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Abstract

The classical Loewner differential equation for simply connected
domains is attracting new attention since Oded Schramm launched in
2000 the stochastic Loewner evolution (SLE) based on it. The Loewner
equation itself has been extended to various canonical domains of mul-
tiple connectivity after the works by Y. Komatu in 1943 and 1950, but
the Komatu-Loewner (K-L) equations have been derived rigorously
only in the left derivative sense. In a recent work, Z.-Q. Chen, M.
Fukushima and S.Rhode prove that the K-L equation for the standard
slit domain is a genuine ODE by using a probabilistic method together
with a SDE method, and that the right hand side of the equation
admits an expression in terms of the complex Poisson kernel of the
Brownian motion with darning (BMD).

In the present paper, K-L equations for the annulus and circularly
slit annili are investigated. For the annulus, we establish a K-L equa-
tion as a genuine ODE possessing a normalized Villat’s kernel on its
right hand side by using a variant of the Carathéodory convergence
theorem for annuli indicated by Komatu. This method is also used to
obtain the same K-L equation in the right derivative sense on annu-
lus for a more general family of growing hulls that satisfies a specific
right continuity condition usually adopted in the SLE theory. Villat’s
kernel is then identified with a BMD Schwarz kernel for the annulus.
Finally we derive K-L equations for circularly slit annuli in terms of
their normalized BMD Schwarz kernels, but only in the left derivative
sense when at least one circular slit is present.

1 Introduction

The celebrated Loewner differential equation for the planar unit disk has
been extended to various canonical domains of multiple connectivity, first
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by Y. Komatu [K1] to the annulus, then by Y. Komatu [K3] to the circu-
larly slit annulus, much later by R.O. Bauer and R.M. Friedrich [BF1] to
the circularly slit disk, and further by R.O. Bauer and R.M. Friedrich [BF2]
to the circularly slit annulus as well as to the standard slit domain, namely,
a domain obtained from the upper half plane by removing a finite number of
disjoint line segments parallel to the x-axis. However, the Komatu-Loewner
differential equation has been derived only in the left derivative sense. Re-
call that, even in the case of the classical Loewner equation for a disk, its
derivation in the right derivative sense is harder (cf.[A, §6-2]).

In a recent paper by Z.-Q. Chen, M. Fukushima and S. Rhode [CFR], the
Komatu-Loewner equation (the K-L equation in abbreviation) for the stan-
dard slit domain is established to be a genuine differential equation with the
kernel appearing on its right hand side being the complex Poisson kernel of
the Brownian motion with darning (BMD in abbreviation) on the standard
slit domain. In order to obtain the right differentiability in t of the family
of conformal mappings gt(z) involved in the equation, a probabilistic repre-
sentation of ℑgt(z) in terms of the BMD as well as a Lipschitz continuity
of the BMD complex Poisson kernel under the perturbation of the standard
slit domains are utilized.

The purpose of the present paper is to investigate the counterparts of
K-L equations for the annulus and circularly slit annuli.

In §3, we consider an annulus whose outer boundary component is the
unit circle and establish the K-L equation for it as the genuine differential
equation (3.10) with a normalized Villat’s kernel on its right hand. The right
differentiability of g.(z) will be shown by using a variant of Carathéodory
kernel convergence theorem for annuli formulated in Appendix. In Komatu
[K1], K-L equations for the annulus were obtained in terms of the Weierstrass
zeta function and Jacobi’s elliptic function instead of Villat’s function. The
stated variant of Carathéodory theorem for annuli was also presented in [K1]
without proof to ensure the continuity of the modulus of the domain with
respect to the parameter of the Jordan arc being removed. But the proof
of the stated differentiability was not as rigorous as in the present paper.
Villat’s kernel was adopted 8 years later by G.M. Goluzin [G1] to derive a
K-L equation in a different setting (for annuli located outside the unit disk).

In §4, we consider a general family of growing hulls in annulus that
satisfies a specific right continuity condition usually adopted in the SLE
theory (cf. [L]) and in SKLE as well (cf. [CF2]). We show that the same
method as in §3 works to derive the associated K-L equation (3.10) in the
right derivative sense. D. Zhan presented in [Z, Proposition 2.1] a variant of
Corollary 4.2 without proof for his study of an annulus SLE that was defined
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based on the unnormalized Villat’s kernel. One may formulate an annulus
SLE based directly on the K-L equation (3.10) or its reparametrization (3.21)
driven by the Brownian motion (with constant drifts) on the outer circle of
the annulus.

The Brownian motion with darning (BMD) for an (N+1)-connected pla-
nar domain is defined as follows, A closed connected subset of C containing
at least two points is called a continuum. Let E be a domain in C such that
C \ E is an unbounded continuum and {A1, · · · , AN} be a collection of mu-
tually disjoint compact continua contained in E. We write E0 = E \∪N

j=1 Aj

and consider the topological space E∗ = E0 ∪{a∗
1, · · · , a∗

N} obtained from E
by rendering each ’hole’ Aj of E into a single point a∗

j . Extend the Lebesgue
measure m on E0 to E∗ by setting m(a∗

j ) = 0, 1 ≤ j ≤ N. There exists
then a unique m-symmetric diffusion process Z∗ on E∗ admitting no killing
at a∗

1, · · · , a∗
N whose part (killed) process Z0 on E0 is just the absorbing

Brownian motion on E0 (cf. [CF1, §7.7]). We call Z∗ the BMD for E0.
Informally we may say that Z∗ is the diffusion process on E∗ obtained from
the absorbing Brownian motion on E by rendering each hole Aj into a single
point a∗

j (darning).
A simple way to conceive the BMD Z∗ is to consider the Dirichlet form

(E∗,F∗) defined by

F∗ = {u ∈ H1
0 (E) : ũ is constant q.e. on each Aj}

E∗(u, v) =
1

2

∫

E
∇u(x) · ∇v(x)dx,

where ũ denotes a quasi-continuous version of u. Then (E∗,F∗) turns out
to be a regular Dirichlet form on L2(E∗,m) and the associated diffusion
process on E∗ is nothing but the BMD for E0 (cf. [CFR]).

The notion of a BMD-harmonic function for E0 is well defined to be
a function on E∗ satisfying a usual probabilistic averaging property with
respect to the BMD Z∗ (cf. [CFR]). Thus a BMD-harmonic function
is harmonic on E0 in the classical sense but it has an additional impor-
tant property that its period around each hole Aj vanishes, and accord-
ingly it admits a unique harmonic conjugate on E0 up to the addition of
a constant. If ∂E is smooth, every bounded BMD-harmonic function u on
E∗ with continuous boundary value on ∂E admits an expression u(z) =∫
∂E K∗(z, ζ)u(ζ)ds(ζ), z ∈ E∗, in terms of the uniquely determined kernel

K∗(z, ζ), z ∈ E∗, ζ ∈ ∂E, called the BMD-Poisson kernel.
Since K∗(z, ζ) is BMD-harmonic in z for each ζ ∈ ∂E, it admits an ana-

lytic function Ψ(z, ζ), z ∈ E0, with ℑΨ(z, ζ) = K∗(z, ζ) uniquely up to the
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addition of a real constant. Ψ(z, ζ) with the normalization limz→∞ Ψ(z, ζ) =
0 is called a BMD complex Poisson kernel for E0 and it appears on the right
hand side of the K-L equation for the standard slit domain (cf. [CFR]).

There exists also a function S(z, ζ), z ∈ E0, ζ ∈ ∂E, analytic in z with
ℜS(z, ζ) = K∗(z, ζ) uniquely up to the addition of an imaginary constant.
We call S(z, ζ) a BMD Schwarz kernel for E0 because its counterpart for
the unit disk is the classical Schwarz kernel 1

2π
ζ+z
ζ−z . We may expect that the

BMD Schwarz kernel would play important roles in the K-L equations for
the annulus and circularly slit annuli.

Indeed we shall show in §4 that, in the case of the annulus Aq = {z ∈ C :
q < |z| < 1}, 1 < q < 1, ( E = D, A = {z ∈ C : |z| ≤ q} and E0 = Aq in the
preceding notation), Villat’s kernel for Aq coincides with a BMD Schwarz
kernel for Aq up to a constant factor.

In §5, we shall consider more generally a circlularly slit annulus and
derive a K-L differential equation possessing a normalized BMD Schwarz
kernel on its right hand side by making computations similar to [CFR].
Such a representation of the equation in terms of a BMD Schwarz kernel
was obtained neither in [K3] nor in [BF2]. But, when at least one circular
slit is present, the equation will be shown to hold only in the sense of left
derivative and the problem to make it a genuine ODE is left open.

In this connection, we mention a recent work by C. Boehm and W.
Lauf [BL] where a K-L equation for a circularly slit disk is obtained as a
genuine ODE by using an extended version of the Carathéodory convergence
theorem.

2 Villat’s kernel representing analytic functions
on annulus

Define an annulus by Aq = {z ∈ C : q < |z| < 1} for q ∈ (0, 1). Sometimes
Aq is written as A by omitting q. Define Villat’s function by

Kq(z) = lim
N→∞

N∑

n=−N

1 + q2nz

1 − q2nz

=
1 + z

1 − z
+ lim

N→∞

N∑

n=1

(
1 + q2nz

1 − q2nz
+

1 + q−2nz

1 − q−2nz

)
, z ∈ Aq. (2.1)
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It holds that

Kq(z) =
1 + z

1 − z
+ 2

∞∑

n=1

q2n

q2n − z
+ 2

∞∑

n=1

q2nz

1 − q2nz
, z ∈ Aq, (2.2)

both sums on the righthand side being convergent. This is because

q2n

q2n − z
+

q2nz

1 − q2nz
=

1

1 − q2nz
+

z

q2n − z
, n ≥ 1.

For z ∈ Aq and ζ ∈ ∂Aq, define Villat’s kernel by

Kq(z, ζ) = Kq(z/ζ) =
ζ + z

ζ − z
+ 2

∞∑

n=1

(
q2nζ

q2nζ − z
+

q2nz

ζ − q2nz

)
. (2.3)

The following representation by Villat’s kernel of any analytic function
on A that is continuous on A has been known:

Theorem 2.1 If f is analytic on A and f ∈ C(A, C), then it holds that

f(z) =
1

2πi

∫

∂A
ℜf(ζ)Kq(z, ζ)

dζ

ζ
− 1

2πi

∫

|ζ|=q
ℜf(ζ)

dζ

ζ
+ ic, z ∈ A, (2.4)

where

c =
1

2πi

∫

|ζ|=q
ℑf(ζ)

dζ

ζ
.

Furthermore

1

2πi

∫

∂A
ℜf(ζ)

dζ

ζ
= 0, namely,

∫ 2π

0
ℜf(eiθ)dθ =

∫ 2π

0
ℜf(qeiθ)dθ. (2.5)

This theorem is taken from PhD thesis by T. Vaitsiakhovich [Vai] that
is quoted in a paper [CD-MG] of M.D. Contreras, S. Diaz-Madrigal and
P. Gumenyuk. Denote by L(z, ζ) the infinite sum in (2.3). For z ∈ A,
L(z, ζ) and L(1/z, ζ) are both analytic in ζ ∈ A and continuous on A, and
the expression (2.4) is an easy consequence of the Cauchy theorem and the
Cauchy integral formula. Using expression (2.4), we get

lim
r↑1

ℜf(reiθ) = ℜf(eiθ), lim
r↓q

ℜf(reiθ) = ℜf(qeiθ)+
1

2πi

∫

∂A
ℜf(ζ)

dζ

ζ
, (2.6)

which yields (2.5)
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This theorem goes back to H. Villat [V2]. In page 12-20 of this book, the
expression like (2.4) was obtained in terms of the kernel (2.3) by matching
the coefficients in the Laurent expansion of f and in Fourier expansion of
ϕ
∣∣
∂A. In fact, (2.3) for |ζ| = 1 coincides with 1+2S for the kernel S in [V2].

(2.3) for |ζ| = q is also related to the kernel T in [V2]. The expressions of S
and T were then rewritten in [V2] to derive the celebrated Villat’s formula
to represent an analytic function f on A in terms of the Weierstrass zeta
functions. Apparently it was in G.M. Goluzin [G1] where the sum (2.2) was
first rewritten as a sum (2.1) in the principal value sense.

The next proposition will be utilized in §3 and §5. We adopt the nota-
tions D = {z ∈ C : |z| < 1}, Dq = {z ∈ C : |z| < q}.

Proposition 2.2 (i) Suppose that f is analytic on A, f ∈ C(A, C) and

ℜf is equal to a real constant A on ∂Dq. (2.7)

Then
1

2π

∫ 2π

0
ℜf(eiθ)dθ = A, (2.8)

and moreover f can be expressed as

f(z) =
1

2π

∫ 2π

0
ℜf(eiθ) Kq(z, eiθ)dθ + ic, z ∈ A, (2.9)

for some real constant c.
(ii) Conversely, for any ϕ ∈ C(∂D, R) and c ∈ R, define f(z), z ∈ A, by
(2.9) and A by (2.8) with ϕ in place of ℜf , respectively. Then

lim
r↓q

ℜf(reiη) = A for any η ∈ [0, 2π), lim
r↑1

ℜf(reiθ) = ϕ(eiθ), θ ∈ [0, 2π).

(2.10)

Proof. (i) Condition (2.7) implies (2.8) by Theorem 2.1. Under the condi-
tion (2.7), the contribution of the integral on the inner circle |ζ| = q to the
righthand side of (2.4) is − A

2πi

∫
|ζ|=q Kq(z, ζ)dζ

ζ −A, which vanishes because
1

2πi

∫
|ζ|=q Kq(z.ζ)dζ

ζ = −1 on account of (2.3) and

Res{ζ=0}
ζ+z
ζ−z · 1

ζ = −1,
∫
|ζ|=q

dζ
ζ−q−2nz

= 0, Res{ζ=0}
q2nz

ζ−q2nz
· 1

ζ = −1,

Res{ζ=q2nz}
q2nz

ζ−q2nz
· 1

ζ = 1.

(ii) By (2.3), we readily have limr↓q ℜKq(re
iη, eiθ) = 1 boundedly, yielding

the first identity of (2.10). Then f admits the expression (2.4) by the ob-
servation made in (i) and so the second identity of (2.10) is nothing but the
first one in (2.6). 2
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The following extension of Proposition 2.2 (i) will be utilized in §4.

Proposition 2.3 Suppose that f is analytic and bounded on A, and

ℜf admits a constant limit A at each point of ∂Dq. (2.11)

Then the limit
ϕ(eiθ) = lim

r↑1
ℜf(reiθ) (2.12)

exists for a.e. θ ∈ [0, 2π) and

1

2π

∫ 2π

0
ϕ(eiθ)dθ = A. (2.13)

Furthermore f can be expressed as

f(z) =
1

2π

∫ 2π

0
ϕ(eiθ) Kq(z, eiθ)dθ + ic, z ∈ A, (2.14)

for some real constant c.

Proof. Since ℜf is a bounded harmonic function on A = Aq, the Fatou
theorem (cf.[GM]) yields its boundary limit (2.12) on ∂D. On account of
the assumption (2.11), f can be extended to be an analytic function on
{z : q2 < |z| < 1} denoted by f again across ∂Dq by the mirror reflection.
For any Q ∈ (q, 1), the function fQ(z) = f(Qz) is analytic on Aq continuous
on Aq so that (2.4) and (2.5) hold for fQ. By letting Q ↑ 1, we get (2.13)
and also (2.4) with ℜf

∣∣
∂D = ϕ and ℜf

∣∣
∂Dq

= A, which is reduced to (2.14)

as in the proof of Proposition 2.2. 2

3 Komatu-Loewner equation on annulus in terms
of Villat’s kernel

Fix an annulus AQ for 0 < Q < 1, and a Jordan arc γ = {γ(t) : 0 ≤ t ≤ tγ}
satisfying γ(0) ∈ ∂D, γ(0, tγ ] ⊂ AQ.

According to [G2, Chap.V, §1], there exists then a strictly increasing
function α : [0, tγ ] 7→ [Q, Qγ ] (α(tγ) = Qγ < 1) with the following property:
if α(t) = q, then there is a unique conformal map gq from AQ \ γ[0, t] onto
Aq with the normalization condition

gq(Q) = q. (3.1)
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We shall prove the continuity of α eventually, but we do not assume it
presently. Nevertheless we can reparametrize the curve γ as {γ̃(q) : q ∈
dom(γ̃)} by setting γ̃(q) = γ(α−1(q)) where dom(γ̃) = α[0, tγ ] ⊂ [Q,Qγ ].

Take 0 ≤ t∗ < t ≤ tγ and put q = α(t), q∗ = α(t∗), then Q ≤ q∗ < q ≤
Qγ . Define

gq∗q = gq∗ ◦ g−1
q , Sq∗q = gq∗γ[t∗t]. (3.2)

gq∗q is a conformal map from Aq onto Bq∗q = Aq∗ \ Sq∗q such that

gq∗q(q) = q∗. (3.3)

Let
λ(q) = gq(γ̃(q)) (3.4)

be the image of the tip of the curve γ[0, t] under gq, which is a unique
point on the outer circle of Aq. The pre-image δq∗q = g−1

q∗q(Sq∗q) is a subarc

{eiθ : β1(t
∗, t) < θ < β2(t

∗, t)} of the outer circle of Aq containing the point
λ(q).

We consider the function

Φ(w) = log
gq∗q(w)

w
, w ∈ Aq, Φ(q) = log

q∗

q
, (3.5)

which is a well defined analytic function on Aq, continuously extendable to
Aq with

ℜΦ(w) = log
q∗

q
for any w ∈ ∂Dq. (3.6)

Since ℜΦ(eiθ) = log |gq∗q(e
iθ)|, we have by Proposition 2.2 (i),

1

2π

∫ 2π

0
log |gq∗q(e

iθ)|dθ = log
q∗

q
. (3.7)

and, for some real constant c,

log
gq∗q(w)

w
=

1

2π

∫ 2π

0
log |gq∗q(e

iθ)|Kq(w, eiθ)dθ + ic. (3.8)

We now substitute w = gq(z), z ∈ AQ \ γ[0, t] in (3.8) to get

log
gq∗(z)

gq(z)
=

1

2π

∫ 2π

0
log |gq∗q(e

iθ)|Kq(gq(z), eiθ)dθ + ic.

We next put z = Q and obtain from the normalization condition (3.5) that

log
q∗

q
=

1

2π

∫ 2π

0
log |gq∗q(e

iθ)|Kq(q, e
iθ)dθ + ic,
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and consequently

c = − 1

2π

∫ 2π

0
log |gq∗q(e

iθ)|ℑKq(q, e
iθ)dθ.

Thus we arrive at

log
gq∗(z)

gq(z)
=

1

2π

∫ 2π

0
log |gq∗q(e

iθ)|
[
Kq(gq(z), eiθ) − iℑKq(q, e

iθ)
]
dθ. (3.9)

Theorem 3.1 q = α(t) is a strictly increasing continuous function from
[0, tγ ] onto [Q,Qγ ].
gq(z), z ∈ AQ \ γ[0, t], is continuously differentiable in q ∈ [Q,Qγ ] and
satisfies the differential equation

∂ log gq(z)

∂ log q
= Kq(gq(z), λ(q)) − iℑKq(q, λ(q)), Q ≤ q ≤ Qγ , gQ(z) = z.

(3.10)

Proof. (I) We first prove that α(t), t ∈ [0, tγ), is left continuous in t, gq(z)
is left-differentiable in q and the equation (3.11) holds in the left-derivative
sense.

We maintain the notations in the above. Every point on the outer circle
of Aq off the set δq∗q is sent by gq∗q to a point on the outer circle of Aq∗ .
Accordingly the domain [0, 2π] of the integration in both equations (3.7)
and (3.9) can be replaced by a smaller interval [β1(t

∗, t), β2(t
∗, t)].

We fix t and let t∗ ↑ t. Denote by γ+(t∗), γ−(t∗) the points of ’both sides
of the Jordan arc γ corresponding to γ(t∗). Then as t∗ ↑ t, γ+(t∗) → γ(t) =
γ̃(q), γ−(t∗) → γ(t) = γ̃(q) so that

{
β1(t

∗, t) = gq(γ
−(t∗)) ↑ gq(γ̃(q)) = λ(q),

β2(t
∗, t) = gq(γ

+(t∗)) ↓ gq(γ̃(q)) = λ(q).
(3.11)

Since the integrand in the left hand side of (3.7) is bounded, we have
q∗ ↑ q the left continuity of α. We divide the both hand sides of the equation
(3.9) by the both hand sides of (3.7) and let t∗ ↑ t to obtain the left-
differentiablility of gq(z) in q together with the equation (3.10) holding in
the left-derivative sense.

(II) We use the following notations: for r > 0, 0 < s < t < ∞,

D(z, r) = {w ∈ C : |w − z| < r}, As,t = {w ∈ C : s < |w| < t}.
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The mirror reflection with respect to the circle ∂D(0, r) will be denoted by
Πr.

For 0 ≤ t∗ < t ≤ tγ , q∗ = α(t∗), q = α(t) as before, we consider the
inverse conformal map

hq∗q = g−1
q∗q = gq ◦ g−1

q∗ : Aq∗ \ Sq∗q 7→ Aq.

hq∗q satisfies hq∗q(q
∗) = q and it sends the inner circle ∂D(0, q∗) of Aq∗ onto

the inner circle ∂D(0, q) of Aq. It further sends ∂D \ {λ(q∗)} onto ∂D \ δq∗q.
Hence we can extend hq∗q by the mirror reflection Πq∗ to a univalent function
(denoted by hq∗q again) on

Aq∗2 \ (Sq∗q ∪ Πq∗Sq∗q) (⊃ Aq∗ \ Sq∗q).

Furthermore, by means of the mirror reflection Π1, we can extend hq∗q to a
univalent function (denoted by hq∗q again) on

Aq∗2,(q∗)−2 \ (Sq∗q ∪ Πq∗Sq∗q) \ Π1(Sq∗q ∪ Πq∗Sq∗q). (3.12)

By fixing t∗, we claim that

lim
t↓t∗

q = q∗, namely, α is right continuous, (3.13)

lim
t↓t∗

hq∗q(z) = z locally uniformly on Aq∗2,(q∗)−2 \ {λ(q∗)}. (3.14)

As t ↓ t∗, the domain of definition of the univalent function hq∗q increases to
Aq∗2,(q∗)−2 \ {λ(q∗)}. Obviously {hq∗q : t ∈ (t∗, tγ ]} is a uniformly bounded
family of univalent functions. Take any sequence {tn} decreasing to t∗ and
write hn = hq∗qn , qn = α(tn). By taking a subsequence if necessary, hn

converges to a function h locally uniformly on Aq∗2,(q∗)−2 \ {λ(q∗)}.
To prove the claims (3.13) and (3.14), Let us consider the restriction of

hn to En for En = Aq∗ \ Sq∗qn , which is denoted by hn again. Then {hn}
satisfies all the conditions (i) ∼ (iv) of Corollary 7.2, yielding (3.13) and also
(3.14) holding on Aq∗ . Obviously (3.14) then holds on Aq∗2,(q∗)−2 \ {λ(q∗)}
as well.

We note that, since hq∗q(gq∗(z)) = gq(z), (3.14) implies

lim
t↓t∗

gq(z) = gq∗(z), z ∈ AQ \ γ[0, t∗ + δ], δ > 0. (3.15)

(III) The continuity of α has been established by (I) and (3.13). Keeping
the notations in (I), we shall prove that

lim
t↓t∗

β1(t
∗, t) = λ(q∗), lim

t↓t∗
β2(t

∗, t) = λ(q∗), lim
t↓t∗

λ(q) = λ(q∗). (3.16)
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Once (3.16) is established, then we can combine it with (3.15) and the
continuity of the Villat’s kernel Kq in q to prove the following readily from
(3.7) and (3.9) with the domain of the integration being [β1(t

∗, t), β2(t
∗, t)]

in place of [0, 2π] :
gq(z) is right differentiable in q ∈ [Q,Qγ), the equation (3.10) holds in the
right-derivative sense and the right hand side of (3.10) is right continuous.

Just as in [Dur], (3.16) can be obtained from (3.14) in the following way.
For any ϵ > 0 with ϵ < 1 − q∗, choose δ > 0 such that

Sq∗q ∪ Π1Sq∗q ⊂ D(λ(q∗), ϵ) for any t ∈ (t∗, t∗ + δ). (3.17)

Let C = ∂D(λ(q∗), ϵ) and χ = hq∗q(C). Then δq∗q ⊂ ins χ. By virtue of
(3.14), we have for a sufficiently small δ > 0

|hq∗q(z) − z| < ϵ, for any z ∈ C and t ∈ (t∗, t∗ + δ), (3.18)

which particularly means that diam χ < 3ϵ. By taking any z ∈ C, we then
get for any t ∈ (t∗, t∗ + δ)

|λ(q∗) − λ(q)| ≤ |λ(q∗) − z| + |z − hq∗q(z)| + |hq∗q − λ(q)| < 5ϵ,

|λ(q∗) − βi(t
∗, t)| ≤ |λ(q∗) − z| + |z − hq∗q(z)| + |hq∗q − βi(t

∗, t)| < 5ϵ,

for i = 1, 2.

(VI) We finally show that λ(q) is left continuous:

lim
q∗↑q

λ(q∗) = λ(q), (3.19)

which implies the left continuity of the right hand side of the equation (3.10)
completing the proof of Theorem 3.1.

It follows from (3.9) that, for z ∈ Aq,

log
gq∗q(z)

z
=

1

2π

∫ β2(t∗,t)

β1(t∗,t)
log |gq∗q(e

iθ)|
[
Kq(z, eiθ) − iℑKq(q, e

iθ)
]
dθ.

For any ϵ > 0, we can choose δ > 0 such that {eiθ : β1(t
∗, t) < θ <

β2(t
∗, t)} ⊂ D(λ(q), ϵ) for t∗ ∈ (t − δ, t) by (3.12). For such t∗, we can

therefore see from the expression (2.3) of the Villat’s kernel Kq(z, ζ) that
the integrand in the right hand side of the above identity is bounded uni-
formly in z ∈ Aq \ D(λ(q), ϵ) and in q∗ = α(t∗). Thus we deduce from (3.11)

lim
q∗↑q

gq∗q(z) = z, locally uniformly in z ∈ Aq \ {λ(q)}. (3.20)

11
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By the mirror reflection Π1, we further extend gq∗q to Aq,q−1 \ δt∗t across
∂D(0, 1). Then (3.20) is still valid locally uniformly in z ∈ Aq,q−1 \ {λ(q)}
and we can repeat the same argument as in (III) for gq∗q in place of hq∗q

to obtain (3.19). 2

Remark 3.2 For the function gq ◦ g−1
Qγ

in place of gq in the above, Ko-

matu [K1, K2] derived the equation (3.10) in terms of the Weierstrass zeta
function as well as Jacobi’s elliptic function in place of the present Villat’s
function. A variant of the Carathéodory kernel convergence theorem for an-
nuli as Theorem 7.1 of the present paper was also stated there without proof,
that implicitly implied the continuity of the correspondence α : t 7→ q (as
is shown in step (II) in the above proof). But the proof of the right differ-
entiability of gq ◦ g−1

Qγ
in q was not given as rigorously as in steps (II), (III)

of the present one. Goluzin[G1] obtained a counterpart of Theorem 3.1 in
terms of Villat’s kernel under a different setting for annuli located outside
the unit disk D. 2

Remark 3.3 Since α is shown to be continuous, the Jordan arc γ can be
reparametrized in terms of q as {γ(q) : Q ≤ q ≤ Qγ} by redefining γ(α−1(q))
as γ(q) so that gq is a conformal map from AQ \ γ[0, q] onto Aq with the
normalization (3.1). gq(z) satisfies the ODE (3.10) for z ∈ AQ \ γ[0, q].

It is sometimes convenient to reparametrize the curve γ further in terms
of the modulus p of the annulus Aq: p = − log q, q = e−p. Denote by P, Pγ

the modulus of AQ, AQγ , respectively. Villat’s kernel is denoted in terms of
p as Sp(z, ζ) = Ke−p(z, ζ). We further change the parameter q to s in a way
that q = e−P es, 0 ≤ s ≤ sγ = Pγ − P. Since the module of Aq equals P − s,
(3.10) reads for z ∈ Aq \ γ[0, s] and s ∈ [0, sγ ]

∂ log gs(z)

∂s
= SP−s(gs(z), λ(s)) − iℑSP−s(e

s−P , λ(s)), g0(z) = z, (3.21)

for the conformal mapping gs from AQ \γ[0, s] onto AQes with gs(Q) = Qes.
Here λ(s) = gs(γ(s)). D. Zhan defined in [Z] an annulus SLE based on the
equation (3.21) with the second normalization term of its right hand side
being dropped however. One may formulate an annulus SLE based directly
on (3.10) or (3.21) driven by the Brownian motion (with constant drifts)
on the outer circle of AQ by making analogous considerations to the case of
standard slit domains in [CF2]. 2

12

12 STOCANAL2014, 012, v2: ’On Villat’s ker...’



4 K-L equation on annulus for right continuous
growing hulls

We consider an annulus AQ for a fixed Q ∈ (0, 1). A closed subset F of AQ is
called a hull in AQ if the set AQ\F is doubly connected possessing ∂DQ as one
of its boundary components. A strictly increasing family {Ft : 0 < t ≤ T} of
hulls in AQ is said to be a family of growing hulls in AQ. A typical example
of a family of growing hulls in AQ is {Ft = γ(0, t]; t ∈ (0, tγ ]} for a Jordan
arc γ considered in the preceding section.

Let {Ft; 0 < t ≤ T} be a family of growing hulls in AQ. We define F0 = ∅
by convention. According to [G2, Chap.V, §1] again, there exists then a
strictly increasing function α : [0, T ] 7→ [Q, QT ](β(T ) = QT < 1) with the
following property: if α(t) = q, then there is a unique conformal map gq

from AQ \ Ft onto Aq with the normalization condition

gq(Q) = q. (4.1)

Needless to say, the function α is determined depending on {Ft} and it is
different in general from α in the preceding section.

Take 0 ≤ t∗ < t ≤ tγ and put q = α(t), q∗ = α(t∗), then Q ≤ q∗ < q ≤
Qγ . Define

gq∗q = gq∗ ◦ g−1
q , Sq∗q = gq∗(Ft \ Ft∗). (4.2)

gq∗q is a conformal map from Aq onto Aq∗ \ Sq∗q such that

gq∗q(q) = q∗. (4.3)

We also consider the inverse map hq∗q = g−1
q∗q(= gq ◦g−1

q∗ ). hq∗q is a conformal
map from Aq∗ \ Sq∗q onto Aq sending the inner circle of Aq∗ onto the inner
circle of Aq homeomorphically.

Denote by δq∗q(⊂ C) the set of accumulation points of hq∗q(z) as z ap-
proaches to Sq∗q. δq∗q is then a closed subset of the outer circle of Aq so that
we can write δq∗q = {eiθ : θ ∈ ℓq∗q} for a closed subset ℓq∗q of [0, 2π). Observe
that any point on the outer circle of Aq∗ off the closure of Sq∗q is a simple
boundary point of Aq∗ \ Sq∗q in the sense of [Co]. In view of [Co, Theorem
15.3.6], the map hq∗q extends to a continuous one-to-one map (denoted by
hq∗q again) from Aq∗ \ Sq∗q into Aq.

We show that

hq∗q(Aq∗ \ K) = Aq \ δq∗q for K = Sq∗q. (4.4)

Denote the outer circle of Aq∗ (resp. Aq) by C∗ (resp. C). For any z ∈ C∗\K,
take a crosscut γ of Aq∗ separating z and K. Then hq∗q(γ) separates hq∗q(z) ∈

13
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C from δq∗q so that we have the inclusion ⊂ in (4.4). Next, take any
sequence wn ∈ Aq converging to w ∈ C\δq∗q. Then zn = gq∗q(wn) ∈ Aq∗\Sq∗q

converges to a point z ∈ C∗∪K by taking a suitable subsequence if necessary.
If z ∈ K, then wn = hq∗q(zn) accumulates to δq∗q that is absurd. Hence
z ∈ C∗ \ K. Since z is simple, wn converges to a point w′ ∈ C that must
equal w by the assumption, yielding (4.4).

Analogously to §3, we consider the function

Φ(w) = log
gq∗q(w)

w
, w ∈ Aq, Φ(q) = log

q∗

q
, (4.5)

which is a well defined bounded analytic function on Aq with

ℜΦ(w) = log
q∗

q
for any w ∈ ∂Dq. (4.6)

Hence, by virtue of Proposition 2.3, the limit

ϕ(eiθ) = lim
r↑1

log |gq∗q(re
iθ)| (4.7)

exists for a.e. θ ∈ [0, 2π), and the identities (2.13) with A = log q∗
q and

(2.14) hold true. But, by the observation made above, limr↑1 |gq∗q(re
iθ)| = 1

for any θ ∈ [0, 2π) \ ℓq∗q so that the domain of integration [0, 2π) in those
identities can be replaced by ℓq∗q, yielding as in §3

1

2π

∫

ℓq∗q

ϕ(eiθ)dθ = log
q∗

q
. (4.8)

log
gq∗(z)

gq(z)
=

1

2π

∫

ℓq∗q

ϕ(eiθ)
[
Kq(gq(z), eiθ) − iℑKq(q, e

iθ)
]
dθ. (4.9)

We now state a specific right continuity condition on a family of growing
hulls. Let {Ft; t ∈ (0, T ]} be a family of growing hulls in the annulus AQ. We
keep the related notations introduced above. Let q∗ = α(t∗) for t∗ ∈ [0, T ).
The family is called right continuous at t∗ with limit λ(q∗) if there exists a
point λ(q∗) on the outer boundary of Aq∗ such that

∩

t>t∗
Sq∗q = λ(q∗), (4.10)

for Sq∗q defined by (4.2). This condition is obviously satisfied when the hulls
are generated by a Jordan arc γ, in which case λ(q∗) = gq∗(γ(t∗)). But such
a condition is also satisfied by more general families of growing hulls arising
in SLE (cf. [L]) and in SKLE (cf. [CF2]) as well.

14
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Theorem 4.1 Let {Ft; t ∈ (0, T ]} be a family of growing hulls in the annu-
lus AQ that is right continuous at t∗ ∈ [0, T ) with limit λ(q∗). Then q = α(t)
is right continuous at t = t∗, gq(z) is right differentiable at q = q∗ and

∂+ log gq(z)

∂ log q

∣∣∣∣
q=q∗

= Kq∗(gq∗(z), λ(q∗)) − iℑKq∗(q∗, λ(q∗)), (4.11)

for z ∈ AQ \ Ft∗+δ, δ > 0, where the left hand side denotes the right deriva-
tive.

Proof. It suffices to repeat the steps (II) and (III) in the proof of Theorem
3.1 almost word for word.

Indeed we have verified in the above that the conformal map hq∗q ex-
tends to a continuous one-to-one map from Aq∗ \Sq∗q onto Aq \δq∗q. Accord-
ingly, using the mirror reflections Πq∗ and Π1, it can be further extended
to a conformal map from the region specfied by (3.12) that increases to
Aq∗2,(q∗)−2 \ {λ(q∗)} as t ↓ t∗ owing to the current condition (4.10). The
functions hn and regions En defined in the paragraph above (3.15) satisfy
all the conditions (i) ∼ (iv) of Corollary 7.2 again owing to condition (4.10).
Hence we get the right continuity (3.13) of α and a local uniform convergence
(3.14) of hq∗q together with the right continuity (3.15) of g.(z).

For any ϵ > 0 with ϵ < 1 − q∗, we can choose δ > 0 such that (3.17) is
valid due to condition (4.10). Let C = ∂D(λ(q∗), ϵ) and χ = hq∗q(C). By
virtue of (3.14), we have for a sufficiently small δ > 0 the property (3.18)
which particularly means that diam χ < 3ϵ. Since δq∗q ⊂ ins χ, we get for
every ζ ∈ δq∗q

|λ(q∗) − ζ| < 5ϵ, for any t ∈ (t∗, t∗ + δ). (4.12)

By taking the continuity of Villat’s kernel Kq(z, ζ) and (3.15) into ac-
count, we can now deduce the desired conclusion of Theorem 4.1 from (4.8),
(4.9) and (4.12). 2

Corollary 4.2 Let {Ft; t ∈ [0, T ]}, F0 = ∅ be a family of growing hulls in
the annulus AQ satisfying the following conditions:

(1) α is continuous on [0, T ] so that α[0, T ] = [Q,QT ].

(2) There exists a continuous map λ from [Q,QT ] to ∂D and Ft is right
continuous at each t ∈ [0, T ] with limit λ(q) for q = α(t).

(3) gq(z) is continuous in q ∈ [Q,QT ] for each z ∈ AQ \ FT .
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Then gq(z), z ∈ AQ \ FT , is continuously differentiable in q ∈ [Q,QT ] and
satisfies the differential equation

∂ log gq(z)

∂ log q
= Kq(gq(z), λ(q)) − iℑKq(q, λ(q)), gQ(z) = z. (4.13)

In fact, under the stated conditions, (4.13) holds in the right derivative sense
by virtue of Theorem 4.1. As the right hand side of (4.13) is continuous in
q, it becomes a genuine ODE.

5 Villat’s kernel is a BMD Schwarz kernel

The Schwarz kernel on a planar domain is by definition an analytic function
with its real part being the Poisson kernel to represent harmonic functions by
their values on the boundary. But we need to specify which class of harmonic
functions and which part of the boundary are involved. We consider a BMD
Schwarz kernel S(z, ζ) defined in Introduction. ℜS(z, ζ), z ∈ Aq, ζ ∈ ∂D,
for the annulus Aq thus represents BMD harmonic functions for Aq by their
boundary values on ∂D. We now deduce from Proposition 2.2 (ii) that the
Villat’s kernel Kq(z, ζ) for z ∈ Aq, ζ ∈ ∂D, is equal to a BMD Schwarz
kernel S(z, ζ) for Aq up to a constant factor.

The BMD on Aq is the diffusion process on Aq ∪ {a∗} obtained from the
absorbing Brownian motion on D by rendering the inner concentric disk Dq =
{z : |z| < q} into a single point a∗. The BMD-Poisson kernel K∗(z, eiθ), z ∈
Aq, 0 ≤ θ < 2π, to represent BMD-harmonic functions by their values on
∂D admits the same expression as (5.2) of [CFR]:

K∗(z, eiθ) = −1

2

d

dr
G0(z, reiθ)

∣∣
r=1

− φ(z)p−1 d

dr
φ(reiθ)

∣∣
r=1

,

where G0 is the Green function (the 0-order resolvent density) of the ABM
on Aq, φ is the hitting probability of Dq for the ABM on D, and p is the
period of φ around Dq. Due to the rotational symmetry, the second term of
the right hand side is independent of θ, and K∗(z, ζ) is a harmonic function
in z ∈ Aq taking a constant 1/(2π) on ∂Dq for each θ ∈ [0, 2π).

Consider any non-negative continuous function ϕ on [0, 2π) with∫ 2π
0 ϕ(θ)dθ = 1 and let u(z) =

∫ 2π
0 K∗(z, eiθ)ϕ(θ)dθ, z ∈ Aq. Then u is har-

monic on Aq, taking a constant 1/(2π) on ∂Dq and taking the value ϕ(θ) at

each eiθ ∈ ∂D. By virtue of Proposition 2.2 (ii), f(z) = 1
2π

∫ 2π
0 ϕ(θ)Kq(z, eiθ)dθ

is an analytic function on Aq whose real part ℜf(z) possesses the same

16

16 STOCANAL2014, 012, v2: ’On Villat’s ker...’



boundary value on ∂Aq as u. Therefore ℜf(z) = u(z), z ∈ Aq. By mak-
ing ϕ → δθ0 for a fixed θ0 ∈ [0, 2π), we conclude that 1

2πℜKq(z, eiθ0) =
K∗(z, eiθ0), that is to say, 1

2πKq(z, eiθ0), 0 ≤ θ0 < 2π, is nothing but a
BMD-Schwarz kernel for the annulus Aq.

6 K-L equation on circularly slit annulus in terms
of BMD Schwarz kernel

A domain D of the form D = Aq \∪N−1
j=1 Cj is called a circularly slit annulus

if Aq = {z ∈ C : q ≤ |z| < 1} is an annulus for some q ∈ (0, 1) and Cj are
mutually disjoint concentric circular slits contained in Aq. We denote by D
the collection of all circularly slit annuli. The Komatu-Loewner equation for
D has been formulated by Komatu [K3] and Bauer-Friedrich [BF2]. In this
section, we make their descriptions of the equation more precise in terms of
a normalized BMD Schwarz kernel introduced below.

We fix D = AQ \∪N−1
j=1 Cj ∈ D and consider a Jordan arc γ : [0, tγ ] 7→ D

with γ(0) = ∂D, γ(0, tγ ] ⊂ D. According to [K3], we can then find a strictly
increasing function α : [0, tγ ] 7→ [Q,Qγ ], (α(tγ) = Qγ) such that, for
q = α(t), there exists a unique conformal map

gq : D \ γ[0, t] 7→ Dq = Aq \
N−1∪

j=1

Cj(q) ∈ D, with gq(Q) = q.

α may not be continuous as in the annulus case of §3. Nevertheless we
can reparametrize the curve γ as {γ̃(q) : q ∈ dom(γ̃)} by setting γ̃(q) =
γ(α−1(q)), where dom(γ̃) = α[0, tγ ] ⊂ [Q,Qγ ].

For D = Aq \ ∪N−1
j=1 Cj ∈ D, let K∗

D(z, ζ), z ∈ D, ζ ∈ ∂D, be the BMD
Poisson kernel for D. A BMD Schwarz kernel SD(z, ζ) for D is by definition
a function analytic in z ∈ D satisfying ℜSD(z, ζ) = K∗

D(z, ζ). For each
ζ ∈ ∂D, SD(·, ζ) exists uniquely up to an imaginary additive constant owing
to the zero period property of a BMD harmonic function (cf. [CFR]). Let
us denote by ŜD(z, ζ) the BMD Schwarz kernel subjected to a normalization

ℑŜD(q, ζ) = 0, for any ζ ∈ ∂D. (6.1)

Any BMD Schwarz kernel SD(z, ζ) gives rise to a normalized one by

ŜD(z, ζ) = SD(z, ζ) − iℑSD(q, ζ), z ∈ D, ζ ∈ ∂D. (6.2)

If D is just an annulus Aq with no circular slit, then we see by virtue of
the result in the preceding section that its normalized BMD Schwarz kernel
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equals the normalized Villat’s kernel multiplied by 1
2π :

ŜD(z, ζ) =
1

2π
[Kq(z, ζ) − iℑKq(q, ζ)]. (6.3)

Take 0 ≤ t∗ < t ≤ tγ and put q = α(q), q∗ = α(t∗). Then Q ≤ q∗ < q ≤
Qγ . Define gq∗q = gq∗ ◦ g−1

q which maps Dq conformally onto Dq∗ \ Sq∗q and
satisfies

gq∗q(q) = q∗, (6.4)

where Sq∗q = gq∗γ[t∗, t]. Let

λ(q) = gq(γ̃(q)) (6.5)

that is located on an outer circle of Dq. The pre-image g−1
q∗q(Sq∗q) of Sq∗q is

a subarc {eiθ : β1(t
∗, t) < θ < β2(t

∗, t)} of the outer circle of Dq containing
the point λ(q).

Now log

∣∣∣∣
gq∗q(z)

z

∣∣∣∣ , z ∈ Dq , is harmonic on Dq as the imaginary part

of the well defined analytic function log
gq∗q(z)

z
on Dq and takes a constant

value on each circular slit Cj(q). Therefore we can verify just as in [CFR,
§6.3] that

log

∣∣∣∣
gq∗q(z)

z

∣∣∣∣ =

∫

∂D

∣∣∣∣log
gq∗q(ζ)

ζ

∣∣∣∣ K∗
q (z, ζ)s(dζ), z ∈ Dq, (6.6)

where K∗
q (z, ζ) is the BMD Poisson kernel for the circularly slit annulus Dq.

Hence we get

log
gq∗q(z)

z
=

∫ β1(t∗,t)

β0(t∗,t)
log |gq∗q(e

iφ)|Ŝq(z, eiφ)dφ + ic, (6.7)

for the normalized BMD Schwarz kernel Ŝq and for some real constant c.
By substituting z = q in (6.7), we obtain from (6.4)

log
q∗

q
=

∫ β1(t∗,t)

β0(t∗,t)
log |gq∗q(e

iφ)|Ŝq(q, e
iφ)dφ + ic,

which implies that c = 0 on account of (6.1).
On the other hand, the Cauchy integral theorem applied to the analytic

function log
gq∗q(z)

z
on the circularly slit annulus Dq yields just as in [BF2,

§3.2]

log
q∗

q
=

∫ β1(t∗,t)

β0(t∗,t)
log |gq∗q(e

iφ)|dφ. (6.8)
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The integrand on the right hand side of (6.8) being uniformly bounded,
we get the left continuity of q = α(t) by letting t∗ ↑ t in (6.8).

We next substitute z = gq(w) into the identity (6.7) with c = 0. We then
divide the resulting the both hand sides of the resulting identity by those of
(6.8) and let t∗ ↑ t in getting the following theorem.

Theorem 6.1 q = α(t) is left continuous in t ∈ (0, tγ ].
gq(z) is left-differentiable in q and it holds for z ∈ D \ γ[0, t] that

∂− log gq(z)

∂ log q
= 2πŜq(gq(z), λ(q)), q ∈ α(0, tγ ] ⊂ (Q,Qγ ], gQ(z) = z, (6.9)

where the left hand side denotes the left derivative.

Remark 6.2 In the special case that N = 1, D is just an annulus AQ and
the equation (6.9) is reduced to

∂− log gq(z)

∂ log q
= Kq(gq(z), λ(q)) − iℑKq(q, λ(q))]. q ∈ α(0, tγ ], gQ(z) = z,

(6.10)
by virtue of (6.3), which actually holds in the true derivative sense as has
been proved in Theorem 3.1 by making use of the kernel convergence theorem
for annuli formulated in Appendix.

In the case where N > 1 so that the degree of the multiplicity of the
circularly slit annulus D is equal or greater than 3, the problem of proving
the equation (6.9) to be a genuine ODE remains open, although Komatu
[K3] tried to do so by an induction in N ≥ 1 not quite successfully.

7 Appendix: Carathéodory-Komatu convergence
theorem for annuli

As in §3, we use the notations D(z, r) = {w ∈ C : |w − z| < r}, A(s, t) =
{w ∈ C : s < |w| < t} for r > 0, 0 < s < t.

Consider the following two conditions on a doubly connected domain D
in C :
(i) D ⊂ A(1, a) for some a > 1,
(ii) D admits ∂D(0, 1) as one of the boundary components of D.

We let D = {D : D is a doubly connected domain satisfying (i) and (ii)}.

For a sequence {Dn} in D, we define its kernel as follows. Suppose that
D0 ⊂ ∩∞

n=1Dn for some D0 ∈ D. Then the kernel of {Dn} is defined as
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the maximal doubly connected domain D in D(0, 1)c such that D satisfies
(ii) and any compact subset of D is contained in Dn for sufficiently large n.
Otherwise, the kernel is defined to be ∂D(0, 1). A sequence {Dn} in D is said
to be convergent to D in the sense of kernel convergence, if D is the kernel
of {Dn} and the kernel of any subsequence of {Dn} coincides with D. A
sequence {Dn} in D is said to be uniformly bounded if Dn ⊂ A(1, a), n ≥ 1,
for some a > 1.

It is known that if there exists a conformal map from D onto D′ with
D, D′ ∈ D, then D and D′ admit an identical modulus and the map extends
homeomorphically from ∂D(0, 1) ∪ D onto ∂D(0, 1) ∪ D′.

A version of the following theorem was presented in [K1], [K2] without
proof only by mentioning its similarity to a proof of Carathéodory’s kernel
convergence theorem for a disk. But we give a proof for completeness.

Theorem 7.1 (Carathéodory-Komatu Convergence Theorem) Let {Dn} be
a uniformly bounded sequence of doubly connected domains in D and let
{Rn} be a sequence with Rn > 1, n ≥ 1, such that there is a conformal
map Fn from A(1, Rn) onto Dn satisfying Fn(1) = 1 for every n. Then the
kernel convergence of {Dn} to a doubly connected domain D in D implies
that the sequence {Rn} converges to R yielding the modulus of D to be log R
and that the sequence {Fn} converges locally uniformly to a conformal map
F from A(1, R) onto D.

Proof. The assumption of the uniform boundedness of {Dn} and the kernel
convergence of {Dn} to D ∈ D imply that ∂Dn ⊂ A(1, a) \ A(1, b), n ≥ 1,
for some a, b with 1 < b ≤ a. Due to the monotonicity of the moduli (cf.
[G2, [V,1,Theorem 3]), we then have b ≤ Rn ≤ a.

As {Fn} is a normal family, there exist a positive number R′ > 1 and a
subsequence {nk} of {n} such that limk→∞ Rnk

= R′ and {Fnk
} converges

locally uniformly to some analytic function F on A(1, R′), which is non-

constant because
1

2πi

∫
|z|=(R′+1)/2 d log F (z)dz = limk→∞

1

2πi

∫
|z|=(R′+1)/2

d log Fnk
(z)dz = limk→∞

1

2π

∫
|z|=(R′+1)/2 d arg Fnk

(z) = 1. By virtue of Hur-

witz’s theorem, we can deduce from the univalence of {Fnk
} that F is an

injective map from A(1, R′) to its image F (A(1, R′)).

It holds that F (A(1, R′)) ⊂ D. In fact, for any ζ ∈ A(1, R′), there exists
δ > 0 with D(ζ, δ) ⊂ A(1, R′). Then D(ζ, δ) ⊂ A(1, Rn) from some n on.
Since the univalence of the function F implies that the coefficient c1 in the
Taylor expansion of F (z)−F (ζ) = c1(z − ζ)+ · · · around ζ does not vanish,
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we can deduce |F ′
nk

(ζ)| ≥ c holding for some c > 0 and for sufficiently large
k from the local uniform convergence of {Fnk

} to F combined with Cauchy’s
integral expressions of F ′(ζ) and F ′

nk
(ζ). Hence there exists ρ > 0 such that

D(Fnk
(ζ), ρ) ⊂ Fnk

(D(ζ, δ)) ⊂ Dnk
from some k on by Koebe 1/4 theorem.

Since limnk→∞ Fnk
(ζ) = F (ζ), we have D(F (ζ), ρ/2) ⊂ Dnk

from some k
on, and consequently F (A(1, R′)) ⊂ D because D is also the kernel of Dnk

.

Denote by Hn the inverse of Fn. Since the family {Hn} is uniformly
bounded, we may assume that {Hnk

} is a locally uniformly convergent se-
quence by taking a suitable subsequence of {nk} if necessary. Since D is
also the kernel of {Dnk

}, we can see that, for any w ∈ D, w ∈ Dnk
for

sufficiently large k and H(w) = limk→∞ Hnk
(w) is well defined with 1 ≤

|H(w)| ≤ R′. Further H is non-constant because of
1

2πi

∫
|w|=r d log H(w) =

limk→∞
1

2πi

∫
|w|=r d log Hnk

(w) = limk→∞
1

2π

∫
|w|=r d arg Hnk

(w) = 1 for

some r > 1 satisfying ∂D(0, r) ⊂ ∩∞
n=1Dn.

Therefore, by applying the open mapping theorem to the analytic func-
tion H together with the pointwise convergence of {Hnk

} to H as k → ∞,
we see that, for any fixed w ∈ D, there exists a positive number δ such that
Hnk

(w) ∈ D(H(w), δ) ⊂ A(1, R′) for sufficiently large k.

If F omits the value w, we have the following contradiction:

0 =
1

2πi

∫

CH(w),δ

F ′(z)

F (z) − w
dz = lim

k→∞
1

2πi

∫

CH(w),δ

F ′
nk

(z)

Fnk
(z) − w

dz = 1,

where CH(w),δ = ∂D(H(w), δ) with counterclockwise orientation. Accord-
ingly, F takes the value w at some point in D(H(w), δ). By combining this
with F (A(1, R′)) ⊂ D and the univalence of F , we conclude that F is a
conformal map from A(1, R′) onto D.

Owing to the uniqueness of the modulus of the domain D, we have R =
limk→∞ Rnk

independently of the choice of {nk}. Further, F = limk→∞ Fnk

gives a conformal map from A(1, R) onto D. As F (1) = 1, F is uniquely
determined independently of the choice of {nk} (cf. [G2, V,1, Theorem 2]),
yielding the desired conclusion. 2

Consider q∗ with 0 < q∗ < 1 and a sequence {qn} satisfying q∗ < qn < 1 for
each n.

Corollary 7.2 Let {hn} be a sequence of univalent functions satisfying the
following conditions :
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(i) Each hn is a surjective map from a domain En to A(qn, 1) with En ⊂
A(q∗, 1).

(ii) En ⊂ En+1 for every n and ∪∞
n=1En = A(q∗, 1).

(iii) Each En has ∂D(0, q∗) as one of its boundary components.

(iv) hn(q∗) = qn for every n.

Then limn→∞ qn = q∗ and {hn} converge locally uniformly to the identity
map on A(q∗, 1).

Proof. 　We denote the inverse function of hn by gn and define a conformal

map Fn from A(1,
1

qn
) onto Dn satisfying Fn(1) = 1 by Fn(z) =

1

q∗ gn(qnz)

for each n, where Dn = { z

q∗ ∈ C : z ∈ En} ∩ A(1,
1

q∗ ). Then the kernel

convergence of the sequence {Dn} in D to A(1,
1

q∗ ) ∈ D follows from (ii).

Since the modulus of A(1,
1

q∗ ) equals q∗, we can apply Theorem 7.1 to deduce

that limn→∞ qn = q∗ and that {Fn} converges to a conformal map F from
A(1, 1

q∗ ) onto itself locally uniformly on A(1, 1
q∗ ). Since F (1) = 1, we get

F (z) = z, z ∈ A(1, 1
q∗ ), that yields the desired conclusion. 2
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