On boundary problems for symmetric Markov processes

Masatoshi Fukushima Probability Seminar at Kansai Univ.

October 21, 2023

Contents

1	Symmetric Markovian extensions of ABM: An analytic characterization	1
2	Active reflected Dirichlet space for a part process \mathbb{X}^0	5
3	Unique extension of \mathbb{X}^0 when F is a finite set	6
4	 Several applications 4.1 Walsh's Brownian motion	8 8 9 11
5	About symmetry	12

1 Symmetric Markovian extensions of ABM: An analytic characterization

Based on [F69]

D bounded domain of \mathbb{R}^n

$$G_{\alpha}(x,y), \ \alpha > 0, x, y \in D, \ x \neq y \quad resolvent \ density \ on \ D \iff G_{\alpha}(x,y) \ge 0, \ \alpha \int_{D} G_{\alpha}(x,z) dz \le 1.$$

$$G_{\alpha}(x,y) - G_{\beta}(x,y) + (\alpha - \beta) \int_{D} G_{\alpha}(x,z) G_{\beta}(z,y) dz = 0, \ \alpha, \beta > 0.$$

It is called *symmetric and conservative* if

 $G_{\alpha}(x,y) = G_{\alpha}(y,x), \quad \alpha \int_{D} G_{\alpha}(x,z)dz = 1$

Let $G^0_{\alpha}(x, y)$ be the resolvent density of the *absorbed Brownian motion* (ABM) \mathbb{X}^0 on D

A function u on D is called α -harmonic if $(\alpha - \frac{1}{2}\Delta)u = 0$ on D

Let \mathbb{G} be the family of all symmetric conservative resolvent densities $G_{\alpha}(x, y)$ on D satisfying

(G.a) $G_{\alpha}(x,y) = G_{\alpha}^{0}(x,y) + R_{\alpha}(x,y)$ where $R_{\alpha}(x,y)$ is non-negative and α -harmonic in $x \in D$,

 $(\mathbb{G}.b) \quad \sup_{x \in K, y \in D} R_{\alpha}(x, y) < \infty \text{ for any compact set } K \subset D$

The first assertion of the next propsition is a conterpart of [F67, Lemma 2.1].

Proposition 1.1 (i) Any non-negative α -harmonic function u on D admits the expression

(*)
$$u(x) = \mathbb{E}_x \left[e^{-\alpha \tau_B} u(X_{\tau_B}) \right], \quad x \in B,$$

for any ball B with $\overline{B} \subset D$ in terms of the n-dimensional Brownian motion (X_t, \mathbf{P}_x) .

(ii) For any $G_{\alpha}(x, y) \in \mathbb{G}$, $G_{\alpha}f(x) = \int_{D} G_{\alpha}(x, y)f(y)dy$, $x \in D$, is not only a symmetric contraction resolvent on $L^{2}(D)$ but also a strongly continuous resolvent.

Proof (i) The retriction to *B* of an α -harmonic function *u* on *D* is the unique slution of $(u - \frac{1}{2}\Delta)u = 0$ on *B* with continuous boundary function $u|_{\partial B}$ (cf. [GT77, Cor.6.0]).

On the other hand, we can see just as in the proof of [CF12, Lemma 3,1] that the function on the ball B defined by the right hand side of (*) also has this property by noting that the restriction to B of any α -excessive function on D is α -excessive relative to the ABM on B according to [Dy65, Th 12.9, Th.12.9].

(ii) Since G^0_{α} has the stated properties, it is enough to show that $\lim_{\alpha\to\infty} \alpha ||R_{\alpha}f||_{L^2(D)} = 0$ for any $f \in L^2(D)$. For any $\varepsilon > 0$, take $g \in C_c(D)$ with $||f - g||_{L^2} < \varepsilon$. We then readily get $\alpha ||R_{\alpha}f||_{L^2} \le \varepsilon + \alpha ||R_{\alpha}g||_{L^2}$

By using the α -harmonicity of $R_{\alpha}(x, y)$ in $x \in D$ and its expression (*), we see as in the proof of [F67, Lemma 2.9] that $\lim_{\alpha \to \infty} \alpha |R_{\alpha}g(x)| = 0$ for any $x \in D$. Since $\alpha ||R_{\alpha}g||_{\infty} \leq ||g||_{\infty}$, the second term of the right hand side of the preceding inequality tends to 0 as $\alpha \to \infty$ by the bounded convergence theorem.

Remark 1.2 Assume that $n \geq 3$. and let g(x, y) be the Green function for the domain $D \subset \mathbb{R}^n$. Denote $G_{0+}^0(x, y)$ by $G^0(x, y)$. Then $g(x, y) = \frac{q}{2}G^0(x, y)$ $x, y \in D$, for $q = (n-2)\sigma_n$ where σ_n is the unit ball boundary area: σ_n equals $\pi^{\frac{n}{2}}n/(\frac{n}{2})!$ when n is even and $2^{\frac{n+1}{2}}\pi^{\frac{n-1}{2}}/\{1\cdot 3\cdot 5\cdots (n-2)\}$ when n is odd.

According to K.Itô [I60, §3.5], $G^0(x, y) = \frac{2}{C}g(x, y)$ for $C = 4\pi^{\frac{n}{2}}/\Gamma(\frac{n}{2}-1)$, and we readily get C = q.

M: Martin boundary of D. μ : harmonic measure on M relative to a reference point $x_0 \in D$

$$\begin{split} K(x,\xi), & x \in D, \ \xi \in M: \text{ Martin kernel:} \\ K(x,\xi) &= \lim_{y \to \xi} \frac{g(x,y)}{g(x_0,y)} = \lim_{y \to \xi} \frac{G^0(x,y)}{G^0(x_0,y)}. \\ \alpha \text{-order Martin kernel is then defined by} \\ K_\alpha(x,\xi) &= K(x,\xi) - \alpha \int_D G^0_\alpha(x,z) K(z,\xi) dz \end{split}$$

For a function φ on M, let $\mathbf{H}\varphi(x) = \int_M K(x,\xi)\varphi(\xi)\mu(d\xi), \ \mathbf{H}_{\alpha}\varphi(x) = \int_M K_{\alpha}(x,\xi)\varphi(\xi)\mu(d\xi), \ x \in D$ α -order Feller kernel is defined by

$$U_{\alpha}(\xi,\eta) = \alpha \int_{D} K(z,\xi) K_{\alpha}(z,\eta) dz, \quad \xi,\eta \in M,$$

which is increasing in α . Feller kernel is defined by

$$U(\xi,\eta) = \lim_{\alpha \to \infty} U_{\alpha}(\xi,\eta), \quad \xi,\eta \in M$$

For a function φ in M, the *Douglas integral* is defined by

$$\mathbf{C}(\varphi,\varphi) = \frac{1}{2} \int_{M \times M} (\varphi(\xi) - \varphi(\eta))^2 U(\xi,\eta) \mu(d\xi) \mu(d\eta)$$

Define $\mathbb{H}_M = \{ \varphi \in L^2(M; \mu_0) : \mathbb{C}(\varphi, \varphi) < \infty \}$ where $\mu_0(d\xi) = U_1 1(\xi) \mu(d\xi)$.

Proposition 1.3 If a function u on D is harmonic with finite Dirichlet integral $\mathbf{D}_D(u, u)$, then u admits fine limit $\varphi(\xi) = \gamma u(\xi)$ for μ -a.e. $\xi \in M$, $u = \mathbf{H}\varphi$ and

$$\frac{1}{2}\mathbf{D}_D(u,u) = \mathbf{C}(\varphi,\varphi).$$

This was established by J.L.Doob [Do62, (7.7)] with $\frac{q}{2}\Theta(\xi,\eta)$ for the Naim kernel

$$\begin{split} \Theta(\xi,\eta) &= \lim_{x \to \xi, y \to \eta} \frac{g(x,y)}{g(x_0,x)g(x_0,y)} = \frac{2}{q} \lim_{x \to \xi, y \to \eta} \frac{K(x,y)}{G^0(x_0,x)} \\ \text{in place of the Feller kernel } U. \end{split}$$

[F64] then proved that $\frac{q}{2}\Theta = U$.

The notion U was introduced by W.Feller [Fe57] in his seminal study of boundary condition for a Markov process on a denumerable state space with finite number of boundary points.

Theorem 1.4 There is one-to-one correspondence between the family \mathbb{G} of resolvent deisities on D and the family of Dirichlet forms $(\mathcal{E}_M, \mathcal{F}_M)$ on $L^2(M; \mu_0)$ such that

$$\mathcal{F}_M \subset \mathbb{H}_M, \quad \mathcal{E}_M(\varphi, \varphi) \ge \mathbf{C}(\varphi, \varphi), \ \forall \varphi \in \mathcal{F}_M, \quad \mathcal{E}_M(1, 1) = 0.$$

For each $G_{\alpha}(x, y) \in \mathbb{G}$, the corresponding $(\mathcal{E}_M, \mathcal{F}_M)$ is defined as follows:

Let $(\mathcal{E}_D, \mathcal{F}_D)$ be its associated Dirichlet form on $L^2(D)$ which is well defined due to Prosition 1.1. Define $\mathcal{H}_{\alpha} = \{ u \in \mathcal{F}_D : u \text{ is } \alpha - \text{harmonic} \}.$

 $u \in \mathcal{H}_{\alpha}$ admits the fine boundary function $\gamma u \in L^2(M; \mu_0)$ and $u = \mathbf{H}_{\alpha} \gamma u$.

Let $\mathcal{F}_{M} = \{ \gamma u : u \in \mathcal{H}_{\alpha} \}, \\
\mathcal{E}_{M}(\varphi, \varphi) = \mathcal{E}_{\alpha}(\mathbf{H}_{\alpha}\varphi, \mathbf{H}_{\alpha}\varphi) - U_{\alpha}(\varphi, \varphi), \ \varphi \in \mathcal{F}_{M}.$

Then $(\mathcal{E}_M, \mathcal{F}_M)$ is independent of $\alpha > 0$ and satisfies the stated properties.

Maximum and minimum ones among $(\mathcal{F}_M, \mathcal{E}_M)$ in a semi-order (cf. [CF12, Def 6.6.8])

(I) Maximum one: $\mathcal{F}_M = \mathbb{H}_M, \quad \mathcal{E}_M = \mathbf{C}$

Let $G_{\alpha}(x, y) \in \mathbb{G}$ be the corresponding resolvent dencity and $(\mathcal{E}_D, \mathcal{F}_D)$ be its associated Dirichlet form on $L^2(D)$. Then

$$\mathcal{F}_D = H^1(D) = \{ u \in L^2(D) : |\nabla u| \in L^2(D) \}$$
$$\mathcal{E}_D(u, u) = \frac{1}{2} \mathbf{D}_D(u, u).$$

Hence $(\mathcal{F}_D, \mathcal{E}_D)$ is the *active reflected Dirichlet space* of the Dirichlet form $(\mathcal{E}_D^0, \mathcal{F}_D^0) = (\frac{1}{2}\mathbf{D}_D, H_0^1(D))$ of the *ABM* on *D* (cf. [CF12, §6.5(4°)]) and furthermore, for $u \in \mathcal{F}_D$ and $u_0 = u - \mathbf{H}_{\alpha} u \in \mathcal{F}_D^0$, $\mathcal{E}_{D,\alpha}(u, u) = \mathcal{E}_{D,\alpha}^0(u_0.u_0) + \mathbf{C}(\gamma u, \gamma u) + U_{\alpha}(\gamma u, \gamma u).$ (II) Minimum one: $\mathcal{F}_M = \{\text{constant functions}\}, \quad \mathcal{E}_M = \mathbf{C}$ The associated objects: $G_{\alpha}(x, y) = G_{\alpha}^0(x, y) + \frac{\mathbf{H}_{\alpha}\mathbf{1}_M(x)\mathbf{H}_{\alpha}\mathbf{1}_M(y)}{\alpha(\mathbf{1}_D, \mathbf{H}_{\alpha}\mathbf{1}_M)_{L^2(D)}} \in \mathbb{G},$ $\mathcal{F}_D = H_0^1(D) \oplus \text{constants}, \quad \mathcal{E}_D(u, u) = \frac{1}{2}\mathbf{D}_D(u, u)$

2 Active reflected Dirichlet space for a part process \mathbb{X}^0

Based on [CF12, Th.7.1.8]

E: locally compact separable metric space m: positive Radon measure on E with full support $(\mathcal{E}, \mathcal{F})$: regular Dirichlet form on $L^2(E; m)$ X: associated m-symmetric Hunt process on E (N, H): the Lévy system of X $J(dx, dy) = N(x, dy)\mu_H(dx), \quad \kappa(x, \{\delta\})\mu_H(dx)$ jumping and killing measures

F: a neaerly Borel measurable finely closed subset of E, $E_0 = E \setminus F$

Assume that F is non- \mathcal{E} -polar and that X admits no jump from E_0 to F: $J(E_0 \times F) = 0$

 $\mathbb{X}^0 = (X^0_t, \zeta^0, \mathbb{P}^0)$: the part process of \mathbb{X} on E_0 $(\mathcal{E}^0, \mathcal{F}^0)$: the Dirichlet form of \mathbb{X}^0 on $L^2(E_0, m_0)$, $m_0 = m\big|_{E_0}$ $(\mathcal{F}^{0, \text{ref}}_a, \mathcal{E}^{0, \text{ref}})$: the active reflected Dirichlet space of $(\mathcal{E}^0, \mathcal{F}^0)$

For a function φ on F, let $\mathbf{H}\varphi(x) = \mathbb{E}_x \left[\varphi(X_{\sigma_F}); \sigma_F < \infty\right]$, and $\mathbf{H}_{\alpha}\varphi(x) = \mathbb{E}_x \left[e^{-\alpha\sigma_F}\varphi(X_{\sigma_F}); \sigma_F < \infty\right], \ \alpha > 0.$ Define for $\varphi, \psi \in \mathcal{B}_+(F),$ $U_{\alpha}(\varphi, \psi) = \alpha \int_{F^0} \mathbf{H}\varphi(x)\mathbf{H}_{\alpha}\psi(x)m_0(dx)$ which increases in α .

Let $U(\varphi, \psi) = \lim_{\alpha \to \infty} U_{\alpha}(\varphi, \psi).$

 U_{α} and U are bimesures on F called Feller measures.

 $U(\varphi, \psi)$ coincides with the *energy functional* $L^0(\mathbf{H}\varphi, \mathbf{H}\psi)$ of the \mathbb{X}^0 -excessive functions $\mathbf{H}\varphi, \mathbf{H}\psi$ in Meyer's sense.

Further the supplementary Feller measure V is defined by $V(\varphi) = \lim_{\alpha \to \infty} \alpha \int_{E_0} \mathbf{H}_{\alpha} \varphi(x) (1 - \mathbf{H} \mathbf{1}(x)) m_0(dx), \ \varphi \in \mathcal{B}_+(F).$ According to [CF12, Th.5.7.6], U is rate of excursion of X from F to F and V is rate of no returning excursion of X from F. Finally the Douglas integral of a function φ on F is defined by

 $\mathbf{C}(\varphi,\varphi) = \frac{1}{2} \int_{F \times F} (\varphi(\xi) - \varphi(\eta))^2 U(d\xi, d\eta) + \int_F \varphi(\xi)^2 V(d\xi) (\leq \infty).$

Theorem 2.1 For any $u \in \mathcal{F}$, $u|_{E_0} \in \mathcal{F}_a^{0,\text{ref}}$ and

(a)
$$\mathcal{E}^{0,\mathrm{ref}}_{\alpha}(u|_{E_0}, u|_{E_0}) = \mathcal{E}^0(u_0, u_0) + \mathbf{C}(u|_F, u|_F) + U_{\alpha}(u|_F, u|_F),$$

where $u_0 = u - \mathbf{H}_{\alpha} u$. Furthermore

(**b**)
$$\mathcal{E}_{\alpha}(u, u) = \mathcal{E}_{\alpha}^{0.\operatorname{ref}}(u\big|_{E_{0}}, u\big|_{E_{0}})$$

+ $\frac{1}{2}\mu_{\langle \mathbf{H}u\rangle}^{c}(F) + \frac{1}{2}\int_{F\times F}(u(\xi) - u(\eta))^{2}J(d\xi, d\eta)$
+ $\int_{F}u(\xi)^{2}\kappa(d\xi) + \alpha\int_{F}u(\xi)^{2}m(d\xi)$

Every function in \mathcal{F} is represented by its quasi-continuous version. Since $u \in \mathcal{F} \subset \mathcal{F}_e$, $\mathbf{H}u \in \mathcal{F}_e$ and $\mu^c_{\langle \mathbf{H}u \rangle >}$ is well defined.

3 Unique extension of \mathbb{X}^0 when *F* is a finite set

E: locally compact separable metric space

m: positive Radon measure on E with full support

 $F = \{a_1, a_2, \cdots, a_N\}$: finite subset of E, $E_0 = E \setminus F$, $m_0 = m \big|_{E_0}$

 $\mathbb{X}^0 = (X^0_t, \zeta^0, \mathbb{P}^0_x)$: m_0 -symmetric Borel standard process on E_0 admitting no killing inside E_0 and

$$(**) \quad \mathbb{P}^{0}_{x}(\zeta^{0} < \infty, X^{0}_{\zeta^{0}-} = a_{i}) > 0, \ \forall x \in E_{0}, \ 1 \le i \le N$$

 $(\mathcal{E}^{0}, \mathcal{F}^{0}): \text{ Dirichlet form of } \mathbb{X}^{0} \text{ on } L^{2}(E_{0}, m_{0}) \\ u_{\alpha}^{(i)}(x) = \mathbb{E}_{x}^{0} \left[e^{-\alpha\zeta^{0}}; X_{\zeta^{0}-}^{0} = a_{i} \right], \quad x \in E_{0}, \ 1 \leq i \leq N. \\ \varphi^{(i)}(x) = \mathbb{P}_{x}^{0}(\zeta^{0} < \infty, X_{\zeta^{0}-}^{0} = a_{i}), \quad x \in E_{0}, \ 1 \leq i \leq N.$

A right process $\mathbb{X} = (X_t, \zeta, \mathbb{P}_x)$ on E is an N-points reflection of \mathbb{X}^0 $\xleftarrow{\text{def}}$

X is *m*-symmetric, admits no killing on F, admits no jump from F to F and X^0 is the part of X on E_0

Based on [CF12, Th. 7.7.3]

Let $(\mathcal{F}^{0,\text{ref}}, \mathcal{E}^{0,\text{ref}})$ be the *reflected Dirichlet space of* $(\mathcal{E}^0, \mathcal{F}^0)$ and $(\mathcal{F}^{0,\text{ref}}_a, \mathcal{E}^{0,\text{ref}})$ be the *active reflected Dirichlet space of* $(\mathcal{E}^0, \mathcal{F}^0)$

Theorem 3.1 An N-points reflection \mathbb{X} of \mathbb{X}^0 is unique.

Let $(\mathcal{E}, \mathcal{F})$ be the Dirichlet form of \mathbb{X} on $L^2(E; m)$. Then

(i) $\mathcal{F} \subset \mathcal{F}_a^{0,\mathrm{ref}}$. $\mathcal{F}_e \subset \mathcal{F}^{0,\mathrm{ref}}$. $\mathcal{E}(u,u) = \mathcal{E}^{0,\mathrm{ref}}(u,u)$, $\forall u \in \mathcal{F}_e$.

(ii) \mathcal{F} is a linear subspace of $\mathcal{F}_a^{0.\text{ref}}$ spanned by \mathcal{F}^0 and $u_{\alpha}^{(i)}$, $1 \leq i \leq N$.

(iii) \mathcal{F}_e is a linear subspace of $\mathcal{F}^{0.\text{ref}}$ spanned by \mathcal{F}_e^0 and $\varphi^{(i)}$, $1 \leq i \leq N$.

(iv) If \mathbb{X}^0 is a diffusion, then so is \mathbb{X} .

It is remarked that X then admits no jump from E_0 to F.

 $(\mathcal{E}, \mathcal{F})$ is quasi regular. By the transfer method, we may assume that it is a regular Dirichlet form on $L^2(E; m)$ and \mathbb{X} is the associated *m*symmetric Hunt process on *E*.

(i) then follows from (b) of preceding theorem by noticing that $\mu_{\langle \mathbf{H}u\rangle}^c$ charges no level set of $\mathbf{H}u$,

while (a) implies that boundary value of resolvent of X is uniquely determined by C and U_{α} , yielding uniqueness of X.

Fix *i* for $1 \leq i \leq N$. (ii) and (iii) follow from the existence of $v \in \mathcal{F}$ with $v(a_j) = \delta_{ij}, \ 1 \leq j \leq N$.

Take an open set $U \subset E$ with $a_i \in U$, $a_j \notin U$, $j \neq i$, and an *m*integrable strictly positive bounded continuous function f on E. Let $w(x) = \mathbb{E}_x \left[\int_0^\infty e^{-\alpha t} f(X_t) dt \right], \quad x \in E.$

 $v(x) = w(x)/w(a_i)$ is then such a function and $u_{\alpha}^{(i)}(x) = \mathbf{H}_{\alpha}v(x) \in \mathcal{F}, \quad \varphi^{(i)}(x) = \mathbf{H}v(x) \in \mathcal{F}_e$

Construction of *N*-points reflection of \mathbb{X}^0

One-point reflection [CF12, Th.7.5.6] and [FTa05]

Under conditions (A.1), (A.2) and (A.3) on \mathbb{X}^0 in [CF12, §7.5], piecing together excursions around a_1 by Poisson point process in Itõ's sense whose characteristic measure is determined by the entrance law ν_t from a_1 to E_0 defined by

 $\int_0^\infty \nu_t dt = \mathbb{P}^0(\zeta^0 < \infty, X^0_{\zeta^0 -} = a_1)m_0$

N-points reflection [CF12, Th.7.7.4]

Under conditions (M.1), (M.2) and (M.3) on \mathbb{X}^0 in [CF12, §7.7], repeat the above procedure inductively.

4 Several applications

4.1 Walsh's Brownian motion

based on [CF15]

 $E = \mathbb{R}^2, E_0 = \mathbb{R}^2 \setminus \{\mathbf{0}\}.$

J.B.Walsh [W78] heuristically described the motion X starting at $x \in E_0$ as the 1-dimensional BM on a ray connecting x and **0**, upon hitting **0**, it reflects in a random direction θ with a given distribution η .

 $E_0 = \{(r, \theta) : r \in (0, \infty) \ \theta \in [0, 2\pi)\}.$ $m = \lambda \times \eta$ for the Lebesgue measure λ on $(0, \infty)$. m is extended to E by setting $m(\mathbf{0}) = \mathbf{0}$ p_t^0 : the transition function of the ABM on $(0, \infty)$

The transition function P_t^0 of \mathbb{X}^0 is then given by $(P_t^0 f)(r, \theta) = (p_t^0 f_{\theta})(r)$ for $f_{\theta}(r) = f(r, \theta)$, which is *m*-symmetric because p_t^0 is λ -symmetric.

Define Walsh's Brownian motion X on E to be the one-point reflection of the *m*-symmetric diffusion \mathbb{X}^0 . It can be constructed from \mathbb{X}^0 by means of the \mathbb{X}^0 -entrance law $\nu_t(dx) = \frac{1}{(2\pi t^3)^{1/2}} r e^{-t^2/(2t)} dr \cdot \eta(d\theta)$ because \mathbb{X}^0 satisfies (A.1),(A.2),(A.3).

Barlow,Pitman and Yor [BPY89] constructed a Feller semi-group on E for an extension of \mathbb{X}^0 , which can be verified to be *m*-symmetric and consequently corresponds to Walsh's BM.

4.2 Brownian motion with darning(BMD)

based on [CFM23]

 $G \subset \mathbb{C}$: domain such that either $G = \mathbb{C}$ or $\mathbb{C} \setminus G$ is continuum (closed connected, containing at least two points)

 $D = G \setminus K, \quad K = \bigcup_{i=1}^{N} A_i$: (N + 1)-connected domain A_i are mutually disjoint compact continua.

 $D^* = D \cup K^*$, $K^* = \{a_i^* : 1 \leq i \leq N\}$: quotient topologocal space obtained from G by rendering each set A_i into singleton a_i^*

m: Lebesgue measure on D being extended to D^* by setting $m(a_i^*)=0,\ 1\leq i\leq N$

X: Brownian motion with darning (BMD) \iff

 $m\mbox{-symmetric}$ diffusion on D^* admitting no killing on K^* whose part process on D is identical in law with the ABM on D

ABM \mathbb{X}^0 on D satisfies condition (**) due to the specific properties of harmonic and α -harmonic functions on \mathbb{C} ([CFM23, Lemmas 1.1.3 and 1.3.1]).

Hence BMD X can be regarded as the unique N-points reflection of \mathbb{X}^0 from D to D^*

By the above theorem, the Dirichlet form $(\mathcal{E}^*, \mathcal{F}^*)$ of BMD on $L^2(D^*; m)$ equals the linear subspace of $H^1(D)$ spanned by $H^1_0(D)$ and $\{u^{(i)}_{\alpha}, 1 \leq i \leq N\}$.

 $(\mathcal{E}^*, \mathcal{F}^*)$ can be verified to be strongly local and regular. Further the associated capacity of each point a_i^* is positive.

So, by refining the associated diffusion, we can construct BMD on D^* starting at every point of D^* .

BMD is a key to extend the *SLE theory* from simply connected domains: because the restriction to D of any BMD-harmonic function v admits an analytic function f on D with $\Im f = v$ up to an additional real constant.

4.3 Reflections at infinity of a time changed RBM

based on [CF18]

For a domain $D \subset \mathbb{R}^d$ with $d \geq 3$, consider the Dirichlet form $(***) \quad (\mathcal{E}, \mathcal{F}) = (\frac{1}{2}\mathbf{D}_D, H^1(D)) \text{ on } L^2(D).$ $H^1_e(D) \text{ and } BL(D) = \{u \in L^2_{loc}(D) : |\nabla| \in L^2(D)\}$ are the extended Dirichlet space and the reflected Dirichlet space of (***), respectively, \mathbf{D}_D extends to both spaces.

Let $\mathcal{H}^* = \{ u \in \mathrm{BL}(D) : \mathbf{D}_D(u, v) = 0 \ \forall v \in H^1_e(D) \}$

D is called a *Liouville domain* if (***) is transient and dim(\mathcal{H}^*) = 1.

An example of Liouville domain is the truncated infinite cone defined by

 $C_{A,a} = \{(r, \omega) : r > a, \ \omega \in A\} \subset \mathbb{R}^d$ for a > 0 and a connected open set $A \subset S^{d-1}$ with Lipschitz boundary.

Fix a domain $D \subset \mathbb{R}^d$ for $d \geq 3$ with Lipschitz boundary satisfying

$$D \setminus \overline{B_r(\mathbf{0})} = \bigcup_{j=1}^N C_j$$

for some r > 0 where C_1, \dots, C_N are Liouville domains with Lipschitz boundaries such that $\overline{C_1}, \dots, \overline{C_N}$ are mutually disjoint.

Owing to [FTo96], there exists a strong Feller conservative diffusion process $\mathbb{Z} = (Z_t, \mathbb{Q}_x)$ on \overline{D} which is a refined version of the RBM associated with the regular Dirichlet form (***) on $L^2(\overline{D})$.

As $D \supset C_1$, the Dirichlet form (***) for D is transient. Hence it follows from [CF12, Th.3.5.2] that

 $\mathbb{Q}_x(\lim_{t\to\infty} Z_t = \partial) = 1, \quad \forall x \in \overline{D}.$

Define

 $\begin{array}{ll} \partial_j: \quad \text{point at infinity of } \overline{C_j}, \quad 1 \leq j \leq N \\ F = \{\partial_1, \cdots, \partial_N\}, \quad \overline{D}^* = \overline{D} \cup F \quad \text{compact Hausdorff space} \\ \text{Let} \quad \varphi_j(x) = \mathbb{Q}_x \left(\lim_{t \to \infty} Z_t = \partial_j\right) \ x \in \overline{D}, \ 1 \leq j \leq N., \text{ Then} \\ \varphi_j(x) > 0, \ 1 \leq j \leq N, \quad \sum_{j=1}^N \varphi_j(x) = 1, \quad \forall x \in \overline{D}. \end{array}$

Take a strictly positive bounded integrable function f on \overline{D} and define $A_t = \int_0^t f(Z_s) ds, \quad t \ge 0,$, which is a PCAF of \mathbb{Z} and $\mathbb{Q}_x(A_\infty < \infty) = 1, \quad \forall x \in \overline{D}.$

Let $\mathbb{X} = (X_t, \zeta, \mathbb{P}_x)$ be the time changed process of \mathbb{Z} by A_t . Then $\mathbb{P}_x(\zeta < \infty) = \mathbb{Q}_x(A_\infty < \infty) = 1, \quad \mathbb{P}_x(\zeta < \infty, X_{\zeta-} = \partial_j) = \varphi_j(x) > 0,$ for any $x \in \overline{D}, \ 1 \le j \le N.$ X is symmetric with respect to m(dx) = f(x)dx. The Dirichlet form $(\mathcal{E}^{\mathbb{X}}, \mathcal{F}^{\mathbb{X}})$ of X on $L^2(\overline{D}; m)$ is given by

$$\mathcal{E}^{\mathbb{X}} = \frac{1}{2} \mathbf{D}_D. \quad \mathcal{F}^{\mathbb{X}} = H^1_e(D) \cap L^2(\overline{D}; m).$$

Extend m from \overline{D} to \overline{D}^* by setting $m(\{\partial_1, \cdots, \partial_N\}) = 0$.

N-points reflection \mathbb{X}^* of \mathbb{X} from \overline{D} to \overline{D}^* uniquely exists because \mathbb{X} satisfies (M.1), (M.2), (M.3).

 \mathbb{X}^* is conservative.

Let $(\mathcal{E}^*, \mathcal{F}^*)$ and \mathcal{F}_e^* be the Dirichlet form of \mathbb{X}^* on $L^2(\overline{D}^*, m)$ and its extended Dirichlet space. Then

$$\mathcal{F}_e^* = H_0^1(D) \oplus \{\sum_{j=1}^N c_j \varphi_j : c_j \in \mathbb{R}\} \subset \mathrm{BL}(D), \\ \mathcal{E}^*(u, u) = \frac{1}{2} \mathbf{D}_D(u, u) \quad u \in \mathcal{F}_e^*.$$

4.4 All possible symmetric conservative diffusion extensions of the time changed RBM X on \overline{D}

A map Π from the boundary set $F = \{\partial_1, \dots, \partial_N\}$ onto a finite set $\hat{F} = \{\hat{\partial}_1, \dots, \hat{\partial}_\ell\}$ with $\ell \leq N$ is called a *partition of* F. We let $\overline{D}^{\Pi,*} = \overline{D} \cup \hat{F}$. Π is extended from F to \overline{D}^* by setting $\Pi x = x, x \in \overline{D}$, and $\overline{D}^{\Pi,*}$ is equipped with the quotient topology by Π .

 $\overline{D}^{\Pi.*}$ is a compact Hausdorff space and may be called an ℓ -point compactification of \overline{D} obtained from \overline{D}^* by identifying the points in the set $\Pi^{-1}\partial_i \subset F$ as a single point $\hat{\partial}_i$ for each $1 \leq i \leq \ell$.

The approaching probabilities of the RBM $\mathbb{Z} = (Z_t, \mathbb{Q}_x)$ on \overline{D} to $\hat{\partial}_i \in \hat{F}$ are defined by $\hat{\varphi}_i(x) = \sum_{j \in \Pi^{-1} \hat{\partial}_i} \varphi_j(x), \quad x \in \overline{D}, \ 1 \leq i \leq \ell.$

The time changed process $\mathbb{X} = (X_t, \zeta, \mathbb{P}_x)$ of the RBM \mathbb{Z} on \overline{D} is defined as above.

The measure m on \overline{D} is extended to $\overline{D}^{\Pi,*}$ by seeting $m(\hat{F}) = 0$.

Just as in the above, there exists then an *m*-symmetric conservative diffusion extension $\mathbb{X}^{\Pi,*}$ of \mathbb{X} from \overline{D} to $\overline{D}^{\Pi,*}$ with the following Dirichlet form $(\mathcal{E}^{\Pi,*}, \mathcal{F}^{\Pi,*})$ on $L^2(\overline{D}^{\Pi,*}; m) (= L^2(D;m)).$

Let $(\mathcal{E}^*, \mathcal{F}^*)$ and \mathcal{F}_e^* be the Dirichlet form of \mathbb{X}^* on $L^2(\overline{D}^*, m)$ and its extended Dirichlet space. Then

$$\mathcal{F}_e^{\Pi,*} = H_0^1(D) \oplus \{\sum_{i=1}^{\ell} c_j \hat{\varphi}_i : c_i \in \mathbb{R}\} \subset \mathrm{BL}(D), \\ \mathcal{E}^{\Pi,*}(u,u) = \frac{1}{2} \mathbf{D}_D(u,u) \quad u \in \mathcal{F}_e^{\Pi,*}.$$

Theorem 4.1 [CF18, Th.5.1] $\{\mathbb{X}^{\Pi,*}: \Pi \text{ is a partition of } F\}$ exhausts all possible *m*-symmetric conservative diffusion extensions of the time changed RBM \mathbb{X} on \overline{D} .

The extended Dirichlet space of $\mathbb{X}^{\Pi,*}$ does not depend on the measure m(dx) = f(x)dx taking part in the time change of the RBM \mathbb{Z} on \overline{D} .

An analogous theorem holds for the reflecting diffusion process constructed by [FTo96].

5 About symmetry

(I) One-dimensional diffusions [F14]

 \mathbb{X}^0 : One dimensional minimal diffusion on $I = (r_1, r_2)$ with canonical (speed) measure m. Then \mathbb{X}^0 is m-symmetric. The general boundary conditions for it are very well formulated in terms of Dirichlet forms including much quicker construction of associated diffusions.

(II) Duality preserving extensions [CF07]

 \mathbb{X} and $\hat{\mathbb{X}}$ are in weak duality with respect to a measure m (in *m*-duality) $\stackrel{\text{def}}{\longleftrightarrow} \int G_{\alpha} f \cdot g \ dm = \int f \cdot \hat{G}_{\alpha} g \ dm, \quad f, g \ge 0.$

E locally compact separable metric space, $F = \{a_1, \cdots, a_N\} \subset E, E_0 = E \setminus F$

 \mathbb{X}^0 , \mathbb{X}^0 : standard processes on E_0 in weak duality w.r.to a measure m_0 on E_0 , both being approachable to each a_i .

Extend m_0 to m on E by setting m(F) = 0.

Look for Markovian extensions X, \hat{X} of X^0 , \hat{X}^0 to E which are in *m*-duality.

Let X, \hat{X} be standard processes on E whose parts on E_0 are X^0 , \hat{X}^0 , admitting no jump from F to F, nor from E_0 to F, but admitting killing on F with killing measure κ_i , $\hat{\kappa}_i$ at a_i , $1 \leq i \leq N$. It is possible to construct such \mathbb{X} and $\hat{\mathbb{X}}$ under some conditions on \mathbb{X}^0 , $\hat{\mathbb{X}}^0$.

 \mathbb{X} and $\hat{\mathbb{X}}$ are in *m*-duality if and only if

$$\sum_{k \neq i} U_{ik} + V_i + \kappa_i = \sum_{k \neq i} U_{ki} + \hat{V}_i + \hat{\kappa}_i, \quad 1 \le i \le N,$$

where U_{ij} , V_i (resp. \hat{V}_i) are Feller measures of \mathbb{X}^0 (resp. $\hat{\mathbb{X}}^0$).

When \mathbb{X}^0 is *m*-symmetric, $U_{ik} = U_{ki}$, $V_i = \hat{V}_i$, $\kappa_i = \hat{\kappa}_i$ so that the above identity holds with $\kappa_i = 0$.

When \mathbb{X}^0 is non-symmetric, one needs to allow suitable killings on the boundary in order to preserve the *m*-duality in the extention.

References

- [BPY89] M.T.Barlow, J.W.Pitman and M.Yor, On Walsh's Brownian motion, in Seminaire de Probabilités, 23, Lecture Notes in Math. vol.1372, Springer, 1989, pp 25-293
- [CF07] Z.-Q. Chen and M. Fukushima, On Feller's boundary prolem for Markov processes in weak duality, J. Func. Anal. 252(2007), 289-316
- [CF09] Z.-Q. Chen and M. Fukushima, On unique extension of time changed reflecting Brownian motions, Ann.Inst.Henri Poincare, Probab. statist., 45(2009), 861-875 f
- [CF12] Z.-Q. Chen and M. Fukushima, Symmetric Markov Processes, Time Change, and Boundary Theory, Princeton University Press, Princeton and Oxford, 2012
- [CF15] Z.-Q. Chen and M. Fukushima, One point reflections, Stochastic Processes Appl. 125(2015), 1368-1393
- [CF18] Z.-Q. Chen and M. Fukushima, Reflection at infinity of time changed RBMs on a domain with Liouville branches, J. Math. Soc. Japan 70(2018), 833-852
- [CFM23] Z.-Q.Chen, M.Fukushima and T.Murayama, Stochastic Komatu-Loewner Evolutions, World Scientific, 2023
- [Do62] J.L.Doob, Boundary properties of functions with finite Dirichlet integrals, Ann.Inst.Fourier, **12**(1962), 573-621
- [Dy65] E,B, Dynkin, Markov Processes, vol.1, 3, Springer, 1965
- [Fe57] W.Feller, On boundaries and lateral conditions for the Kolmogorov differential equations, Ann.Math.55(1957), 527-570

- [F64] M. Fukushima, On Feller's kernel and the Dirichlet norm, Nagoya Math. J., 24(1964), 167-175
- [F67] M. Fukushima, A construction of reflecting barrier Brownian motions for bounded domains, Osaka J. Math.4(1967), 183-215
- [F69] M. Fukushima, On boundary conditions for multi-dimensional Brownian motions with symmetric resolvent densities, J. Math. Soc. Japan 21(1969), 58-93
- [F80] M. Fukushima, Dirichlet Forms and Markov Processes, North Holland, Amsterdom-New York/ Kodansha, Tokyo, 1980
- [F10] M. Fukushima, From one-dimensional diffusions to symmetric Markov processes, Stochastic Process Appl. 120(2010), 590-604
- [F14] M. Fukushima, On general boundary conditions for one-dimensional diffusions with symmetry, J.Math.Soc.Japan 66(2014), 289-316
- [F18] M.Fukushima, Liouville property of harmonic functions with finite energy for Dirichlet forms, in: Stochastic Partial Differential Equations and Relaed Fields A.Eberle et al. (eds.), Springer Proceedings in Mathematics and Statistics, Vol 229, 2018, pp25-42
- [F20] M. Fukushima, Komatu-Loewner differential equations, SUGAKU Expositions, 33(2020), AMS, 239-260
- [FOT11] M. Fukushima, Y. Oshima and M.Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter, Berlin, 1994 Second revised and extended editions, de Gruyter, Berlin, 2011
- [FTa05] M. Fukushima and H. Tanaka, Poisson point processes attached to symmetric diffusions, Ann.Inst. Henri-Poincaré Probab. Stat., 41(2005), 419-459
- [FTo96], M.Fukushima and M.Tomisaki, Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, *Probab. Theory Relat. Fields* 106(1996), 521-557
- [GT77] D. Gilbarg and N.S. Trudinger, *Elliptic Partial Differential Equations of Second* Order, Springer 1977
- [I60] K. Itô, Lecture on Stochastic Processes, Tata Institute of Fundamental Research, Bombay, 1965
- [IM66] K. Itô and H.P. McKean, Jr., Diffusion Processes and their Sample Paths, Springer, 1965, Springer's Classics in Mathematics Series, 1996
- [S74] M.L. Silverstein, Symmetric Markov Processes, Lecture Notes in Math. 426, Springer, Berlin-Heidelberg-New York, 1974
- [W78] J.B.Walsh, A diffusion with discontinous local time, Asterisque 52-53(1978), 37-45