On general boundary conditions for one-dimensional diffusions and symmetry

> Masatoshi Fukushima, Osaka University MinnHoKee Lecture at SNU

> > June 7, 8, 2012

Lecture 1: Minimal diffusion X^0 and symmetry (§1, §2, §3) Lecture 2: From Dirichlet forms to C_b -generators (§4, §5) Lecture 3: All possible diffusion extensions of X^0 (§6)

1 Minimal diffusion X^0

 $I = (r_1, r_2) \subset \mathbb{R}$: a one-dimensional open interval.

A strictly increasing continuous function s on I is called a **canonical scale**.

A positive Radon measure m on I with full topological support is called a **canonical measure**.

1.1 General expression of C_b -generator of X^0

A Markov process $X^0 = (X_t^0, \zeta^0, \mathbf{P}_x^0)$ on I is called a **minimal diffusion** if

- (d.1) X^0 is a Hunt process on I,
- (d.2) X^0 is a diffusion process: X_t^0 is continuous in $t \in (0, \zeta^0)$ almost surely,
- (d.3) X^0 is irreducible: $\mathbf{P}^0_x(\sigma_y < \infty) > 0$ for any $x, y \in I$.

Denote the one-point compactification of I by $I_{\partial} = I \cup \{\partial\}$. X_t^0 takes value in I_{∂} . For $B \subset I_{\partial}$, we define

0

$$\sigma_B = \inf\{t > 0 : X_t^0 \in B\}, \quad \inf \emptyset = \infty, \quad \tau_B = \sigma_{I_\partial \setminus B}.$$

We write σ_B as σ_b when $B = \{b\}$ a one point set.

 $\{\partial\}$ plays the role of cemetery for X^0 : $\zeta^0 = \sigma_\partial$, $X^0_t = \partial$ for any $t \ge \zeta^0$. Condition (d.1) means that X^0 is a strong Markov process whose sample path X^0_t is right continuous and has the left limit on $[0, \infty)$ and absorbed upon approaching $\{\partial\}$: $\lim_{n\to\infty} \tau_{J_n} = \zeta^0$ whenever $\{J_n\}$ are subintervals of I with $\overline{J}_n \subset I$, $J_n \uparrow I$. X^0 is **minimal** in this sense.

Under (d.1) and (d.2), the condition (d.3) is equivalent to the requirement for each point $a \in I$ to be **regular** in the sense that, for $\alpha > 0$,

 $\mathbf{E}_{a}[e^{-\alpha\sigma_{a+}}] = \mathbf{E}_{a}[e^{-\alpha\sigma_{a-}}] = 1 \quad \text{where } E_{a}[e^{-\alpha\sigma_{a\pm}}] = \lim_{b \to \pm a} E_{a}[e^{-\alpha\sigma_{b}}].$ $\{R^{0}_{\alpha}; \alpha > 0\}: \text{ the resolvent of a minimal diffusion } X^{0}:$ $R^{0}_{\alpha}f(x) = \mathbf{E}_{x}^{0}\left[\int_{0}^{\infty} e^{-\alpha t}f(X^{0}_{t})dt\right].$

Denote by $\mathcal{B}_b(I)$ (resp. $C_b(I)$) the space of all bounded Borel measurable (resp. continuous) function in I.

Then $R^0_{\alpha}(\mathcal{B}_b(I)) \subset C_b(I)$ due to the above regularity of each point of I. R^0_{α} is a one-to-one map from $C_b(I)$ into itself because of the resolvent equation

 $R^0_{\alpha} - R^0_{\beta} + (\alpha - \beta)R^0_{\alpha}R^0_{\beta} = 0$ and $\lim_{\alpha \to \infty} \alpha R^0_{\alpha}f(x) = f(x), \ x \in I, f \in C_b(I)$. Thus the generator \mathcal{G}^0 of X^0 is well defined by

$$\begin{cases} \mathcal{D}(\mathcal{G}^0) = R^0_\alpha(C_b(I)), \\ (\mathcal{G}^0 u)(x) = \alpha u(x) - f(x) \quad \text{for } u = R^0_\alpha f, \ f \in C_b(I), \ x \in I, \end{cases}$$
(1.1)

 \mathcal{G}^0 so defined is independent of $\alpha > 0$ by the resolvent equation. Let us call \mathcal{G}^0 the **C**_b-generator of X^0 .

For X^0 , the fine continuity is equivalent to the ordinary continuity so that $C_b(I)$ is the space of all bounded finely continuous functions on I.

With this interpretation, the above definition of the C_b -generator is well formulated for a general right process.

In Chapter 4 of Itô-McKean's book [IM2], it was proved that,

for a given minimal diffusion X^0 , there exist

a canonical scale s, a canonical measure m and a positive Radon measure k called a **killing measure** on I such that

$$(\mathcal{G}^0 u)(x) = \frac{dD_s u - udk}{dm}(x) \qquad x \in I, \quad \text{for any } u \in \mathcal{D}(\mathcal{G}^0), \tag{1.2}$$

in the sense that the Radon Nikodym derivative appearing on the right hand side has a version belonging to $C_b(I)$ which coincides with the left hand side. In particular, we have for $u = R_{\alpha}^0 f$, $f \in C_b(I)$,

$$\alpha u(x) - \frac{dD_s u - udk}{dm}(x) = f(x) \qquad x \in I.$$
(1.3)

The triplet (s, m, k) is unique up to a multiplicative constant

in the sense that, for another such triplet $(\tilde{s}, \tilde{m}, k)$, there exists a constant c > 0 such that $d\tilde{s} = cds$, $d\tilde{m} = c^{-1}dm$ and $d\tilde{k} = c^{-1}dk$.

We call (s, m, k) satisfying (1.2) to be a **triplet attached to** the minimal diffusion X^0 .

(1.2) can be called a **generalized second order elliptic differential operator** because any operator of the form

$$\mathcal{A}^{0}u(x) = \frac{1}{2}a(x)u''(x) + b(x)u'(x) + c(x)u(x), \ x \in I, \ a, \ b, \ c \in C_{b}(I), \ a > 0, \ c \le 0,$$

can be converted into (1.2) by

$$ds = \exp\left(-\int \frac{2b(\xi)}{a(\xi)}d\xi\right)dx, \ dm = \frac{2}{a(x)}\exp\left(-\int \frac{2b(\xi)}{a(\xi)}d\xi\right)dx, \ dk = -c(x)dx.$$

The triplet (s, m, k) attached to a minimal diffusion $X^0 = (X_t^0, \zeta^0, \mathbf{P}_x)$ was constructed in [IM2] as follows: for $r_1 < a < b < r_2$ and J = (a, b), consider the hitting probabilities and mean exit time

$$p_{ab}(\xi) = \mathbf{P}^{0}_{\xi}(\sigma_{a} < \sigma_{b}), \ p_{ba}(\xi) = \mathbf{P}^{0}_{\xi}(\sigma_{b} < \sigma_{a}), \ e_{ab}(\xi) = \mathbf{E}^{0}_{\xi}[\tau_{J}], \ \xi \in J,$$

and define

$$\begin{cases} s(d\xi) = s_{ab}(d\xi) = p_{ab}(\xi)p_{ba}(d\xi) - p_{ba}(\xi)p_{ab}(d\xi) \\ k(d\xi) = k_{ab}(d\xi) = D_s p_{ab}(d\xi)/p_{ab}(\xi) \\ m(d\xi) = m_{ab}(d\xi) = -\{D_s e_{ab}(d\xi) - e_{ab}(\xi)k_{ab}(d\xi)\}, \quad a < \xi < b. \end{cases}$$

For another choice of \tilde{a}, \tilde{b} with $r_1 < \tilde{a} < a < b < \tilde{b} < r_2$, we have

$$s_{\widetilde{a}\widetilde{b}}(d\xi) = cs_{ab}(d\xi), \ k_{\widetilde{a}\widetilde{b}}(d\xi) = c^{-1}k_{ab}(d\xi), \ m_{\widetilde{a}\widetilde{b}}(d\xi) = c^{-1}m_{ab}(d\xi), \ a < \xi < b,$$

for a constant c > 0 depending on $a, b, \tilde{a}, \tilde{b}$, so that a universal triplet (s, m, k) can be introduced on I.

Problem

Identification of the domain $\mathcal{D}(\mathcal{G}^0) \subset C_b(I)$ of C_b -generator of X^0 .

To this end, we first prove the *m*-symmetry of X^0 and determine its Dirichlet form.

2 *m*-symmetry of X^0 and its Dirichlet form

2.1 a key lemma

 $J = (j_1, j_2)$ with $r_1 < j_1 < j_2 < r_2$: a subinterval of I $R^J_{\alpha}f(x) = \mathbf{E}^0_x \left[\int_0^{\tau_J} e^{-\alpha t} f(X^0_t) dt\right]$: the resolvent of the part process of X^0 on J.

Lemma 2.1 Let $u = R^J_{\alpha} f$ for $f \in C_b(I)$. Then

$$u \in C_c(I), \quad \alpha u - \frac{dD_s u - udk}{dm} = f \quad on \quad J,$$
 (2.1)

for a triplet (s, m, k) attached to X^0 . Moreover

$$u(j_1+) = u(j_2-) = 0. (2.2)$$

Indeed, u can be expressed as

 $u = R_{\alpha}^0 f + c_1 R_{\alpha}^0 g_1 + c_2 R_{\alpha}^0 g_2$ for $g_1, g_2 \in C_b(I)$ vanishing on J and strictly positive on $(r_1, j_1), (j_2, r_2)$, respectively, and for some constant c_1, c_2 . (2.1) follows from this and (1.3).

(2.2) can be shown using the continuity of $R^0_{\alpha}g$ for $g \in C_b(I)$.

2.2 *m*-symmetry of X^0

Let $u = R^J_{\alpha} f$, $v = R^J_{\alpha} g$ for $f, g \in C_c(I)$. We then get from (2.1)

$$-\int_{J} v dD_{s} u + \int_{J} u v dk + \alpha \int_{J} u v dm = \int_{J} v f dm$$

By (2.2), $v(j_1+)D_su(j_1+) - v(j_2-)D_su(j_2-) = 0$ so that an integration by parts gives

$$\int_{J} (D_s u) (D_s v) ds + \int_{J} uv dk + \alpha \int_{J} uv dm = \int_{J} v f dm.$$
(2.3)

Thus

$$\int_J f R^J_{\alpha} g dm = \int_J R^J_{\alpha} f g dm,$$

which implies the **m-symmetry**

$$\int_{I} f \ R^{0}_{\alpha}gdm = \int_{I} R^{0}_{\alpha}f \ gdm$$

of the resolvent of X^0 by letting $J \uparrow I$ for $f \ge 0, g \ge 0$.

2.3 The Dirichlet form of X^0 on $L^2(I;m)$

Define the space $(\mathcal{F}^{(s)}, \mathcal{E}^{(s)})$ by

$$\mathcal{F}^{(s)} = \{ u : u \text{ is absolutely continuous in } s \text{ and } \mathcal{E}^{(s)}(u, u) < \infty \}.$$
(2.4)

$$\mathcal{E}^{(s)}(u,v) = \int_{I} D_s u(x) D_s v(x) \, ds(x) \tag{2.5}$$

An elementary inequality holds:

$$(u(b) - u(a))^2 \le |s(b) - s(a)|\mathcal{E}^{(s)}(u, u), \quad a, b \in I, \quad u \in \mathcal{F}^{(s)}.$$
 (2.6)

We call the boundary r_i **approachable** if $|s(r_i)| < \infty$, i = 1, 2. If r_i is approachable, then any $u \in \mathcal{F}^{(s)}$ admits a finite limit $u(r_i)$ in view of (2.6).

Let us introduce the space

$$\mathcal{F}_0^{(s)} = \{ u \in \mathcal{F}^{(s)} : u(r_i) = 0 \text{ whenever } r_i \text{ is approachable} \}.$$
(2.7)

We further write $(u, v)_k = \int_I uv dk$, $(u, v) = \int_I uv dm$, and let

$$\begin{cases} \mathcal{F}^{(s),k} = \mathcal{F}^{(s)} \cap L^{2}(I;k), & \mathcal{F}_{0}^{(s),k} = \mathcal{F}_{0}^{(s)} \cap L^{2}(I;k), \\ \mathcal{E}^{(s),k}(u,v) = \mathcal{E}^{(s)}(u,v) + (u,v)_{k}, & u,v \in \mathcal{F}^{(s),k}, \\ \mathcal{E}_{\alpha}^{(s),k}(u,v) = \mathcal{E}^{(s),k}(u,v) + \alpha(u,v), & \alpha > 0, \ u,v \in \mathcal{F}^{(s),k} \cap L^{2}(I;m). \end{cases}$$

$$(2.8)$$

We will be concerned with the form $(\mathcal{E}^0, \mathcal{F}^0)$ defined by

$$\mathcal{F}^0 = \mathcal{F}_0^{(s),k} \cap L^2(I;m), \quad \mathcal{E}^0(u,v) = \mathcal{E}^{(s),k}(u,v), \ u,v \in \mathcal{F}^0, \tag{2.9}$$

which can be readily shown to be a regular Dirichlet form on $L^2(I; m)$. Further, each one point of I is of positive capacity with respect to the form (2.9) because (2.6) implies for any finite closed interval $K \subset I$

$$\sup_{x \in K} u(x)^2 \le C_K \mathcal{E}_1^0(u, u), \quad u \in \mathcal{F}^0.$$
(2.10)

We say that the boundary r_i is **regular**

if r_i is approachable and m + k is finite in a neighborhood of r_i . If r_i is approachable but non-regular, then any function in $\mathcal{F}^{(s),k} \cap L^2(I;m)$ vanishes at r_i .

In particular, \mathcal{F}^0 can be rewritten as

$$\mathcal{F}^0 = \{ u \in \mathcal{F}^{(s),k} \cap L^2(I;m) : u(r_i) = 0 \text{ whenever } r_i \text{ is regular} \}.$$
(2.11)

Theorem 2.2 (i) X^0 is m-symmetric.

(ii) The Dirichlet form of X^0 on $L^2(I;m)$ coincides with $(\mathcal{E}^0, \mathcal{F}^0)$ defined by (2.9) in terms of the attached triplet (s, m, k).

(iii) Conversely, for an arbitrary triplet (s, m, k), define the regular Dirichlet form $(\mathcal{E}^0, \mathcal{F}^0)$ on $L^2(I; m)$ by (2.9). Then the associated Hunt process on Iis a minimal diffusion on I possessing (s, m, k) as its attached triplet.

Proof. (i) was shown already.

To see (ii), let $(\mathcal{E}, \mathcal{F})$ be the Dirichlet form of X^0 on $L^2(I; m)$. By a general theory (cf. [FOT]), $\{R^J_{\alpha}f, f \in C_c(I), \overline{J} \subset I\}$ is dense in \mathcal{F} and

$$\mathcal{E}(u,v) + \alpha \int_{J} uv dm = \int_{J} vf dm, \quad \text{for } u = R^{J}_{\alpha}f, \ v = R^{J}_{\alpha}g, \ f,g \in C_{c}(I).$$
(2.12)

By comparing this with (2.3), we have

$$\mathcal{F} \subset \mathcal{F}^0, \quad \mathcal{E} = \mathcal{E}^0 \quad \text{on} \quad \mathcal{F} \times \mathcal{F}.$$

We also have the identity (2.3) for $u = R^J_{\alpha} f$, $v \in \mathcal{F}^0 \cap C_c(I)$, which means that $\mathcal{F}^0 \cap C_c(I) \subset \mathcal{F}$. Since $(\mathcal{E}^0, \mathcal{F}^0)$ is regular, we get $\mathcal{F} = \mathcal{F}^0$.

(iii) Given a triplet (s, m, k), the Dirichlet form defined by (2.9) is not only regular but also local and irreducible. Since each one point set of I is of positive capacity, the associated Hunt process X^0 on I is a minimal diffusion I and m-symmetric.

Let $(\tilde{s}, \tilde{m}, \tilde{k})$ be a triplet attached to X^0 . Then X^0 is \tilde{m} -symmetric by (i) above, and consequently $\tilde{m} = m$ up to a constant multiplication due to the uniqueness theorem of Ying and Zhao [YZ].

We may assume $\tilde{m} = m$.

By (ii), the Dirichlet form $(\tilde{\mathcal{E}}, \tilde{\mathcal{F}})$ of X^0 on $L^2(I; m)$ is given by (2.9) with (\tilde{s}, \tilde{k}) in place of (s, k).

Since $\widetilde{\mathcal{E}} = \mathcal{E}$, we have $\widetilde{s} = s$, $\widetilde{k} = k$.

2.4 L^2 -generator of X^0

 X^0 : a minimal diffusion on I with the triplet (s, m, k) attached to it. \mathcal{A}^0 : the generator of the strongly continuous contraction semigroup of X^0 on $L^2(I;m)$:

$$u \in \mathcal{D}(\mathcal{A}^0)$$
 and $\mathcal{A}^0 u = f \in L^2(I;m)$

if and only if

$$u \in \mathcal{F}^0, \quad \mathcal{E}^0(u, v) = (f, v) \quad \text{for any} \quad v \in \mathcal{F}^0 \cap C_c(I),$$
 (2.13)

on account of the regularity of $(\mathcal{E}^0, \mathcal{F}^0)$.

 \mathcal{A}^0 is smply called the **L²-generator** of X^0 . We write $u(r_i) = \lim_{x \to r_i, x \in I} u(x)$. The following is immediate from Theorem 2.2 (ii) and (2.11):

Corollary 2.3 $u \in \mathcal{D}(\mathcal{A}^0)$ if and only if

$$\begin{cases} u \in \mathcal{F}^{(s),k} \cap L^2(I:m), & \frac{dD_s u - udk}{dm} \in L^2(I;m), & \text{and} \\ u(r_i) = 0 & \text{whenever} \quad r_i & \text{is regular.} \end{cases}$$
(2.14)

In this case,

$$\mathcal{A}^{0}u = \frac{dD_{s}u - udk}{dm}, \quad u \in \mathcal{D}(\mathcal{A}^{0}).$$
(2.15)

3 Reflecting extension X^r of X^0

3.1 Reflected Dirichlet space $(\mathcal{F}^r, \mathcal{E}^r)$ of $(\mathcal{E}^0, \mathcal{F}^0)$

Given a triplet (s, m, k) on an interval $I = (r_1, r_2)$, recall the form $(\mathcal{E}^{(s)}, \mathcal{F}^{(s)})$ defined by (2.4), (2.5) and the form $(\mathcal{E}^{(s),k}, \mathcal{F}^{(s),k})$ defined by (2.8). We write

$$\mathcal{F}^r = \mathcal{F}^{(s),k} \cap L^2(I;m), \quad \mathcal{E}^r(u,v) = \mathcal{E}^{(s),k}(u,v), \quad u,v \in \mathcal{F}^r.$$
(3.1)

We denote by I^* the interval obtained from I by adding r_i if it is regular i = 1, 2, (for the triplet (s, m, k)).

We know from (2.6) that any function in $\mathcal{F}^{(s)}$ can be continuously extended to I^* .

The canonical measure m is extended to I^* by setting $m(I^* \setminus I) = 0$. $L^2(I^*; m)$ can be identified with $L^2(I; m)$. **Theorem 3.1** (i) $(\mathcal{E}^r, \mathcal{F}^r)$ is a regular, local and irreducible Dirichlet form on $L^2(I^*; m)$ for which each one point of I^* has a positive capacity. (ii) Define $(\mathcal{E}^0, \mathcal{F}^0)$ by (2.9) which is a regular Dirichlet form on $L^2(I; m)$. $(\mathcal{F}^r, \mathcal{E}^r)$ is then the active reflected Dirichlet space of $(\mathcal{F}^0, \mathcal{E}^0)$.

The last statement of (i) follows from the inequality (2.10) holding for any compact subset of I^* and \mathcal{E}^r , \mathcal{F}^r , in place of I, \mathcal{E}^0 , \mathcal{F}^0 . (ii) is shown in Chapter 6 of [CF].

By (i), there exists uniquely an *m*-diffusion $X^r = (X^r_t, \mathbf{P}^r_x)$ on I^* whose Dirichlet form on $L^2(I^*; m)$ equals $(\mathcal{E}^r, \mathcal{F}^r)$. X^r is strongly irreducible in the sense that

$$\mathbf{P}_x^r(\sigma_y < \infty) > 0, \quad \text{for any} \quad x, y \in I^*.$$
(3.2)

In view of (2.9), X^r is an **m-symmetric diffusion extension** of X^0 in the sense that the part process of X^r on I, namely, the process obtained from it by killing upon hitting $I^* \setminus I$ coincides with X^0 .

On account of (ii), we may call X^r the **reflecting extension** of X^0 .

3.2 L^2 -generator of X^r

 \mathcal{A}^r : the generator of the strongly continuous contraction semigroup of X^r on $L^2(I;m)$.

 $u \in \mathcal{D}(\mathcal{A}^r)$ and $\mathcal{A}^r u = f \in L^2(I; m)$ if and only if (2.13) holds for \mathcal{F}^r , \mathcal{E}^r , $C_c(I^*)$ in place of \mathcal{F}^0 , \mathcal{E}^0 , $C_c(I)$.

Proposition 3.2 $u \in \mathcal{D}(\mathcal{A}^r)$ if and only if

$$\begin{cases} u \in \mathcal{F}^{(s),k} \cap L^2(I:m), & \frac{dD_s u - udk}{dm} \in L^2(I;m), \text{ and} \\ D_s u(r_i) = 0 & \text{whenever} \quad r_i \quad \text{is regular.} \end{cases}$$
(3.3)

In this case,

$$\mathcal{A}^{r}u = \frac{dD_{s}u - udk}{dm}, \quad u \in \mathcal{D}(\mathcal{A}^{r}).$$
(3.4)

The second condition in (3.3) can be deduced either by integration by parts or by a general condition that the flux of u at r_i equals zero formulated in Chapter 7 of [CF].

4 C_b -generators of X^0 and X^r

4.1 Boundary classification and behaviors of α -harmonic functions

For a given triplet (s, m, k), we adopt Feller's classification of the boundary: we write j = m + k and we let for $r_1 < c < r_2$

$$\lambda_1 = \int_{r_1}^c s(dx) \int_x^c j(dy), \quad \mu_1 = \int_{r_1}^c j(dx) \int_x^c s(dy), \ r_1 < c < r_2.$$

The left boundary r_1 of I is called

regular	if	$\lambda_1 < \infty,$	$\mu_1 < \infty,$
\mathbf{exit}	if	$\lambda_1 < \infty,$	$\mu_1 = \infty,$
entrance	if	$\lambda_1 = \infty,$	$\mu_1 < \infty,$
natural	if	$\lambda_1 = \infty,$	$\mu_1 = \infty.$

An analogous classification of r_2 is in force.

 r_i is regular in Feller's sense if and only if it is regular in the previous sense, namely, it is approachable and j is finite in a neighborhood of r_i . Moreover, if r_i is exit, then it is approachable but non-regular, and so

$$u(r_i) = 0$$
 for any $u \in \mathcal{F}^r$ whenever r_i is exit. (4.1)

For a given triplet (s, m, k) on I, consider a homogeneous equation

$$\alpha u(x) - \frac{dD_s u - udk}{dm}(x) = 0, \quad x \in I, \quad \alpha > 0.$$
(4.2)

whose solution is called α -harmonic. It is known that there exist a positive strictly increasing (resp. decreasing) solution u_1 (resp. u_2) of (4.2). When r_i is regular, there are many solutions u_i ; among them are

the minimal one \underline{u}_i with $\underline{u}_i(r_i) = 0$, $D_s \underline{u}_i(r_i) < 0$

and the maximal one \overline{u}_i with $D_s \overline{u}_i(r_i) = 0$, $\overline{u}_i(r_i) > 0$.

Otherwise u_i is unique up to a multiplicative positive constant.

The following table on the behaviors of u_i for the right boundary r_2 is taken from Itô-McKean's book [IM]:

regular exit entrance natural

$$u_1(r_2) \in (0,\infty) \in (0,\infty) = \infty = \infty$$

 $D_s u_1(r_2) \in (0,\infty) = \infty \in (0,\infty) = \infty$
 $u_2(r_2) < \infty = 0 \in (0,\infty) = 0$
 $-D_s u_2(r_2) < \infty \in (0,\infty) = 0 = 0$

$$(4.3)$$

4.2 The C_b -generator of X^0

Let X^0 be a minimal diffusion on I with an attached triplet (s, m, k). By Theorem 1.2, X^0 is *m*-symmetric and its Dirichlet form on $L^2(I;m)$ is $(\mathcal{E}^0, \mathcal{F}^0)$ given by (2.9).

Due to (2.10), the Hilbert space $(\mathcal{F}^0, \mathcal{E}^0_{\alpha})$ admits a **reproducing kernel** $g^0_{\alpha}(x, y), x, y \in I$: for each $y \in I$,

$$g^0_{\alpha}(\cdot, y) \in \mathcal{F}^0, \quad \mathcal{E}^0_{\alpha}(g^0_{\alpha}(\cdot, y), v) = v(y), \quad \text{for any } v \in \mathcal{F}^0.$$
 (4.4)

It follows from the first property of (2.9) and (4.1) that

$$g^0_{\alpha}(r_i, y) = 0$$
, whenever r_i is either regular or exit. (4.5)

Lemma 4.1 (i) $g^0_{\alpha}(x,y)$ admits an expression

$$g_{\alpha}^{0}(x,y) = \begin{cases} W(u_{1},u_{2})^{-1} u_{1}(x)u_{2}(y) & \text{if } x \leq y, \quad x,y \in I, \\ W(u_{1},u_{2})^{-1} u_{2}(x)u_{1}(y) & \text{if } x \geq y \quad x,y \in I, \end{cases}$$
(4.6)

where $W(u_1, u_2)(x) = D_s u_1(x)u_2(x) - D_s u_2(x)u_1(x)$ is the Wronskian of u_1, u_2 which is positive and independent of $x \in I$. Here u_i should be chosen to be

$$u_i = \underline{u}_i$$
, whenever r_i is regular, (4.7)

(ii) $g^0_{\alpha}(x,y)$ is a density function of the resolvent kernel R^0_{α} of X^0 with respect to m:

$$R^{0}_{\alpha}f(x) = \int_{I} g^{0}_{\alpha}(x, y)f(y)m(dy), \quad x \in I, \quad f \in C_{b}(I).$$
(4.8)

Notice that (4.5) and (4.6) imply that

$$u_i(r_i) = 0$$
, whenever r_i is exit, (4.9)

and we conclude from (4.7) and (4.9) that, for $f \in C_b(I)$,

$$R^0_{\alpha}f(r_i) = 0$$
, if r_i is either regular or exit. (4.10)

We now give a complete characterization of the C_b -generator \mathcal{G}^0 of the minimal diffusion X^0 on I.

Theorem 4.2 $u \in \mathcal{D}(\mathcal{G}^0)$ if and only if

$$\begin{cases} u \in C_b(I), & \frac{dD_s u - udk}{dm} \in C_b(I), \text{ and} \\ u(r_i) = 0 \quad \text{if} \quad r_i \text{ is either regular or exit.} \end{cases}$$
(4.11)

In this case,

$$\mathcal{G}^{0}u = \frac{dD_{s}u - udk}{dm}, \quad u \in \mathcal{D}(\mathcal{G}^{0}).$$
(4.12)

Proof. Take any $u \in \mathcal{D}(\mathcal{G}^0)$ so that $u = R^0_{\alpha} f$ for some $f \in C_b(I)$. Then u satisfies the boundary condition in (4.11) by (4.10). $\mathcal{G}^0 u = \alpha u - f$, while it follows from (4.6) that $\alpha u - f = \frac{dD_s u - udk}{dm}$. Conversly, take any u satisfying condition (4.11) and let $f = \alpha u - \frac{dD_s u - udk}{dm}$, $v = R^0_{\alpha} f$ and w = u - v. Then w is a bounded α -harmonic function and vanishes whenever r_i is regular or exit.

Write $w = C_1u_1 + C_2u_2$. If both r_1 , r_2 are either regular or exit, then $w(r_1) = w(r_2) = 0$ and we get $C_1 = C_2 = 0$ because $u_1(r_1)u_2(r_2) - u_1(r_2)u_2(r_1) < 0$. If r_1 is either regular or exit but r_2 is either entrance or natural, then $u_1(r_2) = \infty$ by the table (4.3) so that $C_1 = 0$ and $0 = w(r_1) = C_2u_2(r_1)$, yielding $C_2 = 0$ because $u_2(r_1) > 0$. If both r_1 , r_2 are either entrance or natural, we have $C_1 = C_2 = 0$.

4.3 The C_b -generator of X^r

 $X^r\colon$ the reflecting extension of minimal diffusion X^0 with an attached triplet (s,m,k).

 R^r_{α} : the resolvent of X^r ;

$$R_{\alpha}^{r}f(x) = \mathbf{E}_{x}^{r}\left[\int_{0}^{\infty} e^{-\alpha t}f(X_{t}^{r})dt\right], \quad R_{\alpha}^{r}f(x) = \int_{I^{*}} R_{\alpha}^{r}(x,dy)f(y), \ x \in I^{*}.$$

 X^r has the strong irreducibility $\mathbf{P}_a^r(\sigma_b < \infty) > 0, \ \forall a, b \in I^*$ so that

 $\mathbf{E}_{a}^{r}\left[e^{-\alpha\sigma_{a\pm}}\right] = 1, \,\forall a \in I, \, \mathbf{E}_{r_{1}}^{r}\left[e^{-\alpha\sigma_{r_{1}+}}\right] = 1, \,\text{if } r_{1} \in I^{*}, \, \mathbf{E}_{r_{2}}^{r}\left[e^{-\alpha\sigma_{r_{2}-}}\right] = 1, \,\text{if } r_{2} \in I^{*}.$

Therefore if we define

$$C_b(I^*) = \{ u \in C_b(I) : u(r_i) = \lim_{x \to r_i, \ x \in I} u(x) \text{ whenever } r_i \in I^* \}, \quad (4.13)$$

then $R^r_{\alpha}(\mathcal{B}_b(I)) \subset C_b(I^*)$ and the C_b -generator \mathcal{G}^r of X^r is well defined by

$$\begin{cases} \mathcal{D}(\mathcal{G}^{r}) = R_{\alpha}^{r}(C_{b}(I^{*})), \\ (\mathcal{G}^{r}u)(x) = \alpha u(x) - f(x), \text{ for } u = R_{\alpha}^{r}f, f \in C_{b}(I^{*}), x \in I^{*}. \end{cases}$$
(4.14)

The Dirichlet form $(\mathcal{E}^r, \mathcal{F}^r)$ of X^r on $L^2(I^*; m)$ admits a reproducing kernel $g^r_{\alpha}(x, y), x, y \in I^*$; for each $y \in I^*$,

$$g_{\alpha}^{r}(\cdot, y) \in \mathcal{F}^{r}, \quad \mathcal{E}_{\alpha}^{r}(g_{\alpha}^{r}(\cdot, y), v) = v(y), \quad \text{for any } v \in \mathcal{F}^{r}.$$
 (4.15)

This implies that

$$\begin{cases} D_s g_{\alpha}^r(r_i, y) = 0, & \text{for each } y \in I, & \text{whenever } r_i \text{ is regular} \\ g_{\alpha}^r(r_i, y) = 0, & \text{for each } y \in I, & \text{whenever } r_i \text{ is exit} \end{cases}$$
(4.16)

Analogously to Lemma 4.1, g_{α}^{r} can be shown to be a density function of the resolvent kernel R_{α}^{r} with respect to m and admit a similar expression to (4.6)

but with \overline{u}_i in place of \underline{u}_i whenever r_i is regular.

Hene the next theorem can be proved in a similar way to the proof of the preceding theorem by using (4.16) and the table (4.3):

Theorem 4.3 $u \in \mathcal{D}(\mathcal{G}^r)$ if and only if

$$\begin{cases} u \in C_b(I^*), & \frac{dD_s u - udk}{dm} \in C_b(I^*), \text{ and} \\ D_s u(r_i) = 0 & \text{if } r_i \text{ is regular}, \quad u(r_i) = 0 \text{ if } r_i \text{ is exit.} \end{cases}$$
(4.17)

In this case,

$$\mathcal{G}^{r}u = \frac{dD_{s}u - udk}{dm}, \quad u \in \mathcal{D}(\mathcal{G}^{r}).$$
(4.18)

5 Proper symmetric diffusion extensions of X^0

5.1 Symmetric diffusion extensions with no sojourn nor killing

 X^0 : minimal diffusion on $I = (r_1, r_2)$ with attached triplet (s, m, k)S: a closed set into which I is embedded as a dense open subset m is extended to S by setting $m(S \setminus I) = 0$.

Suppose X^S is an *m*-symmetric diffusion Hunt process on *S* whose part process on *I* coincides with X^0 .

Then the Dirichlet form $(\mathcal{E}^S, \mathcal{F}^S)$ of X^S on $L^2(S; m) = L^2(I; m)$ is quasiregular (cf. [CF]) and satisfies (cf. [FOT])

$$\mathcal{F}^0 \subset \mathcal{F}^S, \quad \mathcal{E}^S(u,v) = \mathcal{E}^0(u,v), \quad \text{for any } u,v \in \mathcal{F}^0.$$
 (5.1)

For two closed sets S_1 , S_2 as above, we write $S_1 \sim S_2$ if they are quasi-homeomorphic.

 X^F is called a proper symmetric diffusion extension of X^0 to S with no sojourn nor killing if

(a) X^S it is an *m*-symmetric diffusion Hunt process on S,

- (b) X^S admits no killing on $S \setminus I$,
- (c) the part process of X^S on I coincides with X^0 , and
- (d) \mathcal{F}^0 is a proper subspace of \mathcal{F}^S .

Theorem 5.1 (i) X^0 admits a proper symmetric diffusion extension X^S with no sojourn nor killing if and only if

either
$$r_1$$
 or r_2 is a regular boundary of I . (5.2)

(ii) If r_1 (resp. r_2) is regular and r_2 (resp. r_1) is non-regular, then $S \sim I^*$ and $X^S = X^r$.

(iii) If both r_1 and r_2 are regular, then four cases can occur:

- **1.** $S \sim [r_1, r_2], \quad X^S = X^r,$
- **2.** $S \sim [r_1, r_2), \quad X^S = X^r$ being killed upon hitting r_2 ,
- **3.** $S \sim (r_1, r_2], \quad X^S = X^r$ being killed upon hitting r_1 ,
- 4. $S \sim \dot{I}$, X^S = the one-point extension of X^0 from I to \dot{I} .

Here \dot{I} denotes the one-point compactification of I.

Proof. By quasi-homeomorphism and Theorem 3.3.8 of [CF], \mathcal{F}^0 can be identified with a subspace $\mathcal{F}^{S,0} = \{u \in \mathcal{F}^S : u = 0 \text{ q.e. on } S\}$ of \mathcal{F}^S .

In particlular, \mathcal{F}^0 is an ideal of \mathcal{F}^S and we have by Theorem 6.6.9 of [CF], $\mathcal{F}^S \subset \mathcal{F}^r$ and $\mathcal{E}^S(u, u) \geq \mathcal{E}^r(u, u), \ u \in \mathcal{F}^S$.

This combined with (5.1) and property (b) of X^S leads us to

$$\mathcal{F}^0 \subset \mathcal{F}^S \subset \mathcal{F}^r, \quad \mathcal{E}^S(u,v) = \mathcal{E}^{(s),k}(u,v), \ u,v \in \mathcal{F}^S.$$
 (5.3)

On the other hand, \mathcal{E}_{α}^{r} -orthogonal complement \mathcal{H}_{α} of \mathcal{F}^{0} in \mathcal{F}^{r} consists of α -hamonic functions. The integration by parts gives, $r_{1} < a < b < r_{2}$,

$$\int_{a}^{b} (D_{s}u_{i}(x))^{2} ds(x) + \int_{a}^{b} u_{i}(x)^{2} dk(x) + \alpha \int_{a}^{b} u_{i}(x)^{2} dm(x) \\ = u_{i}(b) D_{s}u_{i}(b) - u_{i}(a) D_{s}u_{i}(a).$$

On account of the table (4.3), we thus conclude that $u_i \in \mathcal{H}_{\alpha}$ if and only if r_i is regular. Consequently

$$\mathcal{H}_{\alpha} = \{c_1 u_i + c_2 u_2 : c_i = 0, \text{ unless } r_i \text{ is regular}\}.$$
(5.4)

Theorem 4.4 follows readily from (5.3) and (5.4).

The C_b -generator of X^S of Theorem 4.4 can be described as Theorem 4.3 by replacing the boundary condition in (4.17) according to the cases of S as follows:

case (ii). $D_s u(r_1) = 0$ (resp. $D_s u(r_2) = 0$),

 $u(r_2) = 0$ (resp. $u(r_1) = 0$), if r_2 (resp. r_1) is exit

case (iii), 1. $D_s u(r_1) = 0$, $D_s u(r_2) = 0$

case (iii), 2. $D_s u(r_1) = 0$, $u(r_2) = 0$

case (iii), 3. $u(r_1) = 0$, $D_s u(r_2) = 0$

case (iii), 4. $u(r_1) = u(r_2)$, $D_s u(r_1) = D_s u(r_2)$.

5.2 Symmetric diffusion extensions with sojourn and killing

Given a minimal diffusion X^0 on $I = (r_1, r_2)$ with attached triplet (s, m, k), the most general proper symmetric diffusion extension X^S of X^0 with no sojourn nor killing on $S \setminus I$ has been studied in the preceding section.

We can admit sojourn and killing for X^S that amounts to extending m and k to S by allowing them to have positive point masses on $S \setminus I$ and considering a proper symmetric diffusion extension of X^0 associated with the resulting Dirichlet form.

We consider the typical case where the left boundary r_1 of I is regular but the right boundary r_2 is non-regular. Let m^* and k^* be extensions of m and k from I to $I^* = [r_1, r_2)$, respectively allowing point masses at r_1 so that

$$m^*(r_1) =: m^*(\{r_1\}) \ge 0, \quad k^*(r_1) =: k^*(\{r_1\}) \ge 0.$$
 (5.5)

Define the Dirichlet form $(\mathcal{E}^*, \mathcal{F}^*)$ on $L^2(I^*; m^*)$ by

$$\begin{cases} \mathcal{F}^* = \mathcal{F}^{(s)} \cap L^2(I^*; k^*) \cap L^2(I^*; m^*) \\ \mathcal{E}^*(u, v) = \mathcal{E}^{(s), k}(u, v) + u(r_1)v(r_1)k^*(r_1), \quad u, v \in \mathcal{F}^*. \end{cases}$$
(5.6)

 $(\mathcal{E}^*, \mathcal{F}^*)$ is then a regular, local irreducible Dirichlet form on $L^2(I^*; m^*)$ and it admits an associated m^* -symmetric diffusion process $X^* = (X_t^*, \mathbf{P}_x^*)$ on I^* .

 $\{R^*_{\alpha}; \alpha > 0\}$ denotes the resolvent kernel of X^* . Just as the case of the reflecting extension X^r , if we define the space $C_b(I^*)$ by

$$C_b(I^*) = \{ u \in C_b(I) : u(r_1) = \lim_{x \to r_1, \ x \in I} u(x) \},$$
(5.7)

then $R^*_{\alpha}(C_b(I)) \subset C_b(I^*)$ and the C_b -generator \mathcal{G}^* of X^* is well defined by

$$\begin{cases} \mathcal{D}(\mathcal{G}^*) = R^*_{\alpha}(C_b(I^*)), \\ (\mathcal{G}^*u)(x) = \alpha u(x) - f(x), \quad x \in I^*, \quad \text{for } u = R^*_{\alpha}f, \ f \in C_b(I^*). \end{cases}$$

Furthermore, for $\alpha > 0$, the Hilbert space $(\mathcal{F}^*, \mathcal{E}^*_{\alpha})$ admits a reproducing kernel $g^*_{\alpha}(x, y), x, y \in I^*$: for each $y \in I^*$,

$$g^*_{\alpha}(\cdot, y) \in \mathcal{F}^*, \quad \mathcal{E}^*_{\alpha}(g^*_{\alpha}(\cdot, y), v) = v(y), \quad \text{for any } v \in \mathcal{F}^*.$$

The following is the counterpart of Lemma 4.1 for X^* .:

Lemma 5.2 (i) $g^*_{\alpha}(x, y)$ admits an expression

$$g_{\alpha}^{*}(x,y) = \begin{cases} W(u_{1},u_{2})^{-1}u_{1}(x)u_{2}(y) & \text{if } x \leq y, \quad x,y \in I^{*}, \\ W(u_{1},u_{2})^{-1}u_{2}(x)u_{1}(y) & \text{if } x \geq y \quad x,y \in I^{*}. \end{cases}$$
(5.8)

where

$$u_{1} = \begin{cases} \overline{u}_{1} & if \quad k^{*}(r_{1}) + m^{*}(r_{1}) = 0, \\ \overline{u}_{1} + \frac{\overline{u}_{1}(r_{1})}{D_{s}\underline{u}_{1}(r_{1})}(k^{*}(r_{1}) + \alpha m^{*}(r_{1}))\underline{u}_{1} & if \quad k^{*}(r_{1}) + m^{*}(r_{1}) > 0. \end{cases}$$

$$(5.9)$$

(ii) For $f \in C_b(I^*)$ and $x \in I^*$, $R^*_{\alpha}f(x)$ admits an expression

$$R_{\alpha}^{*}f(x) = \int_{I} g_{\alpha}^{*}(x, y)f(y)m(dy) + w(x), \qquad (5.10)$$

where

$$w(x) = \begin{cases} 0 & if \quad m^*(r_1) = 0, \\ \frac{f(r_1)m^*(r_1)}{-D_s u_2(r_1) + k^*(r_1) + \alpha m^*(r_1)} u_2 & if \quad m^*(r_1) > 0. \end{cases}$$
(5.11)

The following is the counterpart of Theorem 4.3 for X^* :

Theorem 5.3 $u \in \mathcal{D}(\mathcal{G}^*)$ if and only if

$$u \in C_b(I^*), \quad \frac{dD_s u - udk}{dm} \in C_b(I^*),$$

$$(5.12)$$

and

$$\begin{cases} D_s u(r_1) - u(r_1)k^*(r_1) = \mathcal{G}^* u(r_1)m^*(r_1), \\ u(r_2) = 0, & \text{if } r_2 \text{ is exit,} \end{cases}$$
(5.13)

where $\mathcal{G}^*u(r_1)$ denotes the value of the function $\frac{dD_su-udk}{dm} (\in C_b(I^*))$ at r_1 . In this case, for $u \in \mathcal{D}(\mathcal{G}^*)$,

$$\begin{cases} \mathcal{G}^* u(x) = \frac{dD_s u - udk}{dm}(x), & x \in I, \\ \mathcal{G}^* u(r_1) = (D_s u(r_1) - u(r_1)k^*(r_1))/m^*(r_1), & \text{if } m^*(r_1) > 0. \end{cases}$$
(5.14)

6 All possible diffusion extensions of X^0

 X^0 : a minimal diffusion on $I = (r_1, r_2)$ with an attached triplet (s, m, k)We have considered a family of symmetric diffusion extensions of X^0 to a closed sets obtained by adding to I regular boundaries or their identification. As was verified in the preceding section, this family exhausts

all possible proper symmetric diffusion extensions of X^0

All of them have been constructed by using Dirichlet form extensions of $(\mathcal{E}^0, \mathcal{F}^0)$.

 $\mathbf{Ext}_{\mathbf{DF}}(\mathbf{X}^{\mathbf{0}})$: the collection of X^{0} and all of its proper symmetric diffusion extensions as above.

By convention, we exclude from $\operatorname{Ext}_{\operatorname{DF}}(X^0)$ the one point extension \dot{X} of X^0

to the one-point compactification \dot{I} consider in Theorem 5.1, (iii), 4.

The C_b -generator of any $X \in \text{Ext}_{\text{DF}}(X^0)$ has been characterized in terms of boundary conditions.

In particular, the most general boundary condition at a regular boundary r_i is

$$D_s u(r_i) - u(r_i)k^*(r_i) = \mathcal{G}^* u(r_i)m^*(r_i),$$
(6.1)

where $\mathcal{G}^*u(r_i)$ denotes the value of the function $\frac{dD_su-udk}{dm} (\in C_b([r_1, r_2]))$ at r_i .

 $\mathbf{Ext_{IM}}(\mathbf{X^0})$: the collection of all diffusion extensions of X^0 to $[r_1, r_2]$ studied in §4.4 and §4.7 of Itô-McKean's book [IM2].

 $\operatorname{Ext}_{\operatorname{IM}}(X^0)$ consists all (not necessarily symmetric) diffusion extensions of X^0 to $[r_1, r_2]$

except that the processes starting at entrance boundaries and remaining there until life time are excluded from $\operatorname{Ext}_{\operatorname{IM}}(X^0)$.

The C_b -generator of any $X \in \text{Ext}_{\text{IM}}(X^0)$ was characterized in terms of the boundary conditions imposed at both r_1 and r_2 .

In particular, the most general boundary condition at a regular boundary r_i can be seen to be identical with (6.1).

 $\operatorname{Ext}_{\operatorname{IM}}(X^0)$ contains an extension X of X^0 with a trivial boundary condition

$$\mathcal{G}u(r_i) + \kappa u(r_i) = 0, \ 0 \le \kappa < \infty,$$

at an non-entrace boundary r_i ,

which means that X starting at r_i remains there until its life time.

We modify such X by

- (a) killing it at time σ_{r_1} whenever it is finite and
- (b) discarding r_i from its state space.

The resulting modified family is designated as $\text{Ext}'_{\text{IM}}(\mathbf{X}^0)$.

On the other hand, when I has entrance boundaries, they can be added to the state space of any $X \in \text{Ext}_{\text{DF}}(X^0)$ to produce a improper symmetric extension \tilde{X} of X.

For simplicity, we explain this procedure only for $X = X^0 \in \operatorname{Ext}_{\operatorname{DF}}(X^0)$. When r_1 is entrance, there exists a diffusion $\widetilde{X}^0 = (\widetilde{X}_t^0, \widetilde{\mathbf{P}}_x^0)$ on the extended state space $[r_1, r_2)$ such that

$$\widetilde{X}^0|_I = X^0 \quad \text{and} \quad \widetilde{\mathbf{P}}^0_{r_1}(\widetilde{X}^0_t \in I \text{ for any } t \in (0, \widetilde{\zeta}^0)) = 1.$$
 (6.2)

In particular,

the part process of \widetilde{X}^0 on I equals X^0 and the one-point set $\{r_1\}$ is polar for \widetilde{X}^0 so that \widetilde{X}^0 can be viewed as an m-symmetric diffusion extension of X^0 that is improper, in the sense that, \widetilde{X}^0 has the same Dirichlet form $(\mathcal{E}^0, \mathcal{F}^0)$ on $L^2(I; m)$ as X^0 . In fact, since r_1 is entrance, we have

$$\lim_{\epsilon \downarrow 0} \mathbf{E}^{0}_{r_{1}+}[e^{-\sigma_{\mathcal{R}_{1}+\epsilon}}] = 1, \quad \lim_{\epsilon \downarrow 0} \mathbf{P}^{0}_{r_{1}+\epsilon}(\sigma_{r_{1}+\epsilon} < \infty) = 1.$$

Using these properties of X^0 , the above mentioned extension \widetilde{X}^0 of X^0 can be constructed as in Problem 3.6.3 of Itô-Mckean's book by defining $(\widetilde{X}^0_t, \widetilde{\mathbf{P}}^0_{r_1})$ to be a kind of limit of $(X^0_t, \mathbf{P}^0_{r_1+\frac{1}{n}})$ as $n \to \infty$ using the direct product $\prod_{n=1}^{\infty} \mathbf{P}^0_{r_1+\frac{1}{n}}$.

The C_b -generator of \widetilde{X}^0 can be readily identified as follows. The property (6.2) implies $\widetilde{\mathbf{E}}_{r_1}^0[e^{-\sigma_{r_1+}}] = 1$ and consequently the resolvent $\{\widetilde{R}_{\alpha}^0; \alpha > 0\}$ of \widetilde{X}^0 satisfies $\widetilde{R}_{\alpha}^0(\mathcal{B}_b(I)) \subset C_b([r_1, r_2))$. We introduce the C_b -generator $\widetilde{\mathcal{G}}^0$ of \widetilde{X}^0 by

$$\begin{cases} \mathcal{D}(\widetilde{\mathcal{G}}^{0}) = \widetilde{R}^{0}_{\alpha}(C_{b}([r_{1}, r_{2})), \\ (\widetilde{\mathcal{G}}^{0}u)(x) = \alpha u(x) - f(x), \text{ for } u = \widetilde{R}^{0}_{\alpha}f, f \in C_{b}([r_{1}, r_{2})), x \in [r_{1}, r_{2}). \end{cases}$$

Then we see just as in the proof of Theorem 4.2 that $u \in \mathcal{D}(\tilde{\mathcal{G}}^0)$ if and only if u satisfies the condition (4.11) with $C_b([r_1, r_2))$ in place of $C_b(I)$. If both r_1 and r_2 are entrance, we can replace the above \widetilde{X}^0 by its further improper *m*-symmetric extension to $[r_1, r_2]$ so that the resulting diffusion \widetilde{X}^0 has the same Dirichlet form $(\mathcal{E}^0, \mathcal{F}^0)$ as X^0 and its C_b -generator is characterized as (4.11) but with $C_b([r_1, r_2])$ in place of $C_b(I)$.

 $\widetilde{\operatorname{Ext}}_{\operatorname{DF}}(\mathbf{X}^{\mathbf{0}})$: the collection of all $X \in \operatorname{Ext}_{\operatorname{DF}}(X^{\mathbf{0}})$ but being modified to be X as above

by adding entrance boundaries whenever they are present. We can then readily verify that

$$\mathbf{Ext}'_{\mathbf{IM}}(\mathbf{X}^{\mathbf{0}}) = \widetilde{\mathbf{Ext}}_{\mathbf{DF}}(\mathbf{X}^{\mathbf{0}}).$$
(6.3)

Thus every element X of $\operatorname{Ext}'_{\operatorname{IM}}(X^0)$ is symmetric with respect to m or its extension m^* to regular boundaries.

Furthermore we can verify that the transition function P_t of $X \in \operatorname{Ext}'_{\operatorname{IM}}(X^0)$ determines a Feller semigroup on the space $C_{\infty}(\widehat{I})$.

Here \widehat{I} denotes the interval obtained from I by adding the boundaries r_i to it only in the following two cases:

(I) r_i is regular and X is not absorbed at r_i ,

(II) r_i is entrance.

 $C_{\infty}(\hat{I})$ denotes the space of all continuous functions on \hat{I} vanishing at infinity of I.

Indeed, combining general expressions in Lemma 5.2 of the resolvent R_{α} of X

with Theorem 5.14.1 in Itô's book [I] and the table (4.3),

we can see that R_{α} makes invariant the space of bounded continuous functions on I vanishing at a natural boundary.

Therefore, on account of the observations we have made on the C_b -generator of X,

we can conclude that $R_{\alpha}(C_{\infty}(\widehat{I})) \subset C_{\infty}(\widehat{I})$. Moreover $\lim_{\alpha \to \infty} \alpha R_{\alpha} f(x) = f(x), \ x \in \widehat{I}, \ f \in C_{\infty}(\widehat{I})$, by the path continuity of X.

Hence $\{R_{\alpha}; \alpha > 0\}$ becomes a strongly continuous contraction resolvent on $C_{\infty}(\hat{I})$ and consequently $\{P_t; t > 0\}$ is a strongly continuous contraction semigroup on $C_{\infty}(I)$ with generator

$$\widehat{\mathcal{G}} = \alpha I - R_{\alpha}^{-1}, \ \mathcal{D}(\widehat{\mathcal{G}}) = R_{\alpha}(C_{\infty}(\widehat{I})).$$

Proposition 6.1 The transition function $\{P_t; t > 0\}$ of $X \in \operatorname{Ext}'_{\operatorname{IM}}(X^0)$ determines a strongly continuous contraction semigroup on $C_{\infty}(\widehat{I})$.

Let $\widehat{\mathcal{G}}$ be its infinitesimal generator. $u \in \mathcal{D}(\widehat{\mathcal{G}})$ if and only if

$$u \in C_{\infty}(\widehat{I}), \quad \frac{dD_s u - udk}{dm} \in C_{\infty}(\widehat{I}),$$
(6.4)

and

$$D_s u(r_i) - u(r_i)k^*(r_i) = \widehat{\mathcal{G}}u(r_i)m^*(r_i), \quad \text{if } r_i \text{ is regular and } r_i \in \widehat{I}, \quad (6.5)$$

where $\widehat{\mathcal{G}}u(r_i)$ denotes the value of the function $\frac{dD_su-udk}{dm} (\in C_{\infty}(\widehat{I}))$ at r_i , and $m^*(r_i)$, $k^*(r_i)$ are non-negative parameters. In this case, it holds for $u \in \mathcal{D}(\widehat{\mathcal{G}})$ that

$$\begin{cases} \widehat{\mathcal{G}}u(x) = \frac{dD_s u - udk}{dm}(x), & x \in I, \\ \widehat{\mathcal{G}}u(r_i) = (D_s u(r_i) - u(r_i)k^*(r_i))/m^*(r_i), & \text{if } m^*(r_i) > 0. \end{cases}$$
(6.6)

Conversely, given a linear operator $\widehat{\mathcal{G}}$ on $C_{\infty}(\widehat{I})$ satisfying (6.4), (6.5) and (6.6), we can solve the equation $(\alpha - \widehat{\mathcal{G}})u = f$ in the space $C_{\infty}(\widehat{I})$ using the functions $g^*(x, y)$ and w(x) defined in Lemma 5.2.

But it is not easy to verify that $\mathcal{D}(\widehat{\mathcal{G}})$ is dense in $C_{\infty}(\widehat{I})$ unless the associated Dirichlet form is utilized.

The Dirichlet form method gives us a direct and quickest way to construct the diffusion in $\operatorname{Ext}'_{\operatorname{IM}}(X^0)$,

firstly by constructing $X \in \operatorname{Ext}_{\operatorname{DF}}(X^0)$ by a regular Dirichlet form and secondly by considering the improper symmetric diffusion extension \widetilde{X} of Xto entrance boundaries.

The constructed diffusion in $\mathrm{Ext}'_{\mathrm{IM}}(X^0)$ has a Feller transition function by the above proposition.

References

- [CF] Z.-Q. Chen and M. Fukushima, Symmetric Markov Processes, Time Changes and Boundary Theory. Princeton University Press, 2011
- [Fe1] W. Feller, The parabolic differential equations and the associated semi-groups of transformations. Ann. of Math. 55(1952), 468-519
- [Fe2] W. Feller, Generalized second order differential operators and their lateral conditions. *Illinois J. Math.* 1(1957), 450-504
- [F1] M. Fukushima, On boundary conditions for multi-dimensional Brownian motions with symmetric resolvent densities. J. Math. Soc. Japan 21 (1969), 58-93.
- [F2] M. Fukushima, From one dimensional diffusions to symmetric Markov processes. *Stochastic Process Appl.* **120** (2010), 590-604. (Special issue A tribute to Kiyosi Itô)
- [FOT] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, 1994, Second Extended Edition, 2011
- [I1] K. Itô, Essentials of Stochastic Processes. Translation of Mathematical Monographs, Amer. Math. Soc. 2006 (originally published in Japanese, Iwanami Shoten, 1957)
- [IM1] K. Itô and H. P. McKean, Jr., Brownian motions on a half line. Illinois J. Math. 7(1963), 181-231
- [IM2] K. Itô and H. P. McKean, Jr., Diffusion Processes and Their Sample Paths. Springer, 1965
- [YZ] J. Ying and M. Zhao, The uniqueness of symmetrizing measure of Markov processes. Proc. Amer. Math. Soc. 138 (2010), 2181-2185