On boundary problems for symmetric Markov processes

Masatoshi Fukushima
Probability Seminar at Kansai Univ.

October 21, 2023

Contents

1 Symmetric Markovian extensions of ABM: An analytic characterization
2 Active reflected Dirichlet space for a part process $\mathbb{X}^{0} \quad 5$
3 Unique extension of \mathbb{X}^{0} when F is a finite set 6
4 Several applications 8
4.1 Walsh's Brownian motion . 8
4.2 Brownian motion with darning(BMD) . 8
4.3 Reflections at infinity of a time changed RBM . 9
4.4 All possible symmetric conservative diffusion extensions of the time changed RBM \mathbb{X} on \bar{D}11
5 About symmetry 12

1 Symmetric Markovian extensions of ABM: An analytic characterization

Based on [F69]
D bounded domain of \mathbb{R}^{n}
$G_{\alpha}(x, y), \alpha>0, x, y \in D, x \neq y \quad$ resolvent density on $D \stackrel{\text { def }}{\Longleftrightarrow}$
$G_{\alpha}(x, y) \geq 0, \alpha \int_{D} G_{\alpha}(x, z) d z \leq 1$.
$G_{\alpha}(x, y)-G_{\beta}(x, y)+(\alpha-\beta) \int_{D} G_{\alpha}(x, z) G_{\beta}(z, y) d z=0, \alpha, \beta>0$.
It is called symmetric and conservative if
$G_{\alpha}(x, y)=G_{\alpha}(y, x), \quad \alpha \int_{D} G_{\alpha}(x . z) d z=1$

Let $G_{\alpha}^{0}(x, y)$ be the resolvent density of the absorbed Brownian motion (ABM) \mathbb{X}^{0} on D

A function u on D is called α-harmonic if $\quad\left(\alpha-\frac{1}{2} \Delta\right) u=0$ on D
Let \mathbb{G} be the family of all symmetric conservative resolvent densities $G_{\alpha}(x, y)$ on D satisfying
(G.a) $\quad G_{\alpha}(x, y)=G_{\alpha}^{0}(x, y)+R_{\alpha}(x, y)$ where $R_{\alpha}(x, y)$ is non-negative and α-harmonic in $x \in D$,
(G.b) $\sup _{x \in K, y \in D} R_{\alpha}(x, y)<\infty$ for any compact set $K \subset D$

The first assertion of the next propsition is a conterpart of [F67, Lemma 2.1].

Proposition 1.1 (i) Any non-negative α-harmonic function u on D admits the expression
$(*) \quad u(x)=\mathbb{E}_{x}\left[e^{-\alpha \tau_{B}} u\left(X_{\tau_{B}}\right)\right], \quad x \in B$,
for any ball B with $\bar{B} \subset D$ in terms of the n-dimensional Brownian motion $\left(X_{t}, \mathbf{P}_{x}\right)$.
(ii) For any $G_{\alpha}(x, y) \in \mathbb{G}, G_{\alpha} f(x)=\int_{D} G_{\alpha}(x, y) f(y) d y, x \in D$, is not only a symmetric contraction resolvent on $L^{2}(D)$ but also a strongly continuous resolvent.

Proof (i) The retriction to B of an α-harmonic function u on D is the unique slution of $\left(u-\frac{1}{2} \Delta\right) u=0$ on B with continuous boundary function $\left.u\right|_{\partial B}(\mathrm{cf}$. [GT77, Cor.6.0]).

On the other hand, we can see just as in the proof of [CF12, Lemma 3,1] that the function on the ball B defined by the right hand side of $\left(^{*}\right)$ also has this property by noting that the restriction to B of any α-excessive function on D is α-excesive relative to the ABM on B according to [Dy65, Th 12.9, Th.12.9].
(ii) Since G_{α}^{0} has the stated properties, it is enough to show that $\lim _{\alpha \rightarrow \infty} \alpha\left\|R_{\alpha} f\right\|_{L^{2}(D)}=0$ for any $f \in L^{2}(D)$. For any $\varepsilon>0$, take $g \in C_{c}(D)$ with $\|f-g\|_{L^{2}}<\varepsilon$. We then readily get $\alpha\left\|R_{\alpha} f\right\|_{L^{2}} \leq \varepsilon+\alpha\left\|R_{\alpha} g\right\|_{L^{2}}$

By using the α-harmonicity of $R_{\alpha}(x, y)$ in $x \in D$ and its expression (*), we see as in the proof of [F67, Lemma 2.9] that $\lim _{\alpha \rightarrow \infty} \alpha\left|R_{\alpha} g(x)\right|=0$ for any $x \in D$. Since $\alpha\left\|R_{\alpha} g\right\|_{\infty} \leq\|g\|_{\infty}$, the second term of the right
hand side of the preceding inequality tends to 0 as $\alpha \rightarrow \infty$ by the bounded convergence theorem.

Remark 1.2 Assume that $n \geq 3$. and let $g(x, y)$ be the Green function for the domain $D \subset \mathbb{R}^{n}$. Denote $G_{0+}^{0}(x, y)$ by $G^{0}(x, y)$. Then $g(x, y)=$ $\frac{q}{2} G^{0}(x, y) \quad x, y \in D$, for $q=(n-2) \sigma_{n}$ where σ_{n} is the unit ball boundary area: σ_{n} equals $\pi^{\frac{n}{2}} n /\left(\frac{n}{2}\right)$! when n is even and $2^{\frac{n+1}{2}} \pi^{\frac{n-1}{2}} /\{1 \cdot 3 \cdot 5 \cdots(n-2)\}$ when n is odd.

According to K.Itô $[\mathrm{I} 60, \S 3.5], G^{0}(x, y)=\frac{2}{C} g(x, y)$ for $C=4 \pi^{\frac{n}{2}} / \Gamma\left(\frac{n}{2}-1\right)$, and we readily get $C=q$.
M : Martin boundary of $D . \quad \mu$: harmonic measure on M relative to a reference point $x_{0} \in D$
$K(x, \xi), x \in D, \xi \in M$: Martin kernel:
$K(x, \xi)=\lim _{y \rightarrow \xi} \frac{g(x, y)}{g\left(x_{0}, y\right)}=\lim _{y \rightarrow \xi} \frac{G^{0}(x, y)}{G^{0}\left(x_{0}, y\right)}$.
α-order Martin kernel is then defined by $K_{\alpha}(x, \xi)=K(x, \xi)-\alpha \int_{D} G_{\alpha}^{0}(x, z) K(z, \xi) d z$

For a function φ on M, let
$\mathbf{H} \varphi(x)=\int_{M} K(x, \xi) \varphi(\xi) \mu(d \xi), \mathbf{H}_{\alpha} \varphi(x)=\int_{M} K_{\alpha}(x, \xi) \varphi(\xi) \mu(d \xi), x \in D$
α-order Feller kernel is defined by

$$
U_{\alpha}(\xi, \eta)=\alpha \int_{D} K(z, \xi) K_{\alpha}(z . \eta) d z, \quad \xi, \eta \in M,
$$

which is increasing in α. Feller kernel is defined by

$$
U(\xi, \eta)=\lim _{\alpha \rightarrow \infty} U_{\alpha}(\xi, \eta), \quad \xi, \eta \in M
$$

For a function φ in M, the Douglas integral is defined by

$$
\mathbf{C}(\varphi, \varphi)=\frac{1}{2} \int_{M \times M}(\varphi(\xi)-\varphi(\eta))^{2} U(\xi, \eta) \mu(d \xi) \mu(d \eta)
$$

Define $\mathbb{H}_{M}=\left\{\varphi \in L^{2}\left(M ; \mu_{0}\right): \mathbb{C}(\varphi, \varphi)<\infty\right\}$ where $\mu_{0}(d \xi)=U_{1} 1(\xi) \mu(d \xi)$.
Proposition 1.3 If a function u on D is harmonic with finite Dirichlet integral $\mathbf{D}_{D}(u, u)$, then u admits fine limit $\varphi(\xi)=\gamma u(\xi)$ for μ-a.e. $\xi \in M$, $u=\mathbf{H} \varphi$ and

$$
\frac{1}{2} \mathbf{D}_{D}(u, u)=\mathbf{C}(\varphi, \varphi) .
$$

This was established by J.L.Doob [Do62, (7.7)] with $\frac{q}{2} \Theta(\xi, \eta)$ for the Naim kernel
$\Theta(\xi, \eta)=\lim _{x \rightarrow \xi, y \rightarrow \eta} \frac{g(x, y)}{g\left(x_{0}, x\right) g\left(x_{0}, y\right)}=\frac{2}{q} \lim _{x \rightarrow \xi, y \rightarrow \eta} \frac{K(x, y)}{G^{0}\left(x_{0}, x\right)}$ in place of the Feller kernel U.
[F64] then proved that $\frac{q}{2} \Theta=U$.
The notion U was introduced by W.Feller [Fe57] in his seminal study of boundary condition for a Markov process on a denumerable state space with finite number of boundary points.

Theorem 1.4 There is one-to-one correspondence between the family \mathbb{G} of resolvent deisities on D and the family of Dirichlet forms $\left(\mathcal{E}_{M}, \mathcal{F}_{M}\right)$ on $L^{2}\left(M ; \mu_{0}\right)$ such that
$\mathcal{F}_{M} \subset \mathbb{H}_{M}, \quad \mathcal{E}_{M}(\varphi, \varphi) \geq \mathbf{C}(\varphi, \varphi), \quad \forall \varphi \in \mathcal{F}_{M}, \quad \mathcal{E}_{M}(1,1)=0$.
For each $G_{\alpha}(x, y) \in \mathbb{G}$, the corresponding $\left(\mathcal{E}_{M} \cdot \mathcal{F}_{M}\right)$ is defined as follows:
Let $\left(\mathcal{E}_{D}, \mathcal{F}_{D}\right)$ be its associated Dirichlet form on $L^{2}(D)$ which is well defined due to Prposition 1.1. Define $\mathcal{H}_{\alpha}=\left\{u \in \mathcal{F}_{D}: u\right.$ is α-harmonic $\}$.
$u \in \mathcal{H}_{\alpha}$ admits the fine boundary function $\gamma u \in L^{2}\left(M ; \mu_{0}\right)$ and $u=\mathbf{H}_{\alpha} \gamma u$.
Let
$\mathcal{F}_{M}=\left\{\gamma u: u \in \mathcal{H}_{\alpha}\right\}$,
$\mathcal{E}_{M}(\varphi, \varphi)=\mathcal{E}_{\alpha}\left(\mathbf{H}_{\alpha} \varphi, \mathbf{H}_{\alpha} \varphi\right)-U_{\alpha}(\varphi, \varphi), \varphi \in \mathcal{F}_{M}$.
Then $\left(\mathcal{E}_{M}, \mathcal{F}_{M}\right)$ is independent of $\alpha>0$ and satisfies the stated properties.

Maximum and minimum ones among $\left(\mathcal{F}_{M}, \mathcal{E}_{M}\right)$ in a semi-order (cf. [CF12, Def 6.6.8])
(I) Maximum one: $\quad \mathcal{F}_{M}=\mathbb{H}_{M}, \quad \mathcal{E}_{M}=\mathbf{C}$

Let $G_{\alpha}(x, y) \in \mathbb{G}$ be the corresponding resolvent dencity and $\left(\mathcal{E}_{D}, \mathcal{F}_{D}\right)$ be its associated Dirichlet form on $L^{2}(D)$. Then

$$
\begin{aligned}
& \mathcal{F}_{D}=H^{1}(D)=\left\{u \in L^{2}(D):|\nabla u| \in L^{2}(D)\right\} \\
& \mathcal{E}_{D}(u, u)=\frac{1}{2} \mathbf{D}_{D}(u, u) .
\end{aligned}
$$

Hence $\left(\mathcal{F}_{D}, \mathcal{E}_{D}\right)$ is the active reflected Dirichlet space of the Dirichlet form $\left(\mathcal{E}_{D}^{0}, \mathcal{F}_{D}^{0}\right)=\left(\frac{1}{2} \mathbf{D}_{D}, H_{0}^{1}(D)\right)$ of the $A B M$ on $D\left(\right.$ cf. $\left.\left[\mathrm{CF} 12, \S 6.5\left(4^{\circ}\right)\right]\right)$
and furthermore, for $u \in \mathcal{F}_{D}$ and $u_{0}=u-\mathbf{H}_{\alpha} u \in \mathcal{F}_{D}^{0}$,
$\mathcal{E}_{D, \alpha}(u, u)=\mathcal{E}_{D, \alpha}^{0}\left(u_{0} \cdot u_{0}\right)+\mathbf{C}(\gamma u, \gamma u)+U_{\alpha}(\gamma u, \gamma u)$.
(II) Minimum one: $\quad \mathcal{F}_{M}=\{$ constant functions $\}, \quad \mathcal{E}_{M}=\mathbf{C}$

The associated objects:
$G_{\alpha}(x, y)=G_{\alpha}^{0}(x, y)+\frac{\mathbf{H}_{\alpha} 1_{M}(x) \mathbf{H}_{\alpha} 1_{M}(y)}{\alpha\left(1_{D}, \mathbf{H}_{\alpha} 1_{M}\right)_{L^{2}(D)}} \in \mathbb{G}$,
$\mathcal{F}_{D}=H_{0}^{1}(D) \oplus$ constants,$\quad \mathcal{E}_{D}(u, u)=\frac{1}{2} \mathbf{D}_{D}(u, u)$

2 Active reflected Dirichlet space for a part process \mathbb{X}^{0}

Based on [CF12, Th.7.1.8]
E : locally compact separable metric space
m : positive Radon measure on E with full support
$(\mathcal{E}, \mathcal{F})$: regular Dirichlet form on $L^{2}(E ; m)$
\mathbb{X} : associated m-symmetric Hunt process on E
(N, H) : the Lévy system of \mathbb{X}
$J(d x, d y)=N(x, d y) \mu_{H}(d x), \quad \kappa(x,\{\delta\}) \mu_{H}(d x) \quad$ jumping and killing measures
F : a neaerly Borel measurable finely closed subset of $E, \quad E_{0}=E \backslash F$
Assume that F is non- \mathcal{E}-polar and that \mathbb{X} admits no jump from E_{0} to
$F: J\left(E_{0} \times F\right)=0$
$\mathbb{X}^{0}=\left(X_{t}^{0}, \zeta^{0}, \mathbb{P}^{0}\right)$: the part process of \mathbb{X} on E_{0}
$\left(\mathcal{E}^{0}, \mathcal{F}^{0}\right)$: the Dirichlet form of \mathbb{X}^{0} on $L^{2}\left(E_{0}, m_{0}\right), m_{0}=\left.m\right|_{E_{0}}$
$\left(\mathcal{F}_{a}^{0, \text { ref }}, \mathcal{E}^{0, \text { ref }}\right)$: the active reflected Dirichlet space of $\left(\mathcal{E}^{0}, \mathcal{F}^{0}\right)$
For a function φ on F, let $\quad \mathbf{H} \varphi(x)=\mathbb{E}_{x}\left[\varphi\left(X_{\sigma_{F}}\right) ; \sigma_{F}<\infty\right]$, and
$\mathbf{H}_{\alpha} \varphi(x)=\mathbb{E}_{x}\left[e^{-\alpha \sigma_{F}} \varphi\left(X_{\sigma_{F}}\right) ; \sigma_{F}<\infty\right], \alpha>0$.
Define for $\varphi, \psi \in \mathcal{B}_{+}(F)$,
$U_{\alpha}(\varphi, \psi)=\alpha \int_{E^{0}} \mathbf{H} \varphi(x) \mathbf{H}_{\alpha} \psi(x) m_{0}(d x)$ which increases in α.
Let $U(\varphi, \psi)=\lim _{\alpha \rightarrow \infty} U_{\alpha}(\varphi, \psi)$.
U_{α} and U are bimesures on F called Feller measures.
$U(\varphi, \psi)$ coincides with the energy functional $L^{0}(\mathbf{H} \varphi, \mathbf{H} \psi)$ of the \mathbb{X}^{0}-excessive functions $\mathbf{H} \varphi, \mathbf{H} \psi$ in Meyer's sense.

Further the supplementary Feller measure V is defined by $V(\varphi)=\lim _{\alpha \rightarrow \infty} \alpha \int_{E_{0}} \mathbf{H}_{\alpha} \varphi(x)(1-\mathbf{H} 1(x)) m_{0}(d x), \varphi \in \mathcal{B}_{+}(F)$.
According to [CF12, Th.5.7.6], U is rate of excursion of \mathbb{X} from F to F and V is rate of no returning excursion of \mathbb{X} from F.
Finally the Douglas integral of a function φ on F is defined by
$\mathbf{C}(\varphi, \varphi)=\frac{1}{2} \int_{F \times F}(\varphi(\xi)-\varphi(\eta))^{2} U(d \xi, d \eta)+\int_{F} \varphi(\xi)^{2} V(d \xi)(\leq \infty)$.
Theorem 2.1 For any $u \in \mathcal{F},\left.\quad u\right|_{E_{0}} \in \mathcal{F}_{a}^{0, \text { ref }} \quad$ and

$$
\text { (a) } \mathcal{E}_{\alpha}^{0, \text { ref }}\left(\left.u\right|_{E_{0}},\left.u\right|_{E_{0}}\right)=\mathcal{E}^{0}\left(u_{0}, u_{0}\right)+\mathbf{C}\left(\left.u\right|_{F},\left.u\right|_{F}\right)+U_{\alpha}\left(\left.u\right|_{F},\left.u\right|_{F}\right),
$$

where $u_{0}=u-\mathbf{H}_{\alpha} u$. Furthermore

$$
\text { (b) } \begin{aligned}
\mathcal{E}_{\alpha}(u, u) & =\mathcal{E}_{\alpha}^{0 . \text { ref }}\left(\left.u\right|_{E_{0}},\left.u\right|_{E_{0}}\right) \\
& +\frac{1}{2} \mu_{\langle\mathbf{H} u\rangle}^{c}(F)+\frac{1}{2} \int_{F \times F}(u(\xi)-u(\eta))^{2} J(d \xi, d \eta) \\
& +\int_{F} u(\xi)^{2} \kappa(d \xi)+\alpha \int_{F} u(\xi)^{2} m(d \xi)
\end{aligned}
$$

Every function in \mathcal{F} is represented by its quasi-continuous version.
Since $u \in \mathcal{F} \subset \mathcal{F}_{e}, \mathbf{H} u \in \mathcal{F}_{e}$ and $\mu_{\langle\mathbf{H} u\rangle\rangle}^{c}$ is well defined.

3 Unique extension of \mathbb{X}^{0} when F is a finite set

E : locally compact separable metric space
m : positive Radon measure on E with full support
$F=\left\{a_{1}, a_{2}, \cdots, a_{N}\right\}$: finite subset of $E, \quad E_{0}=E \backslash F, \quad m_{0}=\left.m\right|_{E_{0}}$
$\mathbb{X}^{0}=\left(X_{t}^{0}, \zeta^{0}, \mathbb{P}_{x}^{0}\right): \quad m_{0}$-symmetric Borel standard process on E_{0} admitting no killing inside E_{0} and

$$
(* *) \quad \mathbb{P}_{x}^{0}\left(\zeta^{0}<\infty, X_{\zeta^{0}-}^{0}=a_{i}\right)>0, \forall x \in E_{0}, 1 \leq i \leq N
$$

$\left(\mathcal{E}^{0}, \mathcal{F}^{0}\right)$: Dirichlet form of \mathbb{X}^{0} on $L^{2}\left(E_{0}, m_{0}\right)$
$u_{\alpha}^{(i)}(x)=\mathbb{E}_{x}^{0}\left[e^{-\alpha \zeta^{0}} ; X_{\zeta^{0}-}^{0}=a_{i}\right], \quad x \in E_{0}, 1 \leq i \leq N$.
$\varphi^{(i)}(x)=\mathbb{P}_{x}^{0}\left(\zeta^{0}<\infty, X_{\zeta^{0}-}^{0}=a_{i}\right), \quad x \in E_{0}, 1 \leq i \leq N$.

A right process $\mathbb{X}=\left(X_{t}, \zeta, \mathbb{P}_{x}\right)$ on E is an N-points reflection of \mathbb{X}^{0} $\stackrel{\text { def }}{\Longleftrightarrow}$
\mathbb{X} is m-symmetric, admits no killing on F, admits no jump from F to F and \mathbb{X}^{0} is the part of \mathbb{X} on E_{0}

Based on [CF12, Th. 7.7.3]
Let $\left(\mathcal{F}^{0, \text { ref }}, \mathcal{E}^{0, \text { ref }}\right)$ be the reflected Dirichlet space of $\left(\mathcal{E}^{0}, \mathcal{F}^{0}\right)$ and $\left(\mathcal{F}_{a}^{0, \text { ref }}, \mathcal{E}^{0, \text { ref }}\right)$ be the active reflected Dirichlet space of $\left(\mathcal{E}^{0}, \mathcal{F}^{0}\right)$

Theorem 3.1 An N-points reflection \mathbb{X} of \mathbb{X}^{0} is unique.
Let $(\mathcal{E}, \mathcal{F})$ be the Dirichlet form of \mathbb{X} on $L^{2}(E ; m)$. Then
(i) $\mathcal{F} \subset \mathcal{F}_{a}^{0 \text {,ref }} . \quad \mathcal{F}_{e} \subset \mathcal{F}^{0, \text { ref }} . \quad \mathcal{E}(u, u)=\mathcal{E}^{0, \text { ref }}(u, u), \quad \forall u \in \mathcal{F}_{e}$.
(ii) \mathcal{F} is a linear subspace of $\mathcal{F}_{a}^{0 . \text { ree }}$ spanned by \mathcal{F}^{0} and $u_{\alpha}^{(i)}, 1 \leq i \leq N$.
(iii) \mathcal{F}_{e} is a linear subspace of $\mathcal{F}^{0 . \text { ref }}$ spanned by \mathcal{F}_{e}^{0} and $\varphi^{(i)}, 1 \leq i \leq N$.
(iv) If \mathbb{X}^{0} is a diffusion, then so is \mathbb{X}.

It is remarked that \mathbb{X} then admits no jump from E_{0} to F.
$(\mathcal{E}, \mathcal{F})$ is quasi regular. By the transfer method, we may assume that it is a regular Dirichlet form on $L^{2}(E ; m)$ and \mathbb{X} is the associated m symmetric Hunt process on E.
(i) then follows from (b) of preceding theorem by noticing that $\mu_{\langle\mathbf{H} u\rangle}^{c}$ charges no level set of $\mathbf{H} u$,
while (a) implies that boundary value of resolvent of \mathbb{X} is uniquely determined by \mathbf{C} and U_{α}, yielding uniqueness of \mathbb{X}.

Fix i for $1 \leq i \leq N$. (ii) and (iii) follow from the existence of $v \in \mathcal{F}$ with $v\left(a_{j}\right)=\delta_{i j}, 1 \leq j \leq N$.

Take an open set $U \subset E$ with $a_{i} \in U, a_{j} \notin U, j \neq i$, and an m integrable strictly positive bounded continuous function f on E. Let $w(x)=\mathbb{E}_{x}\left[\int_{0}^{\infty} e^{-\alpha t} f\left(X_{t}\right) d t\right], \quad x \in E$.
$v(x)=w(x) / w\left(a_{i}\right)$ is then such a function and $u_{\alpha}^{(i)}(x)=\mathbf{H}_{\alpha} v(x) \in \mathcal{F}, \quad \varphi^{(i)}(x)=\mathbf{H} v(x) \in \mathcal{F}_{e}$

Construction of N-points reflection of \mathbb{X}^{0}

One-point reflection [CF12, Th.7.5.6] and [FTa05]

Under conditions (A.1), (A.2) and (A.3) on \mathbb{X}^{0} in [CF12, §7.5], piecing together excursions around a_{1} by Poisson point process in Itõ's sense whose characteristic measure is determined by the entrance law ν_{t} from a_{1} to E_{0} defined by
$\int_{0}^{\infty} \nu_{t} d t=\mathbb{P}^{0}\left(\zeta^{0}<\infty, X_{\zeta^{0}-}^{0}=a_{1}\right) m_{0}$
N-points reflection [CF12, Th.7.7.4]
Under conditions (M.1), (M.2) and (M.3) on \mathbb{X}^{0} in [CF12, §7.7], repeat the above procedure inductively.

4 Several applications

4.1 Walsh's Brownian motion

based on [CF15]
$E=\mathbb{R}^{2}, E_{0}=\mathbb{R}^{2} \backslash\{\mathbf{0}\}$.
J.B.Walsh [W78] heuristically described the motion \mathbb{X} starting at $x \in E_{0}$ as the 1 -dimensional BM on a ray connecting x and $\mathbf{0}$, upon hitting $\mathbf{0}$, it reflects in a random direction θ with a given distribution η.
$E_{0}=\{(r, \theta): r \in(0, \infty) \quad \theta \in[0,2 \pi)\} . \quad m=\lambda \times \eta$ for the Lebesgue measure λ on $(0, \infty)$. m is extended to E by setting $m(\mathbf{0})=\mathbf{0}$
p_{t}^{0} : the transition function of the ABM on $(0, \infty)$
The transition function P_{t}^{0} of \mathbb{X}^{0} is then given by $\left(P_{t}^{0} f\right)(r, \theta)=\left(p_{t}^{0} f_{\theta}\right)(r)$ for $f_{\theta}(r)=f(r, \theta)$, whch is m-symmetric because p_{t}^{0} is λ-symmetric.
Define Walsh's Brownian motion \mathbb{X} on E to be the one-point reflection of the m-symmetric diffusion \mathbb{X}^{0}. It can be constructed from \mathbb{X}^{0} by means of the \mathbb{X}^{0}-entrance law $\nu_{t}(d x)=\frac{1}{\left(2 \pi t^{3}\right)^{1 / 2}} r e^{-t^{2} /(2 t)} d r \cdot \eta(d \theta)$ because \mathbb{X}^{0} satisfies (A.1),(A.2),(A.3).

Barlow,Pitman and Yor [BPY89] constructed a Feller semi-group on E for an extension of \mathbb{X}^{0}, which can be verified to be m-symmetric and consequently corresponds to Walsh's BM.

4.2 Brownian motion with darning(BMD)

based on [CFM23]
$G \subset \mathbb{C}$: domain such that either $G=\mathbb{C}$ or $\mathbb{C} \backslash G$ is continuum (closed connected, containing at least two points)
$D=G \backslash K, \quad K=\bigcup_{i=1}^{N} A_{i}:(N+1)$-connected domain
A_{i} are mutually disjoint compact continua.
$D^{*}=D \cup K^{*}, \quad K^{*}=\left\{a_{i}^{*}: 1 \leq i \leq N\right\}$: quotient topologocal space obtained from G by rendering each set A_{i} into singleton a_{i}^{*}
m : Lebesgue measure on D being extended to D^{*} by setting $m\left(a_{i}^{*}\right)=$ $0,1 \leq i \leq N$
$\mathbb{X}:$ Brownian motion with darning $(B M D) \stackrel{\text { def }}{\Longleftrightarrow}$ m-symmetric diffusion on D^{*} admitting no killing on K^{*} whose part process on D is identical in law with the ABM on D
$\mathrm{ABM} \mathbb{X}^{0}$ on D satisfies condition $\left({ }^{(* *)}\right.$ due to the specific properties of harmonic and α-harmonic functions on \mathbb{C} ([CFM23, Lemmas 1.1.3 and 1.3.1]).

Hence BMD \mathbb{X} can be regarded as the unique N-points reflection of \mathbb{X}^{0} from D to D^{*}

By the above theorem, the Dirichlet form $\left(\mathcal{E}^{*}, \mathcal{F}^{*}\right)$ of BMD on $L^{2}\left(D^{*} ; m\right)$ equals the linear subspace of $H^{1}(D)$ spanned by $H_{0}^{1}(D)$ and $\left\{u_{\alpha}^{(i)}, 1 \leq i \leq\right.$ $N\}$.
$\left(\mathcal{E}^{*}, \mathcal{F}^{*}\right)$ can be verified to be strongly local and regular. Further the associated capacity of each point a_{i}^{*} is positive.

So, by refining the associated diffusion, we can construct BMD on D^{*} starting at every point of D^{*}.

BMD is a key to extend the SLE theory from simply connected domains: because the restriction to D of any BMD-harmonic function v admits an analytic function f on D with $\Im f=v$ up to an addtional real constant.

4.3 Reflections at infinity of a time changed RBM

based on [CF18]
For a domain $D \subset \mathbb{R}^{d}$ with $d \geq 3$, consider the Dirichlet form
$(* * *) \quad(\mathcal{E}, \mathcal{F})=\left(\frac{1}{2} \mathbf{D}_{D}, H^{1}(D)\right)$ on $L^{2}(D)$.
$H_{e}^{1}(D)$ and $\operatorname{BL}(D)=\left\{u \in L_{\mathrm{loc}}^{2}(D):|\nabla| \in L^{2}(D)\right\}$
are the extended Dirichlet space and the reflected Dirichlet space of (${ }^{* * *)}$), respectively, \mathbf{D}_{D} extends to both spaces.
Let $\mathcal{H}^{*}=\left\{u \in \operatorname{BL}(D): \mathbf{D}_{D}(u, v)=0 \forall v \in H_{e}^{1}(D)\right\}$
D is called a Liouville domain if $\left({ }^{* * *}\right)$ is transient and $\operatorname{dim}\left(\mathcal{H}^{*}\right)=1$.
An example of Liouville domain is the truncated infinite cone defined by
$C_{A, a}=\{(r, \omega): r>a, \omega \in A\} \subset \mathbb{R}^{d}$
for $a>0$ and a connected open set $A \subset S^{d-1}$ with Lipschitz boundary.
Fix a domain $D \subset \mathbb{R}^{d}$ for $d \geq 3$ with Lipschitz boundary satisfying

$$
D \backslash \overline{B_{r}(\mathbf{0})}=\bigcup_{j=1}^{N} C_{j}
$$

for some $r>0$ where $C_{1}, \cdots C_{N}$ are Liouville domains with Lipschitz boundaries such that $\overline{C_{1}}, \cdots, \overline{C_{N}}$ are mutually disjoint.

Owing to [FTo96], there exists a strong Feller conservative diffusion process $\mathbb{Z}=\left(Z_{t}, \mathbb{Q}_{x}\right)$ on \bar{D} which is a refined version of the RBM associated with the regular Dirichlet form (***) on $L^{2}(\bar{D})$.

As $D \supset C_{1}$, the Dirichlet form (***) for D is transient.
Hence it follows from [CF12, Th.3.5.2] that
$\mathbb{Q}_{x}\left(\lim _{t \rightarrow \infty} Z_{t}=\partial\right)=1, \quad \forall x \in \bar{D}$.
Define
∂_{j} : point at infinity of $\overline{C_{j}}, \quad 1 \leq j \leq N$
$F=\left\{\partial_{1}, \cdots, \partial_{N}\right\}, \quad \bar{D}^{*}=\bar{D} \cup F$ compact Hausdorff space
Let $\varphi_{j}(x)=\mathbb{Q}_{x}\left(\lim _{t \rightarrow \infty} Z_{t}=\partial_{j}\right) x \in \bar{D}, 1 \leq j \leq N$., Then
$\varphi_{j}(x)>0,1 \leq j \leq N, \quad \sum_{j=1}^{N} \varphi_{j}(x)=1, \quad \forall x \in \bar{D}$.
Take a strictly positive bounded integrable function f on \bar{D} and define $A_{t}=\int_{0}^{t} f\left(Z_{s}\right) d s, \quad t \geq 0, \quad$ which is a PCAF of \mathbb{Z} and $\mathbb{Q}_{x}\left(A_{\infty}<\infty\right)=1, \quad \forall x \in \bar{D}$.

Let $\mathbb{X}=\left(X_{t}, \zeta, \mathbb{P}_{x}\right)$ be the time changed process of \mathbb{Z} by A_{t}. Then $\mathbb{P}_{x}(\zeta<\infty)=\mathbb{Q}_{x}\left(A_{\infty}<\infty\right)=1, \quad \mathbb{P}_{x}\left(\zeta<\infty, X_{\zeta-}=\partial_{j}\right)=\varphi_{j}(x)>0$, for any $x \in \bar{D}, 1 \leq j \leq N$.
\mathbb{X} is symmetric with respect to $m(d x)=f(x) d x$.
The Dirichlet form $\left(\mathcal{E}^{\mathbb{X}}, \mathcal{F}^{\mathbb{X}}\right)$ of \mathbb{X} on $L^{2}(\bar{D} ; m)$ is given by

$$
\mathcal{E}^{\mathbb{X}}=\frac{1}{2} \mathbf{D}_{D} . \quad \mathcal{F}^{\mathbb{X}}=H_{e}^{1}(D) \cap L^{2}(\bar{D} ; m) .
$$

Extend m from \bar{D} to \bar{D}^{*} by setting $m\left(\left\{\partial_{1}, \cdots, \partial_{N}\right\}\right)=0$.
N-points reflection \mathbb{X}^{*} of \mathbb{X} from \bar{D} to \bar{D}^{*} uniquely exists because \mathbb{X} satisfies (M.1), (M.2), (M.3).
\mathbb{X}^{*} is conservatve.
Let $\left(\mathcal{E}^{*}, \mathcal{F}^{*}\right)$ and \mathcal{F}_{e}^{*} be the Dirichlet form of \mathbb{X}^{*} on $L^{2}\left(\bar{D}^{*}, m\right)$ and its extended Dirichlet space. Then
$\mathcal{F}_{e}^{*}=H_{0}^{1}(D) \oplus\left\{\sum_{j=1}^{N} c_{j} \varphi_{j}: c_{j} \in \mathbb{R}\right\} \subset \operatorname{BL}(D)$,
$\mathcal{E}^{*}(u, u)=\frac{1}{2} \mathbf{D}_{D}(u, u) \quad u \in \mathcal{F}_{e}^{*}$.

4.4 All possible symmetric conservative diffusion extensions of the time changed RBM \mathbb{X} on \bar{D}

A map Π from the boundary set $F=\left\{\partial_{1}, \cdots, \partial_{N}\right\}$ onto a finite set $\hat{F}=$ $\left\{\hat{\partial}_{1}, \cdots, \hat{\partial}_{\ell}\right\}$ with $\ell \leq N$ is called a partition of F. We let $\bar{D}^{\Pi, *}=\bar{D} \cup \hat{F}$. Π is extended from F to \bar{D}^{*} by setting $\Pi x=x, x \in \bar{D}$, and $\bar{D}^{\Pi, *}$ is equipped with the quotient topology by Π.
$\bar{D}^{\Pi . *}$ is a compact Hausdorff space and may be called an ℓ-point compactification of \bar{D} obtained from \bar{D}^{*} by identifying the points in the set $\Pi^{-1} \partial_{i} \subset F$ as a single point $\hat{\partial}_{i}$ for each $1 \leq i \leq \ell$.
The approaching probabilities of the $\mathrm{RBM} \mathbb{Z}=\left(Z_{t}, \mathbb{Q}_{x}\right)$ on \bar{D} to $\hat{\partial}_{i} \in \hat{F}$ are defined by $\quad \hat{\varphi}_{i}(x)=\sum_{j \in \Pi^{-1} \hat{\partial}_{i}} \varphi_{j}(x), \quad x \in \bar{D}, 1 \leq i \leq \ell$.
The time changed process $\mathbb{X}=\left(X_{t}, \zeta, \mathbb{P}_{x}\right)$ of the RBM \mathbb{Z} on \bar{D} is defined as above.
The measure m on \bar{D} is extended to $\bar{D}^{\Pi, *}$ by seeting $m(\hat{F})=0$.
Just as in the above, there exists then an m-symmetric conservative diffusion extension $\mathbb{X}^{\Pi, *}$ of \mathbb{X} from \bar{D} to $\bar{D}^{\Pi, *}$ with the following Dirichlet form $\left(\mathcal{E}^{\Pi, *}, \mathcal{F}^{\Pi, *}\right)$ on $L^{2}\left(\bar{D}^{\Pi, *} ; m\right)\left(=L^{2}(D ; m)\right)$.

Let $\left(\mathcal{E}^{*}, \mathcal{F}^{*}\right)$ and \mathcal{F}_{e}^{*} be the Dirichlet form of \mathbb{X}^{*} on $L^{2}\left(\bar{D}^{*}, m\right)$ and its extended Dirichlet space. Then
$\mathcal{F}_{e}^{\Pi, *}=H_{0}^{1}(D) \oplus\left\{\sum_{i=1}^{\ell} c_{j} \hat{\varphi}_{i}: c_{i} \in \mathbb{R}\right\} \subset \operatorname{BL}(D)$,
$\mathcal{E}^{\Pi, *}(u, u)=\frac{1}{2} \mathbf{D}_{D}(u, u) \quad u \in \mathcal{F}_{e}^{\Pi, *}$.
Theorem 4.1 [CF18, Th.5.1] $\left\{\mathbb{X}^{\Pi, *}: \Pi\right.$ is a partition of $\left.F\right\}$ exhausts all possible m-symmetric conservative diffusion extensions of the time changed $R B M \mathbb{X}$ on \bar{D}.

The extended Dirichlet space of $\mathbb{X}^{\Pi, *}$ does not depend on the measure $m(d x)=f(x) d x$ taking part in the time change of the RBM \mathbb{Z} on \bar{D}.

An analogous theorem holds for the reflecting diffusion process constructed by [FTo96].

5 About symmetry

(I) One-dimensional difusions [F14]

\mathbb{X}^{0} : One dimensional minimal diffusion on $I=\left(r_{1}, r_{2}\right)$ with canonical (speed) measure m. Then \mathbb{X}^{0} is m-symmetric. The general boundary conditions for it are very well formulated in terms of Dirichlet forms including much quicker construction of associated diffusions.

(II) Duality preserving extensions [CF07]

\mathbb{X} and $\hat{\mathbb{X}}$ are in weak duality with respect to a measure m (in m-duality)
$\stackrel{\text { def }}{\Longleftrightarrow} \quad \int G_{\alpha} f \cdot g d m=\int f \cdot \hat{G}_{\alpha} g d m, \quad f, g \geq 0$.
E locally compact separable metric space, $F=\left\{a_{1}, \cdots, a_{N}\right\} \subset E, E_{0}=$ $E \backslash F$
$\mathbb{X}^{0}, \hat{\mathbb{X}}^{0}$: standard processes on E_{0} in weak duality w.r.to a measure m_{0} on E_{0}, both being approachable to each a_{i}. Extend m_{0} to m on E by setting $m(F)=0$.

Look for Markovian extensions $\mathbb{X}, \widehat{\mathbb{X}}$ of $\mathbb{X}^{0}, \hat{\mathbb{X}}^{0}$ to E which are in m duality.
Let $\mathbb{X}, \hat{\mathbb{X}}$ be standard processes on E whose parts on E_{0} are $\mathbb{X}^{0}, \hat{\mathbb{X}}^{0}$, admitting no jump from F to F, nor from E_{0} to F, but admitting killing on F with killing measure $\kappa_{i}, \hat{\kappa}_{i}$ at $a_{i}, 1 \leq i \leq N$.

It is possible to construct such \mathbb{X} and $\hat{\mathbb{X}}$ under some conditions on $\mathbb{X}^{0}, \hat{\mathbb{X}}^{0}$.
\mathbb{X} and $\hat{\mathbb{X}}$ are in m-duality if and only if

$$
\sum_{k \neq i} U_{i k}+V_{i}+\kappa_{i}=\sum_{k \neq i} U_{k i}+\hat{V}_{i}+\hat{\kappa}_{i}, \quad 1 \leq i \leq N,
$$

where $U_{i j}, V_{i}\left(\right.$ resp. $\left.\hat{V}_{i}\right)$ are Feller measures of $\mathbb{X}^{0}\left(\right.$ resp. $\left.\hat{\mathbb{X}}^{0}\right)$.
When \mathbb{X}^{0} is m-symmetric, $U_{i k}=U_{k i}, V_{i}=\hat{V}_{i}, \kappa_{i}=\hat{\kappa}_{i}$ so that the above identity holds with $\kappa_{i}=0$.

When \mathbb{X}^{0} is non-symmetric, one needs to allow suitable killings on the boundary in order to preserve the m-duality in the extention.

References

[BPY89] M.T.Barlow, J.W.Pitman and M.Yor, On Walsh's Brownian motion, in Seminaire de Probabilités, 23, Lecture Notes in Math. vol.1372, Springer, 1989, pp 25-293
[CF07] Z.-Q. Chen and M. Fukushima, On Feller's boundary prolem for Markov processes in weak duality, J. Func. Anal. 252(2007), 289-316
[CF09] Z.-Q. Chen and M. Fukushima, On unique extension of time changed reflecting Brownian motions, Ann.Inst.Henri Poincare, Probab. statist., 45(2009), 861-875 f
[CF12] Z.-Q. Chen and M. Fukushima, Symmeric Markov Processes, Time Change, and Boundary Theory, Princeton University Press, Princeton and Oxford, 2012
[CF15] Z.-Q. Chen and M. Fukushima, One point reflections, Stochastic Processes Appl. 125(2015), 1368-1393
[CF18] Z.-Q. Chen and M. Fukushima, Reflection at infinity of time changed RBMs on a domain with Liouville branches, J. Math. Soc. Japan 70(2018), 833-852
[CFM23] Z.-Q.Chen, M.Fukushima and T.Murayama, Stochastic Komatu-Loewner Evolutions, World Scientific, 2023
[Do62] J.L.Doob, Boundary properties of functions with finite Dirichlet integrals, Ann.Inst.Fourier, 12(1962), 573-621
[Dy65] E,B, Dynkin, Markov Processes, vol.1, 3, Springer, 1965
[Fe57] W.Feller, On boundaries and lateral conditions for the Kolmogorov differential equations, Ann.Math.55(1957), 527-570
[F64] M. Fukushima, On Feller's kernel and the Dirichlet norm, Nagoya Math.J.,24(1964), 167-175
[F67] M. Fukushima, A construction of reflecting barrier Brownian motions for bounded domains, Osaka J. Math.4(1967), 183-215
[F69] M. Fukushima, On boundary conditions for multi-dimensional Brownian motions with symmetric resolvent densities, J.Math.Soc.Japan 21(1969), 58-93
[F80] M. Fukushima, Dirichlet Forms and Markov Processes, North Holland, AmsterdomNew York/ Kodansha, Tokyo, 1980
[F10] M. Fukushima, From one-dimensional diffusions to symmetric Markov processes, Stochastic Process Appl.120(2010), 590-604
[F14] M. Fukushima, On general boundary conditions for one-dimensional diffusions with symmetry, J.Math.Soc.Japan 66(2014), 289-316
[F18] M.Fukushima, Liouville property of harmonic functions with finite energy for Dirichlet forms, in: Stochastic Partial Differential Equations and Relaed Fields A.Eberle et al. (eds.), Springer Proceedings in Mathematics and Statistics, Vol 229, 2018, pp25-42
[F20] M. Fukushima, Komatu-Loewner differential equations, SUGAKU Expositions, 33(2020), AMS, 239-260
[FOT11] M. Fukushima, Y. Oshima and M.Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter, Berlin,1994
Second revised and extended editions, de Gruyter, Berlin, 2011
[FTa05] M. Fukushima and H. Tanaka, Poisson point processes attached to symmetric diffusions, Ann.Inst. Henri-Poincaré Probab. Stat., 41(2005), 419-459
[FTo96], M.Fukushima and M.Tomisaki, Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, Probab. Theory Relat.Fields 106(1996), 521-557
[GT77] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer 1977
[I60] K. Itô, Lecture on Stochastic Processes, Tata Instiute of Fundamental Research, Bombay, 1965
[IM66] K. Itô and H.P. McKean,Jr., Diffusion Processes and their Sample Paths, Springer, 1965, Springer's Classics in Mathmatics Series, 1996
[S74] M.L. Silverstein, Symmetric Markov Processes, Lecture Notes in Math. 426, Springer, Berlin-Heidelberg-New York, 1974
[W78] J.B.Walsh, A diffusion with discontinous local time, Asterisque 52-53(1978), 37-45

