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Abstract

We first formulate the notions of the Dirichlet form and the extended
Dirichlet space without assuming any topology on the underlying space. We
next study the space of BL functions on an Euclidean domain in relation
to the extended Dirichlet space of the Sobolev space of order 1 as well as
an extension of the time changed transient Brownian motion by reflection at
infinity.

The (symmetric) Dirichlet space and the Dirichlet form were introduced by A.
Beurling and J. Deny [1] in 1959 and then the extended Dirichlet space was defined
by M.L. Silverstein [15] in 1974. In both cases, the underlying space was assumed to
be a locally compact Hausdorff topological space. We first formulate them without
assuming any topology on the underlying space using an idea of B. Schmuland [13].

The notion of the extended Dirichlet space serves as a useful tool to give criteria
for the transience and recurrence of the associated Markovian semigroup. Besides,
it plays the role of an invariant in describing the time changes of the process or
equivalently, the exchanges of the underlying measure, and it enables us to formulate
its maximal extension called the reflected Dirichlet space in transient case.

The space of BL (Beppo Levi) functions on an Euclidean domain was introduced
and studied in J. Deny and J.L. Lions [8] in 1953-4 that preceded [1]. The second
aim of the present paper is to examine this space in relation to the above mentioned
concepts for the Brownian motion, producing a new extension of it at infinity.

1 Extended Dirichlet spaces

Let (E,B(E)) be a measurable space and m be a σ-finite measure on it. Numerical
functions f, g on E are said to be m-equivalent ( f = g [m] in notation) if f = g m-
a.e.

Definition 1.1 For 1 ≤ p ≤ ∞,, a linear operator L on Lp(E;m) is called Marko-
vian if

0 ≤ f ≤ 1 [m], f ∈ D(L) =⇒ 0 ≤ Lf ≤ 1 [m].

A real function φ, namely, a mapping from R to R, is said to be a normal
contraction if

φ(0) = 0, |φ(s) − φ(t)| ≤ |s − t|, ∀s, t ∈ R.
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A function defined by φ(t) = (0 ∨ t) ∧ 1, t ∈ R, is a normal contraction which is
called the unit contraction. For any ϵ > 0, a real function φϵ satisfying the next
condition is a normal contraction:

φϵ(t) = t, ∀t ∈ [0, 1]; −ϵ ≤ φϵ(t) ≤ 1 + ϵ, ∀t ∈ R,

s < t → 0 ≤ φϵ(t) − φϵ(s) ≤ t − s, ∀s, t ∈ R. (1.1)

Definition 1.2 A symmetric form (E ,D(E)) on L2(E; m) is called Markovian if,
for any ϵ > 0, there exists a real function φϵ satisfying (1.1) and

f ∈ D(E) =⇒ g = φϵ ◦ f ∈ D(E), E(g, g) ≤ E(f, f). (1.2)

A closed symmetric form (E ,F) on L2(E;m) is called a Dirichlet form if it is
Markovian. In this case, the domain F(= D(E)) is said to be a Dirichlet space.

Theorem 1.3 Let (E ,F) be a closed symmetric form on L2(E; m) and {Tt}t>0,
{Gα}α>0 be the strongly continuous contraction semigroup and resolvent on L2(E; m)
generated by (E ,F), respectively. Then the next conditions are mutually equivalent:

(a) Tt is Markovian for each t > 0.

(b) αGα is Markovian for each α > 0.

(c) (E ,F) is a Dirichlet form on L2(E; m).

(d) The unit contraction operates on (E ,F):

f ∈ F =⇒ g = (0 ∨ f) ∧ 1 ∈ F , E(g, g) ≤ E(f, f).

(e) Every normal contraction operates on (E ,F): for any normal contraction φ

f ∈ F =⇒ g = φ ◦ f ∈ F , E(g, g) ≤ E(f, f).

This theorem can be shown in exactly the same way as the proof of [9, Th.1.4.1]
except for the implication (a) ⇒ (e), which follow however from the more general
theorem formulated below. In what follows, we occasionally use for a Dirichlet form
(E ,F) on L2(E; m) the notations ||f∥E =

√
E(f, f), f ∈ F .

Definition 1.4 Let (E ,F) be a closed symmetric form on L2(E; m). Denote by Fe

the totality of m-equivalence classes of all m-measurable functions f on E satisfying
the next condition:

|f | < ∞ [m], ∃{fn} ⊂ F , lim
n,n′→∞

∥fn − fn′∥E = 0, lim
n→∞

fn = f [m]. (1.3)

{fn} ⊂ F in the above is called an approximating sequence of f ∈ Fe. We call the
space Fe the extended space attached to (E ,F). When the latter is a Dirichlet form
on L2(E; m), the space Fe will be called its extended Dirichlet space.

Theorem 1.5 Let (E ,F) be a closed symmetric form on L2(E; m) and Fe be the
extended space attached to it. If the semigroup {Tt; t > 0} generated by (E ,D(F))
is Markovian, then the followings are true:
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(i) For any f ∈ Fe and for any approximating sequence {fn} ⊂ F of f, the limit
E(f, f) = lim

n→∞
E(fn, fn) exists independently of the choice of an approximating

sequence {fn} of f.
(ii) Every normal contraction operates on (Fe, E): for any normal contration φ

f ∈ Fe =⇒ g = φ ◦ f ∈ Fe, E(g, g) ≤ E(f, f).

(iii) F = Fe ∩ L2(E; m). In particular, (E ,F) is a Dirichlet form on L2(E; m).

Assertions (ii) and (iii) of this theorem imply the implication (a) ⇒ (e) in
Theorem 1.3. Before giving the proof of Theorem 1.5, we shall fix a Markovian
contractive symmetric linear operator T on L2(E;m) and make some preparatory
observations.

By the linearity and the Markovian property of T on L2(E; m) ∩ L∞(E;m),

f1, f2 ∈ L2 ∩ L∞, 0 ≤ f1 ≤ f2 [m] =⇒ 0 ≤ Tf1 ≤ Tf2 ≤ ∥f2∥∞ [m].

Due to the σ-finitness of m, we can construct a Borel function η ∈ L1(E; m) which
is strictly positive on E. If we put ηn(x) = (nη(x)) ∧ 1, then 0 < ηn ≤ 1, ηn ↑
1, n → ∞. Hence we can define an extension of T from L2(E;m) ∩ L∞(E; m) to
L∞(E; m) by{

Tf(x) = limn→∞ T (f · ηn)(x), m-a.e. x ∈ E, f ∈ L∞
+ (E; m),

T f = Tf+ − Tf−, f ∈ L∞(E; m), f = f+ − f−.
(1.4)

By the symmetry of T, (g, T (f · ηn)) = (Tg, f · ηn), g ∈ bL1(E; m), and we let
n → ∞ to see that the function Tf, f ∈ L∞(E; m), defined by (1.4) satisfies the
identity

⟨g, Tf⟩ = ⟨Tg, f⟩, ∀g ∈ bL1(E; m), (1.5)

where ⟨g, f⟩ denotes the integral
∫

E
gfdm for g ∈ L1(E; m), f ∈ L∞(E; m). Con-

sequently Tf is uniquely determined up to the m-equivalence for f ∈ L∞(E; m). T
becomes a Markovian linear operator on L∞(E; m) and satisfies

fn, f ∈ L∞
+ (E; m), fn ↑ f [m], n → ∞ =⇒ lim

n→∞
Tfn = Tf [m]. (1.6)

Further, if a sequence {fn} ⊂ L∞(E; m) is uniformly bounded and converges to
f m-a.e. as n → ∞, then

lim
n→∞

⟨g, Tfn⟩ = ⟨g, Tf⟩, ∀g ∈ bL1(E; m). (1.7)

Lemma 1.6 (i) For any g ∈ L∞(E; m),

T (g2) − 2gTg + g2T1 ≥ 0 [m].

(ii) For any g ∈ L∞(E; m), define

AT (g) =
1
2

∫
E

[T (g2) − 2gTg + g2T1]dm +
∫

E

g2(1 − T1)dm. (1.8)

It holds for g ∈ L2(E; m) ∩ L∞(E;m) that

AT (g) = (g − Tg, g). (1.9)

(iii) For any g ∈ L∞(E;m) and for any normal contraction φ,

AT (φ ◦ g) ≤ AT (g). (1.10)
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Proof. Since T (g2) − 2sTg + s2T1 ≥ 0 [m] for g ∈ L∞ and a simple function s,
we get (i) by letting s → g. (ii) can be shown first for Ak

T (g) = ⟨T (g2) − 2gTg +
g2T1, ηk⟩ + ⟨g2(1 − T1), ηk⟩ by approximating g with simple functions and using
(1.7). We then let k → ∞ to obtain (ii). 2

Let φℓ be a specific sequence of normal contractions defined by

φℓ(t) = [(−ℓ) ∨ t] ∧ ℓ, t ∈ R. (1.11)

For any m-measurable function g on E with |g| < ∞ [m], AT (φℓ ◦ g) is increasing
as ℓ increases, as is clear from φℓ ◦ (φℓ+1 ◦ g) = φℓ ◦ g and Lemma 1.6 (iii). We can
then extend the definition of AT (g) to g by letting

AT (g) = lim
ℓ→∞

AT (φℓ ◦ g) (≤ ∞). (1.12)

Lemma 1.7 (i) For g ∈ L2(E; m), AT (g) = (g − Tg, g).
(ii) (Fatou’s property) For any m-measurable functions gn, g on E with |gn| <
∞, |g| < ∞[m], limn→∞ gn = g [m],

AT (g) ≤ lim inf
n→∞

AT (gn). (1.13)

(iii) For any m-measurable function g on E with |g| < ∞ [m] and for any normal
contraction φ, AT (φ ◦ g) ≤ AT (g).

Proof. (i) follows from Lemma 1.6 (ii) and the contraction property of T on
L2(E; m). Assertion (ii) for uniformly bounded {gn} can be shown in the same
manner as the proof of [13, Prop.1] with a help of property (1.6). It then suffices
to use the contraction φℓ. For the proof of (iii), we put f = φ ◦ g, fℓ = φ ◦ φℓ ◦ g.
Then fℓ → f, ℓ → ∞, and it suffices to combine (ii) with (1.10). 2

More details of the proof of Lemma 1.6 and Lemma 1.7 are being given in [10]
and [6].

Proof of Theorem 1.5 (i) For any f ∈ Fe, take its approximating sequence
{fn} ⊂ F . fn being E-Cauchy, the triangular inequality guarantees the existence of
the limit E(f, f) = limn→∞ E(fn, fn). Let us prove that

1
t
ATt(f) ↑ E(f, f) t ↓ 0, (1.14)

which in particular implies that E(f, f) does not depend the choice of the approxi-
mating sequence.

Since f − fℓ ∈ Fe for each ℓ and {fn − fℓ} ⊂ F is its approximating sequence,
we have from Lemma 1.7

1
t
ATt(f − fℓ) ≤ lim inf

n→∞

1
t
ATt(fn − fℓ) ≤ lim

n→∞
∥fn − fℓ∥2

E .

Therefore lim
ℓ→∞

ATt(f − fℓ) = 0, and by the triangular inequality

ATt(f) = limℓ→∞ ATt(fℓ), which particularly implies the monotonicity of the left
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hand side of (1.14) in t. Since limt↓0
1
tATt

(fℓ) = ∥fℓ∥2
E , we can get from the trian-

gular inequality and the inequality obtained above that∣∣∣∣∣limt↓0

√
1
t
ATt(f) − ∥fℓ∥E

∣∣∣∣∣ ≤ lim
t↓0

√
1
t
ATt(f − fℓ) ≤ lim

n→∞
∥fn − fℓ∥E .

The last term tends to 0 as ℓ → ∞, yielding (1.14).
(ii) By Lemma 1.7 and (1.14), we have

1
t
ATt(φ ◦ f) ≤ 1

t
ATt(f) ≤ E(f, f), ∀t > 0,

and consequently, it is enough to prove that φ ◦ f ∈ Fe. But this is an easy conse-
quence of a Babach-Saks type theorem. 2

Remark 1.8 Theorem 1.3 has been formulated in Bouleau-Hirsch [2] and in Ma-
Röckner [12] without any topology on E, while Theorem 1.5 was shown in Silverstein
[15] and Fukushima-Oshima-Takeda [9] under a certain topological assumption on
E.

Let (E ,F) be a Dirichlet form on L2(E; m), (Fe, E) be its extended Dirichlet
space and {Tt; t > 0} be the associated strongly continuous contraction semigroup
of Markovian symmetric operators on L2(E; m). We put

Stf =
∫ t

0

Tsfds, t > 0, f ∈ L2(E; m), (1.15)

the integral being taken in Bochner’s sense. St is a linear operator on L2(E; m) and
satisfies the boundedness ||Stf ||2 ≤ t||f ||2, f ∈ L2(E; m).

Take f ∈ L2(E;m) ∩ L1(E; m). Choose Bn ∈ (
¯
E) with m(Bn) < ∞, Bn ↑ E.

By the symmetry and the Markov property of Tt,∫
Bn

|Ttf(x)|m(dx) ≤ (Tt|f |, 1Bn) = (|f |, Tt1Bn) ≤
∫

E

|f(x)|m(dx).

Letting n → ∞, we get ||Ttf ||1 ≤ ||f ||1. Similarly, we get ||Stf ||1 ≤ t||f ||1 and
hence both {Tt}, {St} can be extended to linear operators on L1(E; m) satisfying

TsTtf = Ts+tf, ||Ttf ||1 ≤ ||f ||1, ||Stf ||1 ≤ t||f ||1, f ∈ L1(E; m).

Further Tt and 1
t St are Markovian.

Since St so extended satisfies for f ∈ L1
+(E;m) the positivity and the mono-

tonicity 0 ≤ Ssf ≤ Stf, [m], 0 < s < t, we can define a function Gf(x)(≤ ∞)
by

Gf(x) = lim
N→∞

SNf(x) [m], f ∈ L1
+(E; m), (1.16)

uniquely up to the m-equivalence.

Definition 1.9 (i) {Tt; t > 0} is called transient if
Gg(x) < ∞ [m], for some g ∈ L1

+(E; m) with g > 0 [m].
(ii) {Tt; t > 0} is called recurrent if, for any f ∈ L1

+(E; m),
Gf(x) is either ∞ or 0 [m], namely, m{x ∈ E : 0 < Gf(x) < ∞} = 0.
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It is known that the transience is equivalent to the condition that Gf(x) < ∞ [m]
for all f ∈ L1

+(E;m), while the recurrence is equivalent to Gf(x) = ∞ [m] for all
f ∈ L1(E; m) with f > 0 [m]. We take the following theorem from [9] (cf. [15]).

Theorem 1.10 (i) The transience of {Tt; t > 0} is equivalent to one of the fol-
lowing conditions:

u ∈ Fe, E(u, u) = 0 =⇒ u = 0. (1.17)

(Fe, E) is a real Hilbert space. (1.18)

(ii) {Tt; t > 0} is recurrent if and only if

1 ∈ Fe, E(1, 1) = 0. (1.19)

2 The space of BL functions and Brownian motion

For a non-empty domain D of the Euclidean n-space Rn, we let

D(u, v) =
n∑

i=1

∫
D

∂u

∂xi

∂v

∂xi
dx, (2.1)

H1(D) = {u ∈ L2(D) :
∂u

∂xi
∈ L2(D), 1 ≤ i ≤ n.} (2.2)

Here the derivatives
∂u

∂xi
, 1 ≤ i ≤ n, are taken in Schwartz distribution sense and

L2(D) denotes the L2-space on D based on the Lebesgue measure dx.
We forcus our attention on a related space

BL(D) =
{

T :
∂T

∂xi
∈ L2(D), 1 ≤ i ≤ n

}
(2.3)

of Schwartz distributions T. It is known that any distribution T ∈ BL(D) can be
identified with a function in L2

loc(D) (cf. L. Schwartz [14], J. Deny and J.L. Lions
[8]) so that

BL(D) = {u ∈ L2
loc(D) :

∂u

∂xi
∈ L2(D), 1 ≤ i ≤ n, } (2.4)

where again the derivatives are taken in Schwartz distribution sense. Members in
BL(D) are called BL (Beppo-Levi) functions on D. The space BL(D) is known to
enjoy the following properties (cf. [8]):

(BL.1) The quotient space ḂL(D) of BL(D) by the subspace of constant functions
is a Hilbert space with inner product D. Any D-Cauchy sequence un ∈ BL(D)
admits u ∈ BL(D) and constants cn such that un is D-convergent to u and
un + cn is L2

loc-convergent to u.

(BL.2) A function u on D is in BL(D) if and only if, for each i (1 ≤ i ≤ n), there is
a version u(i) of u such that it is absolutely continuous on almost all straight
lines parallel to xi-axis and the derivative ∂u(i)/∂xi in the ordinary sense
(which exists a.e. on D) is in L2(D). In this case, the ordinary derivatives
coincide with the distribution derivatives of u.
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Notice that the version u(i) in the above for u ∈ BL(D) depends on the choice
of the coordinate xi. However each u ∈ BL(D) admits a quasi continuous version
ũ called a BLD (Beppo Levi-Deny) function, which enjoys the absolute continuity
property (BL.2) no matter how the coordinates are choosen (cf. [8]).

The space H1(D) = BL(D)∩L2(D) is called the Sobolev space of order 1 on D.

(E ,F) = (
1
2
D,H1(D)) (2.5)

is a closed symmetric form on L2(D). To see this, suppose {un} ⊂ F is E1-Cauchy.
Then ∂un

∂xi
is L2(D)-convergent to some vi ∈ L2(D) for each 1 ≤ i ≤ n and un is

L2(D)-convergent to some u ∈ L2(D). Then, for any f ∈ C∞
0 ,

(vi, f) = lim
n→∞

(
∂un

∂xi
, f) = − lim

n→∞
(un,

∂f

∂xi
) = −(u,

∂f

∂xi
)

and hence vi =
∂u

∂xi
, 1 ≤ i ≤ n. It is a Dirichlet form on L2(D) because its Markov

property (1.2) can be verified by a direct use of the property (BL.2).
Let us denote by H1

e (D) the extended Dirichlet space of the Dirichlet form (2.5).
When D = Rn, the Dirichlet form (2.5) on L2(Rn) is associated with the transition
density gt(x) = (2πt)−n/2 exp(−|x|2/(2t)) of the n-dimensional standard Brownian

motion. Since
∫ ∞

0

gt(x)dt, x ̸= 0, is divergent when n = 1, 2, but convergent and

equal to the Newtonian kernel N (x) when n ≥ 3, the corresponding L2-semigroup
is recurrent in the former case and transient in the latter case.

When n ≥ 3, the extended Dirichlet space (H1
e (Rn), E) of (2.5) for D = Rn is a

real Hilbert space and

u ∈ H1
e (Rn), E(u, u) = 0 =⇒ u = 0, (2.6)

in view of Theorem 1.10.

Theorem 2.1 Assume that n ≥ 3. BL(Rn) is the linear space spanned by H1
e (Rn)

and constant functions. The space (H1
e (Rn), E) is isometric with the space

(ḂL(Rn), 1
2D) by the canonical map BL(Rn) 7→ ḂL(Rn).

Proof. For u ∈ H1
e (Rn), there is a sequence {un} ⊂ H1(Rn) which is D-Cauchy

and convergent to u a.e. D(un, un) then converges to E(u, u). By (BL.1), there exist
v ∈ BL(Rn) and constants cn such that {un} is D-convergent to v and the sequence
{un + cn} is convergent to v in L2

loc(Rn). By choosing a subsequence if necessary,
we may assume that the latter sequence converges to v a.e. Then limn→∞ cn = c
exists, u = v − c and consequently, u ∈ BL(Rn) and E(u, u) = D(u, u). Further
we see from (2.6) that the Hilbert space (H1

e (Rn), E) is isometrically imbedded into
a closed subspace of (ḂL(Rn), 1

2D) by the canonical map BL(Rn) 7→ ḂL(Rn). We
denote by u̇ the equivalence class represented by u ∈ BL(Rn).

If u̇ ∈ ḂL(Rn) is D-orthognal to this closed subspace, then, since C∞
0 (Rn) ⊂

H1(Rn), we have

(∆u, f) = −D(u, f) = 0, ∀f ∈ C∞
0 (Rn),
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which implies that ∆u = 0, namely, (a version of) u is harmonic on Rn. Since the

ordinary derivatives
∂u

∂xi
, 1 ≤ i ≤ n, are also harmonic on Rn, we get from the

mean-value theorem the estimate∣∣∣∣ ∂u

∂xi
(x)

∣∣∣∣ ≤ 1
|Br(x)|

∫
Br(x)

∣∣∣∣ ∂u

∂xi

∣∣∣∣ dx ≤
(

1
|Br(x)|

D(u, u)
)1/2

, x ∈ Rn,

where Br(x) is the ball of rarius r centered at x and |Br(x)| denotes it volume. By
letting r → ∞, we see that all derivatives of u vanish and hence u is constant, and
consequently u̇ is the 0 element of ḂL(Rn). 2

Remark 2.2 Example 1.5.3 and Example 6.2.1 of Fukushima-Oshima-Takeda [9]
contained incorrect statements that, when n ≥ 3, the space H1

e (Rn) is obtained
from BL(Rn) by removing non-zero constant functions. Taking this opportunity,
we would like mention that they should be corrected as the statement of Theorem
2.1 of the present paper.

We next consider, on a general domain D ⊂ Rn, a measure m(dx) = m(x)dx
with a density function m(x) satisfying

m(x) > 0 ∀x ∈ D, m ∈ bC(D) ∩ L1(D) (2.7)

and an associated form

(E ,F) =
(

1
2
D,BL(D) ∩ L2(D; m)

)
, (2.8)

which is obtained just by replacing L2(D) with L1(D; m) in (2.5). Since the con-
vergence in L2(D; m) implies the convergence in L2

loc(D), (2.8) can be readily seen
to be a Dirichlet form on L2(D; m).

Theorem 2.3 The Dirichlet form (2.8) on L2(D;m) is recurrent. Its extended
Dirichlet space (Fe, E) coincides with the space (BL(D), 1

2D).

Proof. Since m is assumed to be a finite measure on D, the present Dirichlet form
enjoys the recurrence condition (1.19). We further have

u ∈ Fe, E(u, u) = 0 =⇒ u is constant a.e. (2.9)

To see this, suppose u ∈ Fe, E(u, u) = 0 and put uℓ = φℓ ◦ u by the contraction φℓ

of (1.11). Then uℓ ∈ L2(E;m) ∩ Fe = F and hence 1
2D(uℓ, uℓ) = E(uℓ, uℓ) = 0.

Therefore uℓ is a constant and we get (2.9) by letting ℓ → ∞.
Denote by Ḟe the quotient space of Fe by the subspace of constant functions.

Just as in the proof of the preceding theorem but using (2.9) in place of (2.6), we con-
clude that the space (Ḟe, E) is isometrically embedded into the space (ḂL(D), 1

2D).
Take any u ∈ BL(D) and put uℓ = φℓ ◦ u as above. By (BL.2), uℓ ∈ BL(D) and

D(u − uℓ, u − uℓ) =
∫
{x:|u(x)|>ℓ}

|∇u|2dx → 0, ℓ → ∞.
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Since uℓ ∈ F and uℓ converges to u pointwise, u must be an element of Fe. Hence
the above isometric embedding is an onto map and Fe = BL(D). 2

When the Lebesgue measure of the domain D is finite, then we can take m(dx)
to be the Lebesgue measure in (2.8) in reducing F to H1(D). Hence

Corollary 2.4 If the domain D is of finite Lebesgue measure, then

H1
e (D) = BL(D). (2.10)

Finally, when D = Rn and m is a finite measure on Rn with density satisfying
(2.7) on Rn, we designate the Dirichlet form (2.8) on L2(Rn; m) as

(E∗,F∗) =
(

1
2
D, BL(Rn) ∩ L2(Rn; m)

)
. (2.11)

In parallel to this, let us consider the symmetric form on L2(Rn,m) defined by

(E(0),F (0)) =
(

1
2
D,H1

e (Rn) ∩ L2(Rn; m)
)

, (2.12)

which is known to be the Dirichlet form associated with the n-dimensional Brownian

motion being time changed by its additive functional At =
∫ t

0

m(Xs)ds (cf.[9,

Example 6.2.1]).
Assume that n ≥ 3. Then they are different; (2.11) is recurrent while (2.12) is

transient. Further we see from Theorem 2.1 that

F∗ = {u = u0 + c : u0 ∈ F (0), c is constant}, E∗(u, u) = E(0)(u0, u0). (2.13)

Let Rn
∗ = Rn∪{∞} be the one-point compactification of Rn and m∗ be the extension

of m from Rn to Rn
∗ with m∗({∞}) = 0. By identifying L2(Rn; m) with L2(Rn

∗ ; m∗),
we can regard (E∗,F∗) as a Dirichlet form on L2(Rn

∗ ;m∗).

Theorem 2.5 When n ≥ 3, (E∗,F∗) is a strongly local regular Dirichlet form on
L2(Rn

∗ ,m∗).

Indeed, if we let C = {u + c : u ∈ C∞
0 (Rn), c is constant}, then C ⊂ C(Rn

∗ ) and
C is readily seen to be a core of the Dirichlet form (E∗,F∗). The strong locality of
(E∗,F∗) can be proved in the same way as in the proof of Theorem 3.2 of [11], where
a Dirichlet form quite similar to (2.13) was studied in a rather general context.

The m∗-symmetric diffusion process X∗ on Rn
∗ associated with the Dirichlet

form of Theorem 2.5 is an extension of the time changed Brownian motion X0 on
Rn associated with (E(0),F (0)). X0 approaches to ∞ at a finite life time ζ0 with
mean Ex[ζ0] being equal to the Newtonian potential N ∗m(x) of the function m. X
is obtained by prolonging the path of X0 after ζ0 with a specific reflection at ∞ by
piecing together the excursions of X0 around ∞. Such a probabilistic construction
has been studied in [11] and [4]. The relationship between (E∗,F∗) and (E(0),F (0))
will be studied in terms of the reflected Dirichlet space in [5].
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[7] J. Deny, Méthods Hilberitiennes en théorie du potentiel, Potential Theory, Centro
Internazionale Matematico Estivo, Edizioni Cremonese, Roma, pp.121-201, 1970

[8] J. Deny and J.L. Lions, Les espaces du type de Beppo Levi, Annales Inst. Fourier
5(1953-54), 305-370

[9] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov
processes, Walter de Gruyter, 1994

[10] M. Fukushima and M. Takeda, Markov processes (in Japanese), Baifukan, 2008

[11] M. Fukushima and H. Tanaka, Poisson point processes attached to symmetric diffu-
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