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1 Symmetric Markovian extensions of ABM: An an-

alytic characterization

Based on [F69]

D bounded domain of Rn

Gα(x, y), α > 0, x, y ∈ D, x ̸= y resolvent density on D
def⇐⇒

Gα(x, y) ≥ 0, α
∫
DGα(x, z)dz ≤ 1.

Gα(x, y)−Gβ(x, y) + (α− β)
∫
DGα(x, z)Gβ(z, y)dz = 0, α, β > 0.

It is called symmetric and conservative if
Gα(x, y) = Gα(y, x), α

∫
DGα(x.z)dz = 1
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Let G0
α(x, y) be the resolvent density of the absorbed Brownian motion

(ABM) X0 on D

A function u on D is called α-harmonic if (α− 1
2∆)u = 0 on D

Let G be the family of all symmetric conservative resolvent densities
Gα(x, y) on D satisfying

(G.a) Gα(x, y) = G0
α(x, y) +Rα(x, y) where Rα(x, y) is non-negative and

α-harmonic in x ∈ D,
(G.b) supx∈K,y∈DRα(x, y) <∞ for any compact set K ⊂ D

The first assertion of the next propsition is a conterpart of [F67, Lemma
2.1].

Proposition 1.1 (i) Any non-negative α-harmonic function u on D ad-
mits the expression

(∗) u(x) = Ex

[
e−ατBu(XτB)

]
, x ∈ B,

for any ball B with B ⊂ D in terms of the n-dimensional Brownian motion
(Xt,Px).

(ii) For any Gα(x, y) ∈ G, Gαf(x) =
∫
DGα(x, y)f(y)dy, x ∈ D, is not only

a symmetric contraction resolvent on L2(D) but also a strongly continuous
resolvent.

Proof (i) The retriction to B of an α-harmonic function u on D is the
unique slution of (u− 1

2∆)u = 0 on B with continuous boundary function
u
∣∣
∂B

(cf. [GT77, Cor.6.0]).
On the other hand, we can see just as in the proof of [CF12, Lemma 3,1]

that the function on the ball B defined by the right hand side of (*) also
has this property by noting that the restriction to B of any α-excessive
function on D is α-excesive relative to the ABM on B according to [Dy65,
Th 12.9, Th.12.9].

(ii) Since G0
α has the stated properties, it is enough to show that

limα→∞ α||Rαf ||L2(D) = 0 for any f ∈ L2(D).For any ε > 0, take g ∈ Cc(D)
with ||f − g||L2 < ε. We then readily get α||Rαf ||L2 ≤ ε+ α||Rαg||L2

By using the α-harmonicity of Rα(x, y) in x ∈ D and its expression (*),
we see as in the proof of [F67, Lemma 2.9] that limα→∞ α|Rαg(x)| = 0
for any x ∈ D. Since α||Rαg||∞ ≤ ||g||∞, the second term of the right
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hand side of the preceding inequality tends to 0 as α → ∞ by the bounded
convergence theorem.

Remark 1.2 Assume that n ≥ 3. and let g(x, y) be the Green function
for the domain D ⊂ Rn. Denote G0

0+(x, y) by G0(x, y). Then g(x, y) =
q
2G

0(x, y) x, y ∈ D, for q = (n− 2)σn where σn is the unit ball boundary

area: σn equals π
n
2n/(n2 )! when n is even and 2

n+1
2 π

n−1
2 /{1 · 3 · 5 · · · (n− 2)}

when n is odd.

According to K.Itô [I60, §3.5], G0(x, y) = 2
Cg(x, y) for C = 4π

n
2 /Γ(n2−1),

and we readily get C = q.

M : Martin boundary of D. µ: harmonic measure on M relative to a
reference point x0 ∈ D

K(x, ξ), x ∈ D, ξ ∈M : Martin kernel:

K(x, ξ) = limy→ξ
g(x,y)
g(x0,y)

= limy→ξ
G0(x,y)
G0(x0,y)

.

α-order Martin kernel is then defined by
Kα(x, ξ) = K(x, ξ)− α

∫
DG

0
α(x, z)K(z, ξ)dz

For a function φ on M , let
Hφ(x) =

∫
M K(x, ξ)φ(ξ)µ(dξ), Hαφ(x) =

∫
M Kα(x, ξ)φ(ξ)µ(dξ), x ∈ D

α-order Feller kernel is defined by

Uα(ξ, η) = α

∫
D

K(z, ξ)Kα(z.η)dz, ξ, η ∈M,

which is increasing in α. Feller kernel is defined by

U(ξ, η) = lim
α→∞

Uα(ξ, η), ξ, η ∈M

For a function φ in M , the Douglas integral is defined by

C(φ, φ) =
1

2

∫
M×M

(φ(ξ)− φ(η))2U(ξ, η)µ(dξ)µ(dη)

DefineHM = {φ ∈ L2(M ;µ0) : C(φ, φ) <∞} where µ0(dξ) = U11(ξ)µ(dξ).

Proposition 1.3 If a function u on D is harmonic with finite Dirichlet
integral DD(u, u), then u admits fine limit φ(ξ) = γu(ξ) for µ-a.e. ξ ∈M ,
u = Hφ and

1

2
DD(u, u) = C(φ, φ).
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This was established by J.L.Doob [Do62, (7.7)] with q
2Θ(ξ, η) for the

Naim kernel
Θ(ξ, η) = limx→ξ,y→η

g(x,y)
g(x0,x)g(x0,y)

= 2
q limx→ξ,y→η

K(x,y)
G0(x0,x)

in place of the Feller kernel U .

[F64] then proved that q
2Θ = U .

The notion U was introduced by W.Feller [Fe57] in his seminal study
of boundary condition for a Markov process on a denumerable state space
with finite number of boundary points.

Theorem 1.4 There is one-to-one correspondence between the family G
of resolvent deisities on D and the family of Dirichlet forms (EM ,FM) on
L2(M ;µ0) such that

FM ⊂ HM , EM(φ, φ) ≥ C(φ, φ), ∀φ ∈ FM , EM(1, 1) = 0.

For each Gα(x, y) ∈ G, the corresponding (EM .FM) is defined as follows:

Let (ED,FD) be its associated Dirichlet form on L2(D) which is well
defined due to Prposition 1.1. Define
Hα = {u ∈ FD : u is α−harmonic}.
u ∈ Hα admits the fine boundary function γu ∈ L2(M ;µ0) and u = Hαγu.

Let
FM = {γu : u ∈ Hα},
EM(φ, φ) = Eα(Hαφ,Hαφ)− Uα(φ, φ), φ ∈ FM .

Then (EM ,FM) is independent of α > 0 and satisfies the stated proper-
ties.

Maximum and minimum ones among (FM , EM) in a semi-order (cf.
[CF12, Def 6.6.8])

(I) Maximum one: FM = HM , EM = C

Let Gα(x, y) ∈ G be the corresponding resolvent dencity and (ED,FD)
be its associated Dirichlet form on L2(D). Then

FD = H1(D) = {u ∈ L2(D) : |∇u| ∈ L2(D)}
ED(u, u) = 1

2DD(u, u).

Hence (FD, ED) is the active reflected Dirichlet space of the Dirichlet
form (E0

D,F0
D) = (12DD, H

1
0(D)) of the ABM on D (cf. [CF12, §6.5(4◦)])

4



and furthermore, for u ∈ FD and u0 = u−Hαu ∈ F0
D,

ED,α(u, u) = E0
D,α(u0.u0) +C(γu, γu) + Uα(γu, γu).

(II) Minimum one: FM = {constant functions}, EM = C

The associated objects:

Gα(x, y) = G0
α(x, y) +

Hα1M (x)Hα1M (y)
α(1D,Hα1M )L2(D)

∈ G,

FD = H1
0(D)⊕ constants, ED(u, u) = 1

2DD(u, u)

2 Active reflected Dirichlet space for a part process

X0

Based on [CF12, Th.7.1.8]

E: locally compact separable metric space
m: positive Radon measure on E with full support
(E ,F): regular Dirichlet form on L2(E;m)
X: associated m-symmetric Hunt process on E

(N,H): the Lévy system of X
J(dx, dy) = N(x, dy)µH(dx), κ(x, {δ})µH(dx) jumping and killing mea-
sures

F : a neaerly Borel measurable finely closed subset of E, E0 = E \ F
Assume that F is non-E-polar and that X admits no jump from E0 to

F : J(E0 × F ) = 0

X0 = (X0
t , ζ

0,P0): the part process of X on E0

(E0,F0): the Dirichlet form of X0 on L2(E0,m0), m0 = m
∣∣
E0

(F0,ref
a , E0,ref): the active reflected Dirichlet space of (E0,F0)

For a function φ on F , let Hφ(x) = Ex [φ(XσF
);σF <∞] , and

Hαφ(x) = Ex [e
−ασFφ(XσF

);σF <∞] , α > 0.

Define for φ, ψ ∈ B+(F ),
Uα(φ, ψ) = α

∫
E0 Hφ(x)Hαψ(x)m0(dx) which increases in α.

Let U(φ, ψ) = limα→∞ Uα(φ, ψ).

Uα and U are bimesures on F called Feller measures.

U(φ, ψ) coincides with the energy functional L0(Hφ,Hψ) of the X0-excessive
functions Hφ,Hψ in Meyer’s sense.
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Further the supplementary Feller measure V is defined by
V (φ) = limα→∞ α

∫
E0

Hαφ(x)(1−H1(x))m0(dx), φ ∈ B+(F ).

According to [CF12, Th.5.7.6], U is rate of excursion of X from F to F
and V is rate of no returning excursion of X from F .

Finally the Douglas integral of a function φ on F is defined by

C(φ, φ) = 1
2

∫
F×F (φ(ξ)− φ(η))2U(dξ, dη) +

∫
F φ(ξ)

2V (dξ)(≤ ∞).

Theorem 2.1 For any u ∈ F , u
∣∣
E0

∈ F0,ref
a and

(a) E0,ref
α (u

∣∣
E0
, u
∣∣
E0
) = E0(u0, u0) +C(u

∣∣
F
, u
∣∣
F
) + Uα(u

∣∣
F
, u
∣∣
F
),

where u0 = u−Hαu. Furthermore

(b) Eα(u, u) = E0.ref
α (u

∣∣
E0
, u
∣∣
E0
)

+
1

2
µc⟨Hu⟩(F ) +

1

2

∫
F×F

(u(ξ)− u(η))2J(dξ, dη)

+

∫
F

u(ξ)2κ(dξ) + α

∫
F

u(ξ)2m(dξ)

Every function in F is represented by its quasi-continuous version.

Since u ∈ F ⊂ Fe, Hu ∈ Fe and µ
c
⟨Hu⟩> is well defined.

3 Unique extension of X0 when F is a finite set

E: locally compact separable metric space
m: positive Radon measure on E with full support
F = {a1, a2, · · · , aN}: finite subset of E, E0 = E \ F , m0 = m

∣∣
E0

X0 = (X0
t , ζ

0,P0
x): m0-symmetric Borel standard process on E0 admit-

ting no killing inside E0 and

(∗∗) P0
x(ζ

0 <∞, X0
ζ0− = ai) > 0, ∀x ∈ E0, 1 ≤ i ≤ N

(E0,F0): Dirichlet form of X0 on L2(E0,m0)

u
(i)
α (x) = E0

x

[
e−αζ0;X0

ζ0− = ai

]
, x ∈ E0, 1 ≤ i ≤ N.

φ(i)(x) = P0
x(ζ

0 <∞, X0
ζ0− = ai), x ∈ E0, 1 ≤ i ≤ N.

6



A right process X = (Xt, ζ,Px) on E is an N-points reflection of X0

def⇐⇒
X is m-symmetric, admits no killing on F , admits no jump from F to F
and X0 is the part of X on E0

Based on [CF12, Th. 7.7.3]

Let (F0,ref , E0,ref) be the reflected Dirichlet space of (E0,F0) and
(F0,ref

a , E0,ref) be the active reflected Dirichlet space of (E0,F0)

Theorem 3.1 An N-points reflection X of X0 is unique.

Let (E ,F) be the Dirichlet form of X on L2(E;m). Then

(i) F ⊂ F0,ref
a . Fe ⊂ F0,ref . E(u, u) = E0,ref(u, u), ∀u ∈ Fe.

(ii) F is a linear subspace of F0.ref
a spanned by F0 and u

(i)
α , 1 ≤ i ≤ N.

(iii) Fe is a linear subspace of F0.ref spanned by F0
e and φ(i), 1 ≤ i ≤ N.

(iv) If X0 is a diffusion, then so is X.

It is remarked that X then admits no jump from E0 to F .

(E ,F) is quasi regular. By the transfer method, we may assume that
it is a regular Dirichlet form on L2(E;m) and X is the associated m-
symmetric Hunt process on E.
(i) then follows from (b) of preceding theorem by noticing that µc⟨Hu⟩
charges no level set of Hu,
while (a) implies that boundary value of resolvent of X is uniquely deter-
mined by C and Uα, yielding uniqueness of X.

Fix i for 1 ≤ i ≤ N. (ii) and (iii) follow from the existence of v ∈ F
with v(aj) = δij, 1 ≤ j ≤ N.

Take an open set U ⊂ E with ai ∈ U, aj /∈ U, j ̸= i, and an m-
integrable strictly positive bounded continuous function f on E. Let
w(x) = Ex

[∫∞
0 e−αtf(Xt)dt

]
, x ∈ E.　

v(x) = w(x)/w(ai) is then such a function and

u
(i)
α (x) = Hαv(x) ∈ F , φ(i)(x) = Hv(x) ∈ Fe

Construction of N-points reflection of X0

One-point reflection [CF12, Th.7.5.6] and [FTa05]
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Under conditions (A.1), (A.2) and (A.3) on X0 in [CF12, §7.5], piecing
together excursions around a1 by Poisson point process in Itõ’s sense whose
characteristic measure is determined by the entrance law νt from a1 to E0

defined by∫∞
0 νtdt = P0(ζ0 <∞, X0

ζ0− = a1)m0

N-points reflection [CF12, Th.7.7.4]

Under conditions (M.1), (M.2) and (M.3) on X0 in [CF12, §7.7], repeat
the above procedure inductively.

4 Several applications

4.1 Walsh’s Brownian motion

based on [CF15]

E = R2, E0 = R2 \ {0}.
J.B.Walsh [W78] heuristically described the motion X starting at x ∈ E0

as the 1-dimensional BM on a ray connecting x and 0, upon hitting 0, it
reflects in a random direction θ with a given distribution η.

E0 = {(r, θ) : r ∈ (0,∞) θ ∈ [0, 2π)}. m = λ × η for the Lebesgue
measure λ on (0,∞). m is extended to E by setting m(0) = 0
p0t : the transition function of the ABM on (0,∞)

The transition function P 0
t of X0 is then given by (P 0

t f)(r, θ) = (p0tfθ)(r)
for fθ(r) = f(r, θ), whch is m-symmetric because p0t is λ-symmetric.

Define Walsh’s Brownian motion X on E to be the one-point reflection of
the m-symmetric diffusion X0. It can be constructed from X0 by means
of the X0-entrance law νt(dx) =

1
(2πt3)1/2

re−t2/(2t)dr · η(dθ)
because X0 satisfies (A.1),(A.2),(A.3).

Barlow,Pitman and Yor [BPY89] constructed a Feller semi-group on
E for an extension of X0, which can be verified to be m-symmetric and
consequently corresponds to Walsh’s BM.

4.2 Brownian motion with darning(BMD)

based on [CFM23]

8



G ⊂ C: domain such that either G = C or C \ G is continuum (closed
connected, containing at least two points)
D = G \K, K =

∪N
i=1Ai: (N + 1)-connected domain

Ai are mutually disjoint compact continua.

D∗ = D ∪ K∗, K∗ = {a∗i : 1 ≤ i ≤ N}: quotient topologocal space
obtained from G by rendering each set Ai into singleton a∗i
m: Lebesgue measure on D being extended to D∗ by setting m(a∗i ) =
0, 1 ≤ i ≤ N

X: Brownian motion with darning (BMD)
def⇐⇒

m-symmetric diffusion onD∗ admitting no killing onK∗ whose part process
on D is identical in law with the ABM on D

ABM X0 on D satisfies condition (**) due to the specific properties of
harmonic and α-harmonic functions on C ([CFM23, Lemmas 1.1.3 and
1.3.1]).

Hence BMD X can be regarded as the unique N -points reflection of X0

from D to D∗

By the above theorem, the Dirichlet form (E∗,F∗) of BMD on L2(D∗;m)

equals the linear subspace of H1(D) spanned by H1
0(D) and {u(i)α , 1 ≤ i ≤

N}.
(E∗,F∗) can be verified to be strongly local and regular.

Further the associated capacity of each point a∗i is positive.

So, by refining the associated diffusion, we can construct BMD on D∗

starting at every point of D∗.

BMD is a key to extend the SLE theory from simply connected domains:
because the restriction to D of any BMD-harmonic function v admits an
analytic function f on D with ℑf = v up to an addtional real constant.

4.3 Reflections at infinity of a time changed RBM

based on [CF18]

For a domain D ⊂ Rd with d ≥ 3, consider the Dirichlet form

(∗ ∗ ∗) (E ,F) = (12DD, H
1(D)) on L2(D).

H1
e (D) and BL(D) = {u ∈ L2

loc(D) : |∇| ∈ L2(D)}
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are the extended Dirichlet space and the reflected Dirichlet space of (***),
respectively, DD extends to both spaces.

Let H∗ = {u ∈ BL(D) : DD(u, v) = 0 ∀v ∈ H1
e (D)}

D is called a Liouville domain if (***) is transient and dim(H∗) = 1.

An example of Liouville domain is the truncated infinite cone defined
by

CA,a = {(r, ω) : r > a, ω ∈ A} ⊂ Rd

for a > 0 and a connected open set A ⊂ Sd−1 with Lipschitz boundary.

Fix a domain D ⊂ Rd for d ≥ 3 with Lipschitz boundary satisfying

D \Br(0) =
N∪
j=1

Cj

for some r > 0 where C1, · · ·CN are Liouville domains with Lipschitz
boundaries such that C1, · · · , CN are mutually disjoint.

Owing to [FTo96], there exists a strong Feller conservative diffusion
process Z = (Zt,Qx) on D which is a refined version of the RBM associated
with the regular Dirichlet form (***) on L2(D).

As D ⊃ C1, the Dirichlet form (***) for D is transient.
Hence it follows from [CF12, Th.3.5.2] that

Qx(limt→∞ Zt = ∂) = 1, ∀x ∈ D.

Define

∂j: point at infinity of Cj, 1 ≤ j ≤ N

F = {∂1, · · · , ∂N}, D
∗
= D ∪ F compact Hausdorff space

Let φj(x) = Qx (limt→∞Zt = ∂j) x ∈ D, 1 ≤ j ≤ N., Then
φj(x) > 0, 1 ≤ j ≤ N,

∑N
j=1 φj(x) = 1, ∀x ∈ D.

Take a strictly positive bounded integrable function f on D and define
At =

∫ t

0 f(Zs)ds, t ≥ 0,, which is a PCAF of Z and
Qx(A∞ <∞) = 1, ∀x ∈ D.

Let X = (Xt, ζ,Px) be the time changed process of Z by At. Then

Px(ζ <∞) = Qx(A∞ <∞) = 1, Px(ζ <∞, Xζ− = ∂j) = φj(x) > 0,
for any x ∈ D, 1 ≤ j ≤ N.
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X is symmetric with respect to m(dx) = f(x)dx.
The Dirichlet form (EX,FX) of X on L2(D;m) is given by

EX =
1

2
DD. FX = H1

e (D) ∩ L2(D;m).

Extend m from D to D
∗
by setting m({∂1, · · · , ∂N}) = 0.

N -points reflection X∗ of X from D to D
∗
uniquely exists because X

satisfies (M.1), (M.2), (M.3).

X∗ is conservatve.

Let (E∗,F∗) and F∗
e be the Dirichlet form of X∗ on L2(D

∗
,m) and its

extended Dirichlet space. Then

F∗
e = H1

0(D) ⊕ {
∑N

j=1 cjφj : cj ∈ R} ⊂ BL(D),

E∗(u, u) = 1
2DD(u, u) u ∈ F∗

e .

4.4 All possible symmetric conservative diffusion extensions of
the time changed RBM X on D

A map Π from the boundary set F = {∂1, · · · , ∂N} onto a finite set F̂ =

{∂̂1. · · · , ∂̂ℓ} with ℓ ≤ N is called a partition of F . We letD
Π,∗

= D∪F̂ . Π
is extended from F to D

∗
by setting Πx = x, x ∈ D, and D

Π,∗
is equipped

with the quotient topology by Π.

D
Π.∗

is a compact Hausdorff space and may be called an ℓ-point com-
pactification of D obtained from D

∗
by identifying the points in the set

Π−1∂i ⊂ F as a single point ∂̂i for each 1 ≤ i ≤ ℓ.

The approaching probabilities of the RBM Z = (Zt,Qx) on D to ∂̂i ∈ F̂
are defined by φ̂i(x) =

∑
j∈Π−1∂̂i

φj(x), x ∈ D, 1 ≤ i ≤ ℓ.

The time changed process X = (Xt, ζ,Px) of the RBM Z on D is defined
as above.

The measure m on D is extended to D
Π,∗

by seeting m(F̂ ) = 0.

Just as in the above, there exists then an m-symmetric conservative

diffusion extension XΠ,∗ of X from D to D
Π,∗

with the following Dirichlet

form (EΠ,∗,FΠ,∗) on L2(D
Π,∗

;m)(= L2(D;m)).
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Let (E∗,F∗) and F∗
e be the Dirichlet form of X∗ on L2(D

∗
,m) and its

extended Dirichlet space. Then

FΠ,∗
e = H1

0(D) ⊕ {
∑ℓ

i=1 cjφ̂i : ci ∈ R} ⊂ BL(D),

EΠ,∗(u, u) = 1
2DD(u, u) u ∈ FΠ,∗

e .

Theorem 4.1 [CF18, Th.5.1] {XΠ,∗ : Π is a partition of F} exhausts all
possible m-symmetric conservative diffusion extensions of the time changed
RBM X on D.

The extended Dirichlet space of XΠ,∗ does not depend on the measure
m(dx) = f(x)dx taking part in the time change of the RBM Z on D.

An analogous theorem holds for the reflecting diffusion process con-
structed by [FTo96].

5 About symmetry

(I) One-dimensional difusions [F14]

X0: One dimensional minimal diffusion on I = (r1, r2) with canonical
(speed) measurem. Then X0 ism-symmetric. The general boundary con-
ditions for it are very well formulated in terms of Dirichlet forms including
much quicker construction of associated diffusions.

(II) Duality preserving extensions [CF07]

X and X̂ are in weak duality with respect to a measure m (in m-duality)
def⇐⇒ ∫

Gαf · g dm =
∫
f · Ĝαg dm, f, g ≥ 0.

E locally compact separable metric space, F = {a1, · · · , aN} ⊂ E, E0 =
E \ F
X0, X̂0: standard processes on E0 in weak duality w.r.to a measure m0 on
E0, both being approachable to each ai.
Extend m0 to m on E by setting m(F ) = 0.

Look for Markovian extensions X, X̂ of X0, X̂0 to E which are in m-
duality.

Let X, X̂ be standard processes on E whose parts on E0 are X0, X̂0,
admitting no jump from F to F , nor from E0 to F , but admitting killing
on F with killing measure κi, κ̂i at ai, 1 ≤ i ≤ N.
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It is possible to construct such X and X̂ under some conditions on
X0, X̂0.

X and X̂ are in m-duality if and only if∑
k ̸=i

Uik + Vi + κi =
∑
k ̸=i

Uki + V̂i + κ̂i, 1 ≤ i ≤ N,

where Uij, Vi (resp. V̂i) are Feller measures of X0 (resp. X̂0).

When X0 is m-symmetric, Uik = Uki, Vi = V̂i, κi = κ̂i so that the above
identity holds with κi = 0.

When X0 is non-symmetric, one needs to allow suitable killings on the
boundary in order to preserve the m-duality in the extention.
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