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1. Introduction

Throughout this paper let I be a finite open interval (a, b) or the real line R.
Denote by L2(I) the space of square integrable functions on I and we let

H1(I) = {u ∈ L2(I) : u is absolutely continuous and u′ ∈ L2(I)}.

D(u, v) =

∫
I

u′ · v′dx u, v ∈ H1(I).

(H1(I), 1
2
D) can be considered as a regular local recurrent Dirichlet form on L2(Ī),

where Ī denotes [a, b] (resp. R) for I = (a, b) (resp. I = R). The associated diffu-
sion process on Ī is the reflecting Brownian motion (resp. the Brownian motion).

We call (F , E) a Dirichlet subspace of (H1(I), 1
2
D) if

(1.1) F ⊂ H1(I), E(u, v) = 1

2
D(u, v), u, v ∈ F ,

and (F , E) is a Dirichlet form on L2(I). It is called regular on L2(Ī)(= L2(I)) if
F∩C0(Ī) is dense both in F and C0(Ī), where C0(Ī) denotes the space of continuous
functions on Ī with compact support. It is called recurrent if its extended Dirichlet
space Fe contains the constant function 1. When I is finite, any regular Dirichlet
subspace of (H1(I), 1

2
D) is automatically recurrent.

In this paper, we shall prove that the Sobolev space (H1(I), 1
2
D) admits as its

regular Dirichlet subspaces the following family of spaces (F (s), E (s))s∈S:

F (s) := {u ∈ L2(I) : u is absolutely continuous(1.2)

with respect to ds(x),

∫
I

(
du

ds
(x)

)2

ds(x) < ∞}

(1.3) E (s)(u, v) :=
1

2

∫
I

du

ds

dv

ds
ds, u, v ∈ F (s),

for s belonging to the space of functions

S = {s :s(x) is absolutely continuous, strictly increasing in x ∈ I and(1.4)

s′(x) = 0 or 1 for a.e. x ∈ I, s(η) = 0},
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where η denotes either a or 0 according as I is (a, b) or R.
We shall further consider the subfamily

(1.5) Ŝ =

{
S when I = (a, b),
{s ∈ S : s(±∞) = ±∞} when I = R,

of S and prove that all recurrent regular Dirichlet subspaces of (H1(I), 1
2
D) are

exhausted by the family of spaces (F (s), E (s))s∈Ŝ.
For s ∈ S, we let Es = {x ∈ I : s′(x) = 0} and denote by | · | the Lebesgue

measure. Denote by φ the linear function φ(x) = x, x ∈ I. Clearly, φ ∈ F (s) (F (s)
loc

when I = R) if and only if |Es| = 0, or equivalently, the inverse function of s is
absolutely continuous. In this case, s(x) equals either φ(x)− a or φ(x) according
as I is (a, b) or R, and F (s) = H1(I) of course. A typical example of an element
s ∈ S for I = (0, 2) with |Es| > 0 is provided by

(1.6) s := t−1, t(x) := c(x) + x, x ∈ (0, 1),

where c is the standard Cantor function on (0, 1).
In this connection, we would like to mention that the second and the third au-

thors have considered in [3] a slightly more general regular Dirichlet form than
(H1(I), 1

2
D) for I = (0, 1) and studied its regular Dirichlet subspace. Unfortu-

nately, there is a flaw in the proof of Theorem 2 in [3]. As is corrected in [4], it
should be replaced by the following weaker assertion for which the proof given in
[3] works: Let F̌ be a subspace of F such that (F̌ , E) is a regular Dirichlet space on
L2(Ī , ρdx). Assume that a scale function s of the diffusion process on Ī associated
with (F̌ , E) admits an absolutely continuous inverse t. Then F̌ = F .

The organization of the present paper is as follows. The next two sections are
devoted to the proof of the above mentioned assertions. In particular, we shall
show in §2 that any recurrent regular Dirichlet subspace of (H1(I), 1

2
D) has a scale

function belonging to the class Ŝ.
In §3, we shall construct a recurrent diffusion process on [a, b] (resp. R) associated

with the space (F (s), E (s)) for s ∈ Ŝ from the reflecting Brownian motion on a
closed interval (resp. the Brownian motion on R) by a time change and a state

space transformation. Since the infinitesimal generator of this diffusion is
d

2dx

d

ds
in Feller’s canonical form, such a construction is well known in principle (cf. [6]),
but we shall formulate it in relation to the transformations of Dirichlet forms in
order to ensure the recurrence of the resulting diffusion and Dirichlet form.

In the last section, we shall state some useful descriptions of the space S and
give examples of s ∈ S \ Ŝ corresponding to transient regular Dirichlet subspaces
of (H1(R), 1

2
D).

2. Regular Dirichlet subspaces and scale functions

We recall (cf. [2, p.55]) that the extended Dirichlet space H1
e (I) of H

1(I) is given
by

(2.1) H1
e (I) = {u : u is absolutely continuous on I and u′ ∈ L2(I)}.
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In particular, 1 ∈ H1
e (I) and the Dirichlet form (H1(I), 1

2
D) is recurrent. H1

e (I) is
continuously imbedded into C(Ī) and in fact the following elementary inequality
holds for any x, y ∈ Ī:

(2.2) |u(y)− u(x)|2 ≤ |y − x|D(u, u), u ∈ H1
e (I).

When I is finite, H1
e (I) = H1(I).

Let (F , E) be a regular Dirichlet subspace of (H1(I), 1
2
D). Since (F , E) is strongly

local, there exists a diffusion process M = (Xt, Px) on Ī associated with it. Denote
by σy the hitting time of the one point set {y}, y ∈ Ī , for M. The next lemma
about the existence of the scale function (a strictly increasing continuous function
satisfying (2.3)) is well known for a more general one-dimensional diffusion process
([5]) but we give a self contained proof of it based on the inequality (2.2) in the
present special situation.

Lemma 2.1. There exists a strictly increasing function s on Ī uniquely up to a
linear transformation such that

(2.3) Px(σd < σc) =
s(x)− s(c)

s(d)− s(c)
, c ≤ x ≤ d, c, d ∈ Ī .

s is absolutely continuous on I.

Proof. Let J be a connected open subset of Ī . We denote by τJ the leaving time
from J of the diffusion M. We also consider the part MJ of M on J the diffusion
killed upon the leaving time τJ . MJ is then associated with the subspace FJ of
(F , E) defined by

FJ = {u ∈ F : u(x) = 0, x ∈ Ī \ J}.
(2.2) implies that each singleton of J has a positive capacity with respect to the

Dirichlet form (FJ , E). Consequently, the connectedness of the state space J is a
synonym for its quasi-connectedness for (FJ , E) and hence (FJ , E) is irreducible
([2, p.172]). This implies, by virtue of [2, Theorem 4.6.6], that

(2.4) Px(σy < τJ) > 0 ∀x, y ∈ J.

For any c, d ∈ Ī , −∞ < c < d < ∞, we make the following choice of the intervals
J ⊂ Ī: when Ī = [a, b] (resp. Ī = R), we take [a, d) and (c, b] (resp. (−∞, d) and
(c,∞)). We then get from (2.4)

Px(σc < σd) > 0, Px(σd < σc) > 0, ∀x ∈ (c, d).

We also note here that

(2.5) Pc(σc < σd) = 1 Pd(σd < σc) = 1

because the positivity of the capacity of a point implies the M-regularity of the
point for itself.

On the other hand, for the finite open interval J = (c, d) ⊂ I, the space (FJ , E)
admits a 0-order potential operator G0 by virtue of (2.2) again: for any f ∈ L2(J),

G0f ∈ FJ , EJ(G0f, v) =

∫
J

fvdx, ∀v ∈ FJ .
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Therefore
Ex(σc ∧ σd) = G01J(x) < ∞, x ∈ (c, d),

and
Px(σc < σd) + Px(σd < σc) = 1, x ∈ (c, d).

In particular, the function pc,d(x) = Px(σd < σc), x ∈ Ī , is not only strictly
positive but also strictly increasing in x ∈ (c, d) because the sample path continuity
and the strong Markov property of M implies

(2.6) pc,d(x) = pc,y(x)pc,d(y) < pc,d(y), c < x < y < d.

In the same way, we have, for c′ ≤ c < d ≤ d′, c′, d′ ∈ Ī , that

pc′,d′(x) = pc,d(x)pc′,d′(d) + (1− pc,d(x))pc′,d′(c)(2.7)

= (pc′,d′(d)− pc′,d′(c))pc,d(x) + pc′,d′(c) c ≤ x ≤ d.

When I = (a, b), we let

s(x) = pa,b(x) x ∈ Ī .

Then s is strictly increasing and its property (2.3) follows from (2.7) with c′ =
a, d′ = b. When I = R, we put, for any c < d such that c ≤ x ≤ d and c < 0, 1 < d,

s(x) = αpc,d(x) + β,

and determines constants α, β by

s(0) = 0, s(1) = 1.

Then, s(x) is independent of such a choice of (c, d) because, for any interval
(c′, d′) ⊃ (c, d), pc,d is a linear function of pc′,d′ on [c, d] in view of (2.4). Further s
satisfies (2.3) because pc,d(c) = 0, pc,d(d) = 1.
Finally, in order to show the absolute continuity of s, we take any finite interval

(c, d) ⊂ I. It suffices to prove that the function p(x) = pc,d(x), x ∈ I, is absolutely
continuous since s is a linear function of p on (c, d).
When I = (a, b), p(x) is known to be the 0-order equilibrium potential of {d}

with respect to the Dirichlet space

F(c,b] = {u ∈ F : u(x) = 0, ∀x ≤ c},
and p(x) is characterized by

(2.8) p ∈ F(c,b], p(d) = 1, E(p, v) ≥ 0, ∀v ∈ F(c,b], v(d) ≥ 0.

In particular, p is absolutely continuous.
When I = R, we consider the space

F(c,∞) = {u ∈ F : u(x) = 0, ∀x ≤ c}.
By virtue of (2.2), we see that the Dirichlet space (F(c,∞), E) is transient and the
function p(x) is the associated 0-order equilibrium potential of {d} characterized
by

(2.9) p ∈ F(c,∞),e, p(d) = 1, E(p, v) ≥ 0, ∀v ∈ F(c,∞),e, v(d) ≥ 0,

where F(c,∞),e(⊂ H1
e (R)) is the extended Dirichlet space of F(c,∞). Hence p is ab-

solutely continuous. □
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We call the function s in Lemma 2.1 the scale function associated with the
regular Dirichlet subspace (F , E) of (H1(I), 1

2
D).

We continue to consider a finite open interval J = (c, d) ⊂ I and the correspond-
ing function p(x) = pc,d(x) as in the proof of Lemma 2.1. By virtue of (2.2), the
space (FJ , E) admits the reproducing kernel g0(x, y), x, y ∈ J characterized by

g0(·, y) ∈ FJ , E(g0(·, y), v) = v(y), ∀v ∈ FJ .

Lemma 2.2. There exists a constant C > 0, such that, for any x, y ∈ J ,

g0(x, y) =

{
Cp(x)(1− p(y)), x ≤ y;

C(1− p(x))p(y), x ≥ y.

Proof. We consider the function

(2.10) p0y(x) := Px(σc ∧ σd > σy), x, y ∈ J,

p0y(·) is the 0-order equilibrium potential of {y} with respect to (FJ , E) characterized
by

(2.11) p0y ∈ FJ , p0y(y) = 1, E(p0y, v) ≥ 0, ∀v ∈ FJ , v(y) ≥ 0.

The above two characterizations lead us to

p0y(x) =
g0(x, y)

g0(y, y)
x, y ∈ J.

On the other hand, we have p0y(x) = pc,y(x), c < x ≤ y, and we get from (2.7)

p0y(x) =


p(x)

p(y)
, x ≤ y

1− p(x)

1− p(y)
, x ≥ y,

for x, y ∈ J. The desired expression of g0(x, y) follows from the above two identities.
□

Lemma 2.3. Any function in F is absolutely continuous with respect to ds.

Proof. For any finite interval J = (c, d) ⊂ I, let G0 be the 0-order potential
operator associated with (FJ , E) as was considered in the proof of Lemma 2.1.
Then it follows from Lemma 2.2 that, for f ∈ L2(J), x ∈ J ,

G0f(x) =

∫
J

g0(x, y)f(y)dy

= C(1− p(x))

∫ x

c

p(y)f(y)dy + Cp(x)

∫ d

x

(1− p(y))f(y)dy

= Cp(x)

∫ d

c

(1− p(y))f(y)dy − C

∫ x

c

∫ y

c

f(z)dzdp(y),

which means that G0f is absolutely continuous with respect to p, namely, it can

be expressed as

∫ x

c

φ(y)p′(y)dy by some function φ ∈ L1(J ; dp).



6 XING FANG, MASATOSHI FUKUSHIMA, AND JIANGANG YING

Since G0(L2(J)) is dense in FJ , there exist, for any u ∈ FJ , fn ∈ L2(J) such

that un = G0fn =

∫ ·

0

φn(y)p
′(y)dy is E convergent to u. Hence, for any B ⊂ J on

which p′(x) = 0 a.e.,∫
B

u′(x)2dx =

∫
B

(u′(x)− φn(x)p
′(x))2dx ≤ E(u− un, u− un) → 0, n → ∞,

which implies u′(x) = 0 a.e. on B, namely, u is absolutely continuous with respect
to dp.

Finally, any u ∈ F can be expressed as

(2.12) u(x) = u(c)+(u(d)−u(c))p(x)+ [(u(x)−u(c))− (u(d)−u(c))p(x)], x ∈ J,

the last term being a member of FJ . Therefore u is absolutely continuous on J
with respect to dp and hence with respect to ds. □

Suppose that (F , E) is recurrent. Then, by [2, Theorem 4.6.6], the property (2.4)
for J = Ī is strengthened to

(2.13) Px(σy < ∞) = 1 ∀x, y ∈ Ī .

Note that, when I = (a, b), (F , E) is automatically recurrent because, owing to the
regularity, F contains a continuous function v greater than 1 on [a, b] and hence
the constant function 1 ∧ v as well.

For the scale function s associated with (F , E), we let

(2.14) Es = {x ∈ I : lim sup
h→0

s(x+ h)− s(x)

h
= 0}.

Lemma 2.4. Suppose (F , E) is recurrent.
(i) s′ is constant a.e. on I \ Es.
(ii) s(±∞) = ±∞.

Proof. (i) Again we fix an arbitrary interval (c, d) ⊂ I and denote by p(x), x ∈ I,
the function pc,d(x) in the proof of Lemma 2.1. We know that p is absolutely
continuous on I, strictly increasing on (c, d) and p((c, d)) = (0, 1). Denote by q the
inverse function of p|(c,d).

We have then

(2.15) |p(A)| =
∫
A

p′(x)dx, for any Borel set A ⊂ (c, d).

This is clear for a disjoint union of finite number of subintervals of (c, d), and the
monotone class lemma (cf.[1]) then applies.

We next let

E = {x ∈ (c, d) : lim sup
h→0

p(x+ h)− p(x)

h
= 0}

and F = p(E). Then |F | = 0 by (2.15). (2.15) further means that, if A ⊂ (c, d) \E
and |A| > 0, then |p(A)| > 0. Hence q is absolutely continuous on (0, 1) \ F.
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On the other hand, for any φ ∈ C
(1)
0 ((0, 1)), φ(p) ∈ F(c,b] (resp. F(c,∞),e) when

I = (a, b) (resp. R.) Further φ(p(x)) = 0, x ≥ d, x ∈ I, because p(x) = 1, x ≥
d, x ∈ I, on account of (2.13) and (2.5). Hence, in view of (2.8) and (2.9),∫ 1

0

p′(q(x))φ′(x)dx =

∫ d

c

p′(x)φ′(p(x))p′(x)dx = 2E(p, φ(p)) = 0.

It follows that p′(q(x)) is constant a.e. on (0, 1). Therefore p′ is constant a.e. on
(c, d) \E. Since s is a linear function of p on (c, d), s′ is constant a.e. on (c, d) \Es

as was to be proved.
(ii) Since the recurrence assumption implies the conservativeness of the process M
([2]), it is easy to see that

Px( lim
y→±∞

σy = ∞) = 1 x ∈ Ī ,

and we can get s(−∞) = −∞ by noting (2.11) and letting c → −∞ in (2.3).
Similarly we get s(∞) = ∞. □

We are now in a position to state a main theorem of this paper. Let S be the
class of functions s defined by (1.4) and Ŝ be its subclass defined by (1.5). For
s ∈ S, we introduce the space (F (s), E (s)) by (1.2) and (1.3).

Theorem 2.1. (i) For any s ∈ S, the space (F (s), E (s)) is a regular Dirichlet
subspace of (H1(I), 1

2
D). The scale function associated with (F (s), E (s)) equals s up

to a linear transform.
(ii) Let (F , E) be a regular recurrent Dirichlet subspace of (H1(I), 1

2
D) and s be the

associated scale function. Then, by making a linear modification of s if necessary,
s belongs to the class Ŝ and

F = F (s), E(u, v) = E (s)(u, v), u, v ∈ F .

Remark. The converse to (ii) (the recurrence of the space (F (s), E (s)) for s ∈ Ŝ)
will be shown in the next section.

Proof. (i) Suppose s ∈ S and u, v ∈ F (s). Then u, v are absolutely continuous with
respect to dx and

1

2

∫
I

du

dx

dv

dx
dx =

1

2

∫
I

du

ds

dv

ds
s′(x)2dx(2.16)

=
1

2

∫
I

du

ds

dv

ds
ds, u, v ∈ F (s).

Hence F (s) ⊂ H1(I) and E (s)(u, v) = 1
2
D(u, v), u, v ∈ F (s).

Since u(d)− u(c) =

∫ d

c

du

ds
ds, we see that

|u(d)− u(c)|2 ≤ 2|d− c|E (s)(u, u) (c, d) ⊂ I, u ∈ F (s),

and any E (s)
1 -Cauchy sequence is uniformly convergent on any compact interval of

I. Hence (F (s), E (s)) is a closed symmetric form on L2(I). Clearly it is Markovian.
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The regularity is also verifiable. Indeed, when I is a finite interval, F (s) contains
s and constant functions and hence an algebra generated by them, which separates
points of Ī . Consequently F (s) is dense in C(Ī) by the Weierstrass theorem. Since
the above inequality implies that F (s) ⊂ C(Ī), we see that (F (s), E (s)) is a regular
Dirichlet form on L2(Ī).

When I = R, we consider the space

C = {φ(s) : φ ∈ C1
0(R)}.

Then C ⊂ F (s). Since C is an algebra separating points of I, it is dense in C0(R).
Suppose u ∈ F (s) is E1-orthogonal to C: E1(u, v) = 0 ∀v ∈ C. Then u is a solution
of the equation

1

2

d

dx

du

ds
= u.

It is known that the solutions of this equation form a 2-dimensional vector space
spanned by a positive increasing function u(1) and a positive decreaing function
u(2) ([6]). Obviously, neither u(1) nor u(2) is in L2(R) and u must vanish. Hence C
is dense in F (s).
Therefore (F (s), E (s)) is a regular Dirichlet subspace of (H1(I), 1

2
D).

In order to prove the second assertion in (i), we consider any finite interval
J = (c, d) ⊂ R, take any d1 ∈ J and put

r(x) =

(
s(x)− s(c)

s(d1)− s(c)

)+

∧
(
s(d)− s(x)

s(d)− s(d1)

)+

, x ∈ R.

We readily see that r ∈ F (s)
J , r(d1) = 1 and, for any v ∈ F (s)

J ,

E (s)(r, v) =
1

2(s(d1)− s(c))

∫ d1

c

dv

ds
ds− 1

2(s(d)− s(d1))

∫ d

d1

dv

ds
ds

=
1

2(s(d1)− s(c))
v(d1) +

1

2(s(d)− s(d1))
v(d1).

Hence r satisfies the condition (2.11) for (F (s), E (s)) and r(x) coincides with the
function p0d1(x) defined by (2.10) on J for the diffusion (Xt, Px) associated with

(F (s), E (s)) and in particular

r(x) = Px(σd1 < σc) x ∈ (c, d1).

Since

r(x) =
s(x)− s(c)

s(d1)− s(c)
c < x < d1,

we have shown that s is a scale function for the space (F (s), E (s)).

(ii) The scale function s associated with a given regular recurrent Dirichlet subspace

(F , E) of (H1(I), 1
2
D) belongs to Ŝ (after an appropriate linear transform) by virtue

of Lemma 2.1 and Lemma 2.4. We further see from Lemma 2.3 and identity (2.16)
for u, v ∈ F that F ⊂ F (s) and E(u, v) = E (s)(u, v), u, v ∈ F .

Take an interval J = (c, d) ⊂ I. Consider any function u ∈ F (s) with u(x) = 0
for x ̸∈ J and assume that u is E (s)-orthogonal to the space FJ :

E (s)(u, v) = 0, ∀v ∈ FJ .
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By the function p = pc,d for (F , E) as in the proof of Lemma 2.1, we may write

s(x) = c0p(x) + c1, u(x) =

∫ x

c

φ(ξ)dp(ξ), c ≤ x ≤ d.

Choosing as v the Green function g0,y(x) = g0(x, y) ∈ FJ of Lemma 2.2 for each
fixed y ∈ J, we are led to

E (s)(u, g0,y) =

∫ d

0

du

ds

dg0,y

ds
ds

= Cc−1
0

∫ y

c

φ(x)(1− p(y))dp(x)− Cc−1
0

∫ d

y

φ(x)p(y)dp(x)

= Cc−1
0

∫ y

c

φ(x)dp(x)− Cc−1
0 p(y)

∫ d

c

φ(x)dp(x) = Cc−1
0 u(y),

and u = 0. Hence any function in F (s) with compact support belongs to the space
F . Since we have seen in (i) that (F (s), E (s)) is regular, we have the desired inclusion
F (s) ⊂ F .

□

3. Constructions by time change and state space transform

If the scale function of the diffusion associated with the regular Dirichlet subspace
is s, then we know intuitively that, after a state space transformation s : I → s(I),
the diffusion becomes another diffusion with hitting distributions identical with
that of Brownian motion and that this new diffusion differs from the Brownian
motion by a time change. This suggests a way of constructing the original diffusion
and Dirichlet subspace from the Brownian motion and Sobolev space.

In this section, we construct a recurrent diffusion process X̃ associated with the
Dirichlet form (1.2),(1.3) on L2(I) for s ∈ Ŝ from the reflecting Brownian motion
on s(Ī) when I is finite and the Brownian motion on R when I = R by a time
change and a transformation of the state space. We also notice that X̃ is the one-

dimensional diffusion on Ī with infinitesimal generator
1

2

d

dx
· d

ds
in Feller’s sense (

[5]).
We prepare a lemma.

Lemma 3.1. Let (E,m) be a σ-finite measure space, X = (Xt, Px) be an m-
symmetric Markov process on E and (F , E) be the associated Dirichlet space on
L2(E;m). Let γ be a one-to-one measurable transformation from E onto a space
Ẽ and m̃ be the image measure; m̃(B) = m(γ−1(B)). We put

X̃t = γ(Xt), P̃x = Pγ−1x, x ∈ Ẽ.

Then X̃ = (X̃t, P̃x) is an m̃-symmetric Markov process on Ẽ and the associated
Dirichlet space (F̃ , Ẽ) on L2(Ẽ, m̃) satisfies

F̃ = {u ∈ L2(Ẽ; m̃) : u◦γ ∈ F}

Ẽ(u, v) = E(u◦γ, v◦γ) u, v ∈ F̃ .
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Proof. It was proved in [1, p325] that X̃ is a Markov process on Ẽ with transition
function

p̃tf(y) = pt(f ◦γ)(γ−1(y)) y ∈ Ẽ, f ∈ B+,

where pt is the transition function of X.
The m̃-symmetry of p̃t and the above relation of the Dirichlet spaces follow from∫

Ẽ

p̃tf · gdm̃ =

∫
Ẽ

pt(f ◦γ)(γ−1(y))(g◦γ)(γ−1(y))dm(γ−1y)

=

∫
E

pt(f ◦γ)(g◦γ)dm,

and
1

t

∫
Ẽ

(f − p̃tf) · gdm̃ =
1

t

∫
E

(f ◦γ − pt(f ◦γ))g◦γdm.

That completes the proof. □

The process X̃ = (X̃t, P̃x)x∈Ẽ in the above lemma is called the process obtained

from X = (Xt, Px)x∈E by the transformation γ of the state space from E to Ẽ.

Take any s from the class Ŝ defined by (1.5) and let t be its inverse function.
Clearly

J = s(I) =

{
(0, b− a− |Es|), I = (a, b),

R, I = R.

Let (Bt, Px)x∈J̄ be the reflecting Brownian motion on J̄ when I = (a, b) and
the Brownian motion on R when I = R. It is associated with the regular local
recurrent Dirichlet form (H1(J), 1

2
D) on L2(J̄). The transition function of (Bt, Px)

is absolutely continuous with respect to dx. Each one point set has a positive 1-
capacity with respect to this Dirichlet form. Hence the quasi-support of a positive
Radon measure on J̄ coincides with its topological support.

Let At be the PCAF (positive continuous additive functional) in the strict sense
(Bt, Px) with Revuz measure dt. Since the support of dt is J̄ , the fine support of
At is also J̄ and At is strictly increasing in t a.s. Let τt be the inverse of At and
denote by X the time change of Bt by (τt):

(3.1) Xt = Bτt .

Theorem 3.1. (i) Let

(3.2) X̃t = t (Bτt) , t ≥ 0, P̃x = Ps(x), x ∈ Ī .

Then (X̃t, P̃x)x∈Ī is a diffusion process on Ī associated with the regular Dirichlet
subspace (F (s), E (s)) on L2(Ī) of (H1(I), 1

2
D).

(ii) (F (s), E (s)) is recurrent.

Proof. (i) By virtue of (6.2.22) in [2], the time changed process (Xt, Px)x∈J̄ is dt-
symmetric and its Dirichlet space (FJ , EJ) on L2(J̄ ; dt) is given by

FJ = H1
e (J) ∩ L2(J̄ , dt), EJ(u, v) =

1

2
D(u, v), u, v ∈ FJ ,
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for the extended Dirichlet space H1
e (J) defined by (2.1) for H1(J).

Since X̃ = (X̃t, P̃x) is obtained from the time changed process (Xt, Px) of (3.1) by
means of the transformation t of the state space from J̄ onto Ī, we see by Lemma
3.1 that X̃ is symmetric with respect to the image measure by t of dt, which is
obviously the Lebesgue measure dx on Ī, and the associated Dirichlet space (F̃ , Ẽ)
on L2(Ī) = L2(I) is given by

(3.3) F̃ = {u ∈ L2(I) : u◦t ∈ FJ} = {u ∈ L2(I) : u◦t ∈ H1
e (J)},

(3.4) Ẽ(u, v) = 1

2
D(u◦t, v◦t), u, v ∈ F̃ .

We claim that

(3.5) F̃ = F (s), Ẽ(u, v) = E (s)(u, v), u, v ∈ F̃ .

By (3.3), u ∈ F̃ if and only if u ∈ L2(I) and there exists a function ϕ ∈ L2(J) such
that

u(t(x)) =

∫ x

0

ϕ(y)dy + C, x ∈ J,

for some constant C. In this case,

u(x) =

∫ s(x)

0

ϕ(y)dy + C =

∫ x

a

ϕ(s(y))ds(y) + C, x ∈ I

and
1

2

∫
I

(
du

ds

)2

ds =
1

2

∫
I

ϕ(s(x))2ds(x) =
1

2

∫
J

ϕ(x)2dx,

and hence F̃ ⊂ F (s) and Ẽ = E (s) on F̃ × F̃ . Converse inclusion can be shown in
the same way.
(ii) We have only to show this for I = R. By virtue of [2, (6.2.23)], the extended
Dirichlet space of (FR, ER) coincides with (H1

e (R), 12D) and hence contains con-

stant functions. Since the Dirichlet space (F̃ , Ẽ) is obtained by (3.3) and (3.4), its
extended Dirichlet space also contains constant functions. □

From the proof, it also follows that ,for s ∈ Ŝ, u ∈ F (s) if and only if u◦t ∈ H1(J).
Equivalently F (s) = {u◦s : u ∈ H1(J)}.

4. Some descriptions of the class S

We can give more tractable descriptions of the class S of scale functions defined
by (1.4).

Let T be the totality of function t defined on some open interval J ⊂ R expressed
as

(4.1) t(x) = c(x) + x, x ∈ J,

for a non-decreasing singular continuous function c(x) on J .
Let E be the totality of measurable subset E of I satisfying that, for any x, y ∈

I, x < y, |(I \ E) ∩ (x, y)| > 0, i.e., the complement of E has a positive measure
on any non-empty open subinterval. Two sets in E are regarded to be equivalent
if they differ by a zero-measure set.
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The following theorem illustrates the structure of S and shows that any regular
recurrent Dirichlet subspace of (H1(I),D) may be obtained in the same way as
done in the example in §1.

Theorem 4.1. Let s be a strictly increasing function on I.

(1) s ∈ S if and only if its inverse function belongs to T.
(2) s ∈ S if and only if there exists a set E ∈ E such that

(4.2) s(x) =

∫ x

η

1Ec(y)dy, x ∈ I,

where η denotes a when I = (a, b) and 0 when I = R. The set E is uniquely
determined by s up to the equivalence.

Proof. (1) For s ∈ S, we let t(x) = s−1(x), x ∈ J = s(I). In view of the first part
of the proof of Lemma 2.4 (i), we see that t′(x) = 1 a.e. x ∈ J, and accordingly

t(x) = c(x) + x, x ∈ J,

for some nondecreasing singular continuous function c(x). Hence t ∈ T.
Conversely if t ∈ T, then t(x) = c(x) + x is a strictly increasing continuous

function with t′ = 1 a.e. on J . Further, for any x, y ∈ J, x < y,, (y − x) ≤
t(y)− t(x). It follows that s(x) = t−1(x), x ∈ I = t(J), is absolutely continuous.
Clearly s is differentiable at t(x) if and only if t has a non-zero derivative at x ∈ J
and hence

s′(t(x)) =
1

t′(x)
= 1, a.e.x ∈ J,

which implies that s′ = 1 a.e. on I \ Es in the same way as in the second part of
the proof Lemma 2.4(i).

As for (2), for any s ∈ S, Es ∈ E and conversely for E ∈ E, it is easy to check
that s ∈ S as defined in (4.2). □

By this theorem, we can readily conceive functions in S \ Ŝ when I = R.
For example, for any non-decreasing singular continuous function c(x) on R with
c(±∞) = ±∞, we put

(4.3) t(x) = c

(
x

1− |x|

)
+ x, x ∈ (−1, 1)

and let s be the inverse function of t.
Another example is provided by

(4.4) s(x) =

∫ x

0

1G(y)dy, x ∈ R, for G =
∪
rn∈Q

(rn −
1

2n+1
, rn +

1

2n+1
),

where Q = {rn} is the set of all rational numbers.
In both cases, s(−∞) and s(∞) are finite and the corresponding spaces (F (s), E (s))

are transient Dirichlet subspaces of (H1(R), 1
2
D) by Theorem 2.1.
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