1
t (u−Ptu, u)L2(E;m) < ∞, and for u ∈ F ,

E(u, u) = lim
t→0

1

t
(u− Ptu, u)L2(E;m)

= lim
t→0

1

2t
Em

[
(u(Xt)− u(X0))

2
]
+ lim

t→0

1

2t

∫
E

u(x)2(1− Pt1(x))m(dx).
(1.2)

Moreover, for u ∈ Fe,

μ〈u〉(dx) = μc
〈u〉(dx) +

(∫
E∂

(u(x)− u(y))2N(x, dy)

)
μH(dx)

= μc
〈u〉(dx) +

∫
E

(u(x)− u(y))2J(dx, dy) + u(x)2κ(dx),(1.3)

lim
t→0

1

t

∫
E

u(x)2(1− Pt1(x))m(dx) =

∫
E

u(x)2κ(dx),(1.4)

and

lim
t→0

1

t
Em

[
(u(Xt)− u(X0))

2
]
=μc

〈u〉(E) +

∫
E×E

(u(x)− u(y))2J(dx, dy)

+

∫
E

u(x)2κ(dx).

(1.5)

It follows from (1.4) and (1.5) that for u ∈ Fe,
(1.6)

lim
t→0

1

t
Em

[
(u(Xt)− u(X0))

2; t < ζ
]
= μc

〈u〉(E) +

∫
E×E

(u(x)− u(y))2J(dx, dy).

In addition, the following Beurling-Deny decomposition holds for the Dirichlet form
(E ,F):

E(u, u) = 1

2
μc
〈u〉(E)+

1

2

∫
E×E

(u(x)−u(y))2J(dx, dy)+

∫
E

u(x)2κ(dx) for u ∈ Fe.

The above Beurling-Deny decomposition can be regarded as the analogy to sym-
metric Markov processes of the Lévy-Khinchin formula for Lévy processes. It char-
acterizes the continuous part, the pure jumping part and the killings of the strong
Markov process X.
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Let D be a quasi open subset of E and XD the subprocess of X killed upon
leaving D, The subprocess XD is then symmetric with respect to the measure
m0 := m|D. The Dirichlet form of XD is (E ,FD), where

FD = {u ∈ F : u = 0 E-q.e. on Dc}.
Let {PD

t , t ≥ 0} denote the transition semigroup of XD. For u ∈ Fe, (1.2) tells
us that neither limt→0

1
t

∫
D
u(x)2(1 − PD

t 1(x))m0(dx) nor limt→0
1
tEm0

[(u(XD
t )−

u(XD
0 ))2] can be expected to exist in general unless E \D is m-polar. Nevertheless,

the following main result of this paper asserts that (1.6) remains valid for u ∈ Fe

with τD and D in place of ζ and E, respectively.

Theorem 1.1. For every v ∈ Fe,
(1.7)

lim
t→0

1

t
Em0

[
(v(Xt)− v(X0))

2; t < τD
]
= μc

〈v〉(D) +

∫
D×D

(v(x)− v(y))2J(dx, dy).

It is a bit surprising to us that this localization formula was not known until now.
Such a formula is very useful in the study of boundary theory of symmetric Markov
processes, especially in deriving the Beurling-Deny decomposition of the Dirichlet
form of the trace (the time-changed process) of the symmetric Markov process X
on a quasi closed set F = E \ D; see Section 5.5 and Section 5.6 of [1]. This
Beurling-Deny decomposition asserts (see [1, Theorem 5.5.9 and Corollary 5.6.1])
that for every u ∈ Fe,

E(Hu,Hu) =
1

2
μc
〈Hu〉(F ) +

1

2

∫
F×F

(u(x)− u(y))2 (J(dx, dy) + U(dx, dy))

+

∫
F

u(x)2 (κ(dx) + V (dx)) ,(1.8)

where Hu(x) = Ex [u(XσF
)], σF = inf{t > 0 : Xt ∈ F}, U and V are Feller

measures of X that characterize the excursions of X around F . The identity (1.8)
was first established in [2]. However, the proof of a key step, Theorem 2.6 of [2],
while its conclusion is correct, contains a serious gap in that a dual predictable
projection result was applied incorrectly on line 1 of p.1069 there. The use of
Theorem 1.1 enables us to give a correct proof of [2, Theorem 2.6]; see Theorem 5.5.8
of [1].

2. Proof

For notational convenience, let F := E \D and F∂ := F ∪ {∂}.
Lemma 2.1. Suppose v is a bounded function in Fe. Then

lim sup
t→0

1

t
Em0

[
(v(Xt)− v(X0))

2; t < τD
]
≤ μc

〈v〉(D) +

∫
D×D

(v(x)− v(y))2J(dx, dy).

Proof. First note that

Ex

[
(M

[v]
t∧τD )

2
]
= Ex

[
〈M [v]〉t∧τD

]
.

By [1, Proposition 4.1.10], t → 〈M [v]〉t∧τD is a PCAF of XD and

lim
t→0

1

t
Em0

[
〈M [v]〉t∧τD

]
= μ〈v〉(D)

= μc
〈v〉(D) +

∫
D×E∂

(v(x)− v(y))2N(x, dy)μH(dx).
(2.1)
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Define, for t ≥ 0, At := (v(XτD)−v(XτD−))1{t≥τD>0}, and let Ap be its dual pre-
dictable projection. Since A is a process of bounded variation, Ap can be expressed
as

(2.2) Ap
t =

∫ t∧τD

0

∫
F∂

(v(y)− v(Xs))N(Xs, dy)dHs,

on account of the Lévy system formula (see, e.g., [1, (A.3.33)]. It is known (see,
e.g., [5]) that M := A− Ap is a purely discontinuous square integrable martingale

that is orthogonal to M
[v]
·∧τD −M in the sense that [M, M

[v]
·∧τD −M ] = 0. We claim

that

(2.3) lim
t→0

1

t
Em0

[
(Ap

t )
2
]
= 0.

To prove it, for k ≥ 1, define

Ak
t := (v(XτD)− v(XτD−))1{|v(XτD

)−v(XτD−)|>1/k} 1{t≥τD>0}

and

Ak,p
t :=

∫ t∧τD

0

∫
F∂

(v(y)− v(Xs))1{|v(y)−v(Xs)|>1/k} N(Xs, dy)dHs.

Then Mk := Ak −Ak,p is a purely discontinuous square integrable martingale and
[M −Mk]t = (At −Ak

t )
2. Therefore by the Lévy system formula mentioned above,

lim sup
t→0

1

t
Em0

[
(Ap

t −Ak,p
t )2

]
≤ lim sup

t→0

2

t
Em0

[
(Mt −Mk

t )
2
]
+ lim sup

t→0

2

t
Em0

[
(At −Ak

t )
2
]

≤ 4

∫
D×F∂

(v(x)− v(y))21{|v(x)−v(y)|≤1/k}J(dx, dy),

(2.4)

which tends to 0 as k → ∞. Now define

Bk
t := |v(XτD)− v(XτD−)|1{|v(XτD

)−v(XτD−)|>1/k} 1{t≥τD>0}

and

Bk,p
t :=

∫ t∧τD

0

∫
F∂

|v(y)− v(Xs)|1{|v(y)−v(Xs)|>1/k}N(Xs, dy)dHs.

Then

(2.5) Ex[B
k,p
t ] = Ex[B

k
t ] ≤ 2‖v‖∞Px(t ≥ τD) for x ∈ D

and Bk,p is a PCAF of XD having Revuz measure μk with

μk(D) =

∫
D×F∂

|v(x)− v(y)|1{|v(x)−v(y)|>1/k}N(x, dy)μH(dx)

≤ k

∫
D×F∂

(v(x)− v(y))2N(x, dy)μH(dx) < ∞.

By the Markov property of XD, equation (2.5) and Revuz correspondence (see,
e.g., [1, Theorem 4.1.1]),
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Em0

[
(Ak,p

t )2
]
≤ Em0

[
(Bk,p

t )2
]
= 2Em0

[∫ t

0

(∫ t

s

dBk,p
r

)
dBk,p

s

]

= 2Em0

[∫ t

0

EXD
s

[
Bk,p

t−s

]
dBk,p

s

]
≤ 4‖v‖∞Em0

[∫ t

0

(1− PD
t−s1(X

D
s ))dBk,p

s

]

≤ 4‖v‖∞
∫ t

0

(
〈PD

s 1, μk〉 − 〈PD
s 1, PD

t 1 · μk〉
)
ds.

It then follows from the dominated convergence theorem that

lim sup
t→0

1

t
Em0

[
(Ak,p

t )2
]
≤ 4‖v‖∞(μk(D)− μk(D)) = 0.

This together with (2.4) establishes the claim (2.3).
Next by Fukushima’s decomposition, (2.3), the stated martingale orthogonality

between M and M
[v]
·∧τD − M , the identity [M ]t = A2

t and finally by (2.1) and the
Lévy system formula, we have

lim sup
t→0

1

t
Em0

[
(v(Xt)− v(X0))

2; t < τD
]
= lim sup

t→0

1

t
Em0

[
(M

[v]
t∧τD )

2; t < τD

]
= lim sup

t→0

1

t
Em0

[
(M

[v]
t∧τD −Mt −Ap

t )
2; t < τD

]
≤ lim sup

t→0

1

t
Em0

[
(M

[v]
t∧τD −Mt)

2
]

= lim sup
t→0

1

t
Em0

[(M
[v]
t∧τD )

2]− lim
t→0

1

t
Em0

[A2
t ]

= μc
〈v〉(D) +

∫
D×D

(v(x)− v(y))2N(x, dy)μH(dx).

This completes the proof of the lemma. �
Proof of Theorem 1.1. It suffices to prove the theorem for v = Rαg for some
bounded g ∈ L2(E;m), as such functions v are E-dense in Fe and the upper bound
in Lemma 2.1 can be utilized.

For f ∈ FD ⊂ F , let the Fukushima decomposition of f(XD
t ) − f(XD

0 ) be

denoted as M
0,[f ]
t +N

0,[f ]
t , while the Fukushima decomposition for f(Xt)− f(X0)

is denoted by M
[f ]
t +N

[f ]
t . Since f(Xt∧τD )− f(X0) = f(XD

t )− f(XD
0 ), we have

M
[f ]
t∧τD −M

0,[f ]
t = N

0,[f ]
t −N

[f ]
t∧τD , t ≥ 0.

It is easy to check (see [1, Exercise 4.1.9]) that M
0,[f ]
t is a square-integrable mar-

tingale with respect to the filtration {Ft∧τD , t ≥ 0} and so is M
[f ]
t∧τD −M

0,[f ]
t . Since

N [f ] (resp. N0,[f ]) is a CAF of X (resp. XD) of zero energy, we have

Em0

[
〈M [f ]

·∧τD −M0,[f ]〉t; t < τD

]
= Em0

[
〈N [f ]

·∧τD −N0,[f ]〉t; t < τD

]

= Em0

[
lim
n→∞

n∑
k=1

(
N

[f ]
kt/n −N

[f ]
(k−1)t/n −N

0,[f ]
kt/n +N

0,[f ]
(k−1)t/n

)2

; t < τD

]

≤ lim
n→∞

2Em

[
n∑

k=1

(
N

[f ]
kt/n −N

[f ]
(k−1)t/n

)2
]

+ lim
n→∞

2Em0

[
n∑

k=1

(
N

0,[f ]
kt/n −N

0,[f ]
(k−1)t/n

)2
]
= 0.
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By the continuity of 〈M [f ]
·∧τD −M0,[f ]〉t, we conclude that 〈M [f ]

·∧τD −M0,[f ]〉τD = 0

and therefore M
[f ]
t∧τD = M

0,[f ]
t . Consequently, N

[f ]
t∧τD = N

0,[f ]
t .

Now let f = αRD
α 1D∩K ∈ FD for a fixed compact set K ⊂ E. Note that

0 ≤ f ≤ 1. By Fukushima’s decomposition and the fact that t �→ 〈M [v]〉t∧τD is a
PCAF of XD with Revuz measure μ〈v〉|D (see Proposition 4.1.10 of [1]),

lim
t→0

1

t
Em0

[
(v(Xt)− v(X0))

2; t < τD
]

= lim
t→0

1

t
Em0

[
(Mv

t∧τD )
2; t < τD

]
≥ lim

t→0

1

t
Em0

[
(M

[v]
t∧τD )

2f(XD
t )

]
= lim

t→0

1

t
Ef ·m0

[
(M

[v]
t∧τD )

2
]
+ lim

t→0

1

t
Em0

[
(M

[v]
t∧τD )

2(f(XD
t )− f(XD

0 ))
]

= lim
t→0

1

t
Ef ·m0

[
〈M [v]〉t∧τD

]
+ lim

t→0

1

t
Em0

[
(M

[v]
t∧τD )

2(f(Xt∧τD )− f(X0))
]

=

∫
D

f(x)μ〈v〉(dx) + lim
t→0

1

t
Em0

[
(M

[v]
t∧τD )

2 M
[f ]
t∧τD

]
=:

∫
D

f(x)μ〈v〉(dx) + I.(2.6)

In the second to last equality, we used the fact that

N
[f ]
t∧τD = N

0,[f ]
t =

∫ t∧τD

0

α(f − 1D∩K)(Xs)ds,

whose absolute value is bounded by α t. By Itô’s formula,

I = lim
t→0

1

t
Em0

[ ∫ t∧τD

0

Mv
s−d〈M [v],c M [f ],c〉s

+
∑

s≤t∧τD

((M [v]
s )2 − (M

[v]
s−)

2)(M [f ]
s −M

[f ]
s−)

]

= lim
t→0

1

t
Em0

[ ∫ t∧τD

0

Mv
s−d〈M [v],c M [f ],c〉s

+
∑

s≤t∧τD

2M
[v]
s−(M

[v]
s −M

[v]
s−)(M

[f ]
s −M

[f ]
s−)

+
∑

s≤t∧τD

(M [v]
s −M

[v]
s−)

2(M [f ]
s −M

[f ]
s−)

]
.

Since v = Rαg for some bounded g ∈ L2(E;m),

M
[v]
t = v(Xt)− v(X0)−

∫ t

0

(αu− g)(Xs)ds.

Observe that ‖αu− g‖∞ ≤ 2‖g‖∞ and so |
∫ t

0
(αu− g)(Xs)ds| ≤ 2‖g‖∞ t. We then

have by the Revuz formula in Proposition 4.1.10 of [1], the Lévy system formula,
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I = lim
t→0

1

t
Em0

[ ∫ t∧τD

0

(v(Xs)− v(X0))d〈M [v],c M [f ],c〉s

+
∑

s≤t∧τD

2(v(Xs−)− v(X0))(v(Xs)− v(Xs−))(f(Xs)− f(Xs−))

+
∑

s≤t∧τD

(v(Xs)− v(Xs−))
2(f(Xs)− f(Xs−))

]

= 0 + lim
t→0

1

t
Em0

[
2

∫ t∧τD

0

v(Xs)

∫
E∂

(v(Xs)− v(y))(f(Xs)−f(y))N(Xs, dy)dHs

]

− lim
t→0

1

t
Ev·m0

[
2

∫ t∧τD

0

∫
E∂

(v(Xs)− v(y))(f(Xs)− f(y))N(Xs, dy)dHs

]

+ lim
t→0

1

t
Em0

[∫ t∧τD

0

∫
E∂

(v(y)− v(Xs))
2(f(y)− f(Xs))N(Xs, dy)dHs

]

=

∫
D×E∂

(v(y)− v(x))2(f(y)− f(x))N(x, dy)dμH(dx)

= −
∫
D×F∂

f(x)(v(x)− v(y))2N(x, dy)dμH(dx).

In the last equality above, we used the symmetry of J and the fact that f = 0 q.e.
on F . Thus we have by (1.3) and (2.6),

lim
t→0

1

t
Em0

[
(v(Xt)− v(X0))

2; t < τD
]

≥
∫
D

f(x)μ〈v〉(dx)−
∫
D×F∂

f(x)(v(x)− v(y))2N(x, dy)dμH(dx)

=

∫
D

f(x)μc
〈v〉(dx) +

∫
D×D

f(x)(v(x)− v(y))2N(x, dy)dμH(dx).

Since this is true for all f = αRD
α 1D∩K , where α > 0 and K is a compact subset

of E, by first letting K ↑ E and then α ↑ ∞ we conclude that

lim
t→0

1

t
Em0

[
(v(Xt)− v(X0))

2; t < τD
]

≥ μc
〈v〉(D) +

∫
D×D

(v(x)− v(y))2N(x, dy)dμH(dx).

This together with Lemma 2.1 completes the proof of the theorem. �
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