Liouville Property of Harmonic Functions
of Finite Energy for Dirichlet Forms

Masatoshi Fukushima

Abstract A quasi-regular Dirichlet form is said to have a Liouville property if
any associated harmonic function of finite energy is constant. We first examine this
property for the energy form &7 on R” generated by a positive function p. We next
make a general consideration on a regular, strongly local and transient Dirichlet
form & and an associated time changed symmetric diffusion process X with finite
lifetime. We show that X always admits its one-point reflection X* at infinity by
constructing the corresponding regular Dirichlet form. We then prove that, if &
satisfies the Liouville property, a symmetric conservative diffusion extension Y of X
is unique up to a quasi-homeomorphism, and in fact, a quasi-homeomorphic image
of Y equals the one-point reflection X* of X at infinity.
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1 Introduction

We consider a locally compact separable metric space £ and a positive Radon
measure 7, on £ with full support. Given a regular Dirichlet form (£..7) on
L>(E; m) with an associated Hunt process X = (X,.¢.P,) on E, let T, and .F !
be its extended Dirichlet space and its reflected Dirichlet space, respectively. Then
F C Z, C Z™" and the inner product & is extended from .% to both spaces [6].
The notions of the extended and reflected Dirichlet spaces were introduced by Sil-
verstein in [25, 26], respectively, in the same year 1974, but the latter notion was
reformulated by Z.-Q. Chen [4] later in 1992 and further extended to a quasi-regular
Dirichlet form in [6].
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Define the linear subspace 7% of ™! by
H={ue F: u,v)=0 forany ve.Z,).

2% is the collection of X-harmonic functions u on E of finite energy & (1, u). We
will be concerned with a specific Liouville property

dim(H#*) =1 (1

of the form & and its probabilistic significance.

We first give two general remarks on the Liouville property (1). A Borel function
h on E is said to be X-harmonic if it is specified and finite up to quasi equivalence
and if for every relatively compact open subset G C E, E.[|h(X..)|] < oo and
h(x) = E,[h(X,,] for gq.e. x € E, where 1 denotes the first exit time from G. By
the next proposition, we only need to consider the transient form & to study the
Liouville property (1).

Proposition 1.1 (i) If & is irreducible and recurrent, then & enjoys the property (1).
(i) If & is transient and if any bounded X -harmonic function on E is constant, then
& enjoys the property (1).

Proof (i) Suppose (&, %) is recurrent. Then & ©f = Z, by [6, Theorem6.3.2].
Furtheru € %,, &(u, u) = Oimpliesthatthelevelset {x € E : u(x) = ¢} isinvariant
for each constant ¢ by [6, Lemma6.7.3]. Hence (1) follows from the irreducibility
of &.

The assertion (i) also follows from the identity .Z™ = ., and a Poincaré type
inequality for (.%,, &) established in [17, Theorem4.8.2] in the recurrent case, which
requires an additional Sobolev type inequality holding for (£, %) however.

(i1) In view of [6, Remark 6.2.2], it holds under the transience of & that

7 ={h =E[g]:¢eN}

for the space N of terminal random variables ¢ specified by [6, (6.2.1)]. For ¢ € N,
let @, = ((—n) v ¢ A n. Then I, (x) = E[¢,] is a bounded X-harmonic function
and converges as n — oo to /1 q.e. on E, yielding the assertion (ii). O

For an Euclidean domain D C R”, the Beppo Levi space and the Sobolev space
of order (1, 2) are defined, respectively, by

BL(D) = {u e L2 (D) : |Vu| € LX(D)}, H'(D)=BL(D)NL*D). (2)

loc
D(u, v) will denote the Dirichlet integral fD Vu(x) - Vv(x)dx ofu,v € BL(D). The
space BL(D) is just the space of Schwartz distributions whose first order derivatives
are in L2(D). It was introduced and profoundly studied by Deny-Lions [12] following
the preceding works by Beppo Levi [21], Nikodym [24] and Deny [10]. This space
was one of the original sources of the notion of the Dirichlet space introduced by
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Beurling-Deny [2] in 1959 which was basically free from the choice of the underlying
symmetrizing measure. Later on, the space BL(D) was designated as Lé(D) by
Maz’ja [23] and studied in a more general context of the spaces L;,(D) for p > Oand
integers £. However the space BL(D) bears its own independent potential theoretic
and probabilistic significances from the beginning. See [3, 10, 11, 13, 15] in this
connection.

Now suppose a domain D C R” is either of continuous boundary or an extendable
domain relative to H'(D). The symmetric form & with #(&) = . defined by

1
&= -2-1). F = H'(D), (3)

is then a regular strongly local irreducible Dirichlet form on L?(D) and the asso-
ciated diffusion X on D is by definition the reflecting Brownian motion (RBM in
abbreviation). The extended Dirichlet space of & is denoted by H(}(D) and called
the extended Sobolev space of order 1. BL(D) is nothing but the reflected Dirichlet
space of this form & [6, p. 273]. The space #* = BL(D) © H()‘ (D) consists of those
functions on D with finite Dirichlet integral such that they are not only harmonic on
D in the ordinary sense but also their quasi continuous versions are harmonic with
respect to the RBM Z on D.

It was shown in [5, Theorem 3.5] that & fulfills the Liouville property (1) when
D C R"isauniform domain in the sense of [27]. On the other hand, it is demonstrated
in [8] that dim(#*) = N whenn > 3 and D is a Lipschitz domain with N number
of Liouville branches in the specific sense formulated there.

In the simplest case that D = R" the whole space, % is just the space of harmonic
functions on R” with finite Dirichlet integrals. Brelot [3] first observed that the
property (1) is valid, namely, any harmonic function on R" with finite Dirichlet
integral is constant. See [17, Example 1.5.3] in this connection. A simple question
arises: .

(Q) Is the property (1) still valid for the whole space R" and for more general
Dirichlet forms than 1D?

In Sects. 2 and 3, we shall consider a measurable function p(x)yon R such that

O< i <ply)< A, <oco, foreveryx e B :={x| <t}, (>0 (4)

for constants A;, A, depending on ¢ > 0, and the associated spaces F”, ¥* and
form D” defined respectively by

F’ ={ue L*R";, pdx) : |Vu| € L*(R"; pdx)}, (5)
9" = {u e L3 (R") : |Vu| € L*(R"; pdx)}, (6)

D’ (u,v) = /: Vu(x) - Vv(x) p(x) dx. (7
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In the next section, we show that the energy form & = (DP, F*) is a regular
strongly local irreducible Dirichlet form on L?(R"; pdx) and the weighted Beppo
Levi space (47 ,D”) is the reflected Dirichlet space of the energy form &7. If the
constants 1;, A; are independent of £ > 0, then the energy form &7 admits H[,1 (R™
and BL(R") as its extended Dirichlet space and reflected Dirichlet space, respectively,
so that the answer to the question (Q) is affirmative.

In Sect. 3, we give also an affirmative answer to (Q) for the energy form &7 when
n > 2 and p(x) is any positive C*°-function depending only on the radial part r of
the variable x € R". Presently we have no example of the energy form &7 on R” for
n > 2 violating the Liouville property (1).

In Sects.4, 5 and 6, we shall make a general consideration on a regular, strongly
local and transient Dirichlet form (&', %) on L%(E; m) and an associated diffusion
proce@% X = (X;,¢,P;) on E. X, approaches to the point 9 at infinity of E as

1 ¢ [6, Sect.3.5]. But the lifetime ¢ of X could be infinite and so, in place of
X we consider its time-changed process X = (X, g‘ P.) by means of its positive
continuous additive functional whose Revuz measure v is a finite measure on E
charging no &-polar set with full quasi-support. X is v-symmetric. As we see in
Sect. 4, the lifetime Z‘ of X is finite P.-as. for g.e. x € E and )V(z approaches to
dast 1 g:

Therefore the boundary problem of X at 9 looking for all possible Markovian
extensions of _ X beyond ¢ makes perfect sense. A strong Markov process Y on a
Lusin space E is said to be an extension of X if E is homeomorphically embedded
into E as an open subset, the part process of ¥ on E being killed upon leaving E
is identical in law with X, and Y has no sojourn on E \ E, that is, ¥ spends zero
Lebesgue amount of time on E \ £

In Sect. 5, we show that the rime changed diffusion process X admits a v-symmetric
conservative diffusion extension X* from E to its one-point compactification E* =
E U {8} by constructing a regular, strongly local, recurrent and irreducible Dirichlet
form on L>(E*; v), v being extended to E* @y setting v(d) = 0. In accordance with
[71, X* is called the one point reflection of X at d.

Theorem 6.1 in Sect. 6 will state that, if & enjoys the Liouville property (1), then
a v-symmetric conservative diffusion extension ¥ of X is unique and coincides with
the one-point reflection X7 of X atd up to a quasi-homeomorphism. namely. a quasi
homeomorphic image of Y is identical with X, and furthermore the extended Dirich-
let space of ¥ equals the reflected Dirichlet space (Z'', &™') of & independently
of the smooth measure v employed in the time change.

The proof of Theorem 6.1 will make use of the following general observation.
Owing to the works of S. Albeverio, Z.-M. Ma and M. Réckner [1, 22] and P.J.
Fitzsimmons [14], the quasi-regularity of a Dirichlet form has been known to be not
only a sufficient condition but also a necessary one for the existence of a properly
associated right process. It is further shown by Z.-Q. Chen, Z.-M. Ma and M. Rockner
[9] that a Dirichlet form is quasi-regular if and only if it is quasi-homeomorphic
to a regular Dirichlet form on a locally compact separable metric space. On the
other hand, it was known that, if two regular Dirichlet spaces are equivalent in the
sense of [16] and [17, Appendix], then the equivalence can be induced by a certain
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quasi-homeomorphism of the underlying spaces. Hence the equivalence of two quasi-
regular Dirichlet spaces can be induced by such a map as will be formulated in
Theorem 6.2. In the specific setting of Theorem 6.1, the Dirichlet spaces of ¥ and
X* are both quasi-regular and they can be shown to be equivalent if the Liouville
property (1) is valid. Thus Theorem 6.1 follows from Theorem6.2.

2 Energy Form &7 and Weighted Beppo Levi Space ¢°
For a fixed Borel function p on R” satisfying (4), define #7, 47, D’ by (5), (6), (7),
respectively. We put Df(u, v) = D’(u,v) + fj, uvpdx, u,v € F°.

Proposition 2.1 The energy form & = (D*, #7) is a regular strongly local and
irreducible Dirichlet form on L*(R"; pdx).

Proof Completeness: Suppose {uy) C F” is D{-Cauchy. There exists then u €
L*(R"; pdx) and u; converges to i in L?(R"; pdx). For each r > 0, {111{[8,} is
D-Cauchy on B, by (4) and so, d;u; — o;u in L*(B,), 1 <i < n.One can find a
subsequence {k;} such that

up, — u, duy, — du, 1 <i<n, aeonR" asf — oo.
By Fatou’s lemma

) - - 2l
D{(u — tyy, u — uy) < liminf DY (g, — thy, i, — ) — 0, m — oo.

t—0o0

Regularity: Take any bounded u € .%7. For any € > 0, we find r > 0 with

/ |V11]3/)(1'.\' < g, / u’pdx < g,
‘ _"_';"\‘I}( J ?,“\\B,

Choose p e C(E) withg =1lon B, g =00nR"\ B, », and0 < <1, 0<
IVl < 1onR". Then

D) (u — ug, u — up) < 2/ (1 — N Vu(x) P p(x)dx
BB,

+2f u(.r)z|V<,0(_r)]2p(.\‘)d.\' —}~/ uzpd.\' < Se.
E\B, BB,

Since ug € HUl (By+2), there exists f € C°(B,12) with

/ [IV(u(p - DO+ (e — f)z]d.\‘ < e/Ar4a.
Br+2



30 M. Fukushima

Hence, by taking (4) into account,
Di(u— fiu—f)<2D(u—up,u—up)+2D7(up — f,up — f) < 12¢,

Markov property, strong locality and irreducibility follow from Theorem 3.1.1,
Excercise3.1.1 and Corollary 4.6.4 of [17], respectively. O

We consider the quotient space 47 = 47 /4" of 4" relative to the space .4 of
constant functions on R”.

Lemma 2.2 ¥ is a Hilbert space with inner product D”.
Ifup € 97 is D -convergenttou € 4” ask — 00, then there are constants c;. such

that uy — ¢y converges to u in L,zOc R ask — oo.

Proof We use the Poincaré inequality holding for each ball B,, r > 1:
f (u(x) — (u))%dx < C/ (Vu(x)*dx, ue H'(B), (8)
B, B,

where (u); = |B;|™! fB; u(x)dx and C, is some positive constant (cf. [19, (7.45)]).

Let {u;} C Gr be D?-Cauchy. There exist then f; € L2(R"; pdx) such that
diuxy — fiin L>(R"; pdx) and hence in L?(B,) ask — oo, 1 <i <mn, r > 1.
Set ¢y = (). By (8), {1y — ¢4} is L?(B,)-Cauchy foreachr > 1. Letu € L;‘OC(R”)
be the limit function. Then, for any ¢ € C°(R"),

fipdx = ]im;\,_,oo/_ O (ug —cp) - pdx = —/i (up —cp)dipdx = —/

=R 2 o

uo;pdx,
1

sothat f; = dju, 1 <i <n. O
Let (%, &) be the extended Dirichlet space of the energy form &7,
Corollary 2.3 Z/ C 97 and 7 (u, 1) =D (u 11), u e FL.
Proof Foru € 7/, thereexistu, € Z7, k = 1, which is D”-Cauchy and converge
to 1t a.e. as k — oo according to the definition [17, Sect 1.5}. By Lemma 2.2, {u;} is
D’-convergent to some v € ¢7 and, for some constants ¢; and a subsequence {k, },
ug, + ¢, — vae. as £ — oo. Hence ¢ = lim, . oocy, exists and u = v — ¢ so that
1€ 9’ and {u;} is DP-convergent to u. O
For a general regular strongly local Dirichlet form & = (&, .%) on L*(E;m),

the energy measure ji(, is well defined for u € %, and, according to [6, Theo-
rem 6.2.13], the reflected Dirichlet space of & can be defined by

Ff = {u : finite m—a.e.on E, 1iu € Fioe, SUP; finuwy(E) < 00)

~ : )]
E (u, u) = limy, sof(guy (E), u € F*,

where tu(x) = (—k) Vu(x) Ak.
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Let (Z /el &£y pe the reflected Dirichlet space of the energy form &7. By
virtue of [6, Theorem4.3.11], the energy measure of a bounded u € .#* is given by
M (dx) = |Vu |2 pdx. Thus we have from (9)

Frrel = (i : finite a.e.on R, ru € HL (R"), sup; [5. [Vu|*pdx < oo}
EP (u, u) = limyy o0 [z, IVTeul?pdx, u € Frel,
(10)

Proposition 2.4 1t holds that
Lg,j/hrcf — @r Oﬁ[).l‘ﬁf =D”.

Proof From (10), we obviously have ¢” C FZrreland &2y, u) = D (u, u) for
any u € 4°.

It remains to show that .77 ¢ &” Forany u € .7 we see by Banach-Saks
theorem (cf. [6, Theorem A 4.1]) that the Césaro mean sequence {fy, £ > 1} of a
suitable subsequence of {7,u, k > 1} C 47 is D”-Cauchy and converges pointwise
to u. By Lemma 2.2, there exist constants ¢; and w € 47 such that f; — ¢, —
w in L?>(B,) as £ — oo for each r > 1. Choose a subsequence {{,} such that
ft, — ¢, — wae.onR'asp — 00.Thenc¢ = limp, ¢, existsandu = w + ¢ €
@r. O

3 Liouville Property of Rotation Invariant Energy Forms
on R”

Theorem 3.1 Let p(x) = n(|x]), x € R, for a positive C*-function n on [0, 00)
such that i is constant on [0, €) for some & > 0.

Then the energy form &7 satisfies the Liouville property (1) when n = 2.

When n = 1, dim(°*) = 2 in transient case.

Proof In view of Propositions 1.1 and 2.1, it suffices to consider only the transient
case in order to verify the Liouville property (1). According to Theorem 1.6.7in the
first edition of [17], &7 is transient if and only if

/ ———dr < o0. (1hH
T

In what follows, we assume that 5 satisfies condition (11).
It then follows from 1/r = ("0 () />(n(r)r"~")~'/? and the Schwarz inequal-
ity that

o0 Y
/ r" 7 n(r)dr = oo. (12)
1
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We use the polar coordinate

Xy =rcosf, xp =rsinfycosfr, x3=rsinb;sinb,cosbs, ...,
Xy—y = rsinfysind,...sin6,_,cos6,_;, x, =rsiné;sin6,...sinf,_,sinb,_;.

Then, for u, v € C (R"),

D (u, v) (13)
Uy, vo g, Vg, ug, Vo, _
— / li”)'vi'—i‘ l’) 1 4 . .lz. 4 e n—1 n‘ I7
J(0,00)x (0,712 x[0,27] rs r4sin“ 0 resin“ 6 .. .sinc 6, _o

x ()" Tsin=20; .. sin Op—2drdOy ...do,_;.
For a C*-function © on R”, we denote by I, (i, u) the value of the integral of the

right hand side of (13) for v = u.
By Proposition 2.4, the reflected Dirichlet space of &7 is given by (47, D?) where

G ={ue L} (R") / [Vu(x)P*n(xdx < oo}.

Since the extended Dirichlet space (%!, D”) of the transient energy form &7 is a
real Hilbert space possessing C>°(IR") as its core, we have

A" ={ued’ :D(u,v) =0 forevery v e CPR")). (14)
By noting that p(x) = n(|x]) is a C*°-function on R”, we let
Lu(x) = Au(x) +Viogp(x) - Vu(x), xeR". (15)
We say that u is £7-harmonic if
ue CRY, Lu(x)=0, x e R".
Equation (14) then implies that # € .7 if and only if
u is &”-harmonic and 7, (1, u) < oo. (16)
It also follows from (13) that « is &”-harmonic if and only if

ue COMYy, Lur,6p,....6,1)=0, (0. ....6,-1) €0, 00) x (0, 7)"% x [0, 27],
(17)



(2
(98]
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where
Lu(r, 6, ..., Gi-1) (18)
1 n—1 17().) son=2 7]('.) s =3
= ——(u, - n(r)r b (up sin" "By, + ————————(11p, sin" " 62)p,
1_”__1 ( J 7( ) )z s 1'2 Si}]”fz 91 ( 7y l)’] 1_2 sinz 6[ sin’=3 92( & ’)h’i

] n(r
7](1 ) (HH,_,“} Si]l '911*2)('/;1».3 -+ A )

(g, Do,

#gapik

i) ] B 7 .2 . 5
r2sin @y ...sin’ B,_3 sinf,_2 resin” 6y ...8in" 6,0

Now take any function # € s#*. We first claim that
ug,_, = 0. (19)

Putw = uy, . Then w € C®(R") because w(x) = —uy,_, (xX)x, + 1y, (X)x,-1, X €
R". Due to the expression (18) of .%, we also have Z'w = (Lu)y,_, = 0on (0, 00) x
(0, 1) 2 x [0, 27]. Thus w satisfies (17) so that w is &”-harmonic.

For B, = {x € R"; |x| < r} and the uniform probability measure [7(d&) on 0 By,
w therefore admits the Poisson integral formula

wi(x) :/ K, (x,r&EYw(r&EI(dE). x € B,, (20)
9B,

where K, (x, r&) is the Poisson kernel for B, with respect to L, which is known to
be continuous in (x, §) € B, x dB; (cf. [20]). We also note that K, (0, &) = 1 for
any & € 9 By by the rotation invariance of L around the origin 0.

Fix ¢ > 0. It then holds For any r > « that

K (x,ré&) = / K, (x,a&)K, (a&y, r&TI1(dE)), x € By, & € 0B,.
4B,

Hence, if we let sup K.(x,a&) = C, < oo, then, for x € B,n, & € 9B,

YEB, 2 .E1€0 B,
K} (s }-%2) = Cvu / ]\,/ ((/éf{ . ]‘él)n(dél) = Cu 1\,1<0 ].é‘:_‘) = Cz,,
JaB

and it follows from (20) that
lw(x)] < C(,f w@EEI(dE), x € Byp, r>a.
4B,

Recall that w = ug,_,. We denote by o, the area of 9 B;. We multiply the both
hand side of the above inequality by #"~*1(r), integrate in r from a to R, apply the

Schwarz inequality and finally use the expression (13) to get
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—1/2

/e

C R ‘
lag,  (¥)] < [/ r”B;)(r)dr:} V0(u.u), xe€ B,

which tends to 0 as R — oo by (12) and (16). Since @ > 0 is arbitrary, we arrive at
(19). Here the finite energy property for u € %7 is crucially utilized.
It also holds that

g, =0 forany 1 <k<n-2. 21

Infact,ifweletg; =2, 1 <i <n,é=(,...,&,) € ()B; thend,, 1 <k <n—2,

isan angle of twon- vectors’;‘(“ =,...0,&,....&). & =(0,...0,1,0,...,0).
e e N e’

k=1 k=
Let O be an orthogonal matrix whose (n — 1)-th and n-th rowl vectors are e
and € = [§*FD|71 . £¢+D | regpectively. We make the orthogonal transformation
y = Ox. Then 6, equals an angle of two vectors on the (y,_;, ¥z )-plane in the new
coordinate system y and (21) follows from (19) as the expression (7) of D”(u, v)
with p(x) = n(|x|) remains valid for y in place of x.
dr

Thus u depends only on r and, in terms of a scale function ds(r) = W on
nrr'—

(0, 00), (13) and (18) are reduced, respectively, to

* Ldu(r) . I d dulr)
[r N = n ’I . ] ‘%, =y '
(u,u) =0 A (ds(r)) ds(r) iy = r=ldr  ds(r)

By (17), Zu = 0 so that ‘i“((’)) equals a constant C and 1, (u, 1) = 0,C?s(0, 00).
When n > 2, 5(0,00) = oo and we get C =0 from (16), yielding that « is
constant. When n =1 and p(x) = n(|x|), x € R, for a positive continuous func-

tipn n on [0, co) with l/‘;” 77();)“](1,\' <00, u=cy+cs, ¢y, 2 €R, for s(x) =
Jo nUED~'dE, x e R O

The condition for 7 to be a positive constant near 0 is just for simplicity and it
can be weakened appropriately.

4 Strongly Local Transient Dirichlet Form & and a Time
Change X of the Associated Diffusion

Let (E,m, &, ) and (Z,, ™) be as is stated in the beginning of Introduction.
Once for all, we assume that the Dirichlet form (&, .%) on L>(E; m) is transient and
strongly local. Let X = (X,, ¢, P,) be the associated diffusion process on E.

The lifetime ¢ of X can be finite or infinite. Since X admits no killing inside E,
we get from [6, Theorem 3.5.2 and Corollary 3.5.3]

P.(lim X, =3) =1 qe. xekE, (22)
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P.(im_u(X,)=0)=1 qe. x¢€ E, (23)

where 9 is the point at infinity of E and u is any quasi continuous function belonging
to the extended Dirichlet space .%..

In the remainder of this paper, we fix an arbitrary positive finite measure v on E
charging no &-polar set such the the quasi-support of v equals E. Let A be the positive
continuous additive functional of X with Revuz measure v. A typical example of such
ameasure v is v(dx) = f(x)m(dx) forastrictly positive Borel function f on E with
[r fdm < oo and, in this case, A; = {/(';M f(X)ds, 1 > 0.

Let X = (X,. ., P,) be the time changed process of X by means of A:

X, =X,, n=inf{s: A, >1}, =4,

X is a diffusion process on E symmetric with respect to the measure v and the
Dirichlet form & = (&, .%) of X on L*(E; v) is given by

Oye

=&, F=F.NLYE;v), (24)

which is strongly local and regular [6, p. 183].

Proposition 4.1 (i) It holds that
P.(f < oo, lim; X, =) =P, ({ <o0) =1 forge x € E. (25)

(ii) ’I_’]ze extended and reflected Dirichiet spaces of (é’ s F ) equal (F,, &) and
(Ft, &Yy, respectively.

Proof (i) It suffices to show that
P (Ax <o0)=1 forqexekE. (26)

Take a strictly positive Borel function /i on E with [, h(x)m(dx)dx < oo.. By the
transience of X and [6. Proposition2.1.3], Rii(x) < oo form-a.e. x € £ where R is
the 0-order resolvent of X. Forinteger ¢ > 1, let A, = {x € E : Ri(x) < (}. Then
R((Is h)(x) < {foranyx € E.

From [6, (4.1.3)], we have foreach £ > 1

f E [Ax]h(x)m(dx) = (R(I5, 1), v) < Lv(E) < oo.
Al

Asm(E \ (U?il/h)) = (, itfollows that E, [A] < com-a.e.x € E and hence g.e.
x € E by [6, Theorem A.2.13 (v)], yielding (26).

(ii) is a consequence of the invariance of the extended and reflected Dirichlet spaces
under a time change by means of a fully supported positive Radon measure charging
no &-polar set [6, Corollary 5.2.12 and Proposition 6.4.6]. O
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Since the lifetime 5 of the time changed diffusion X is finite P.-as.forqe.x € E
by the above proposition, the boundary problem concerning possible Markovian
extensions of X beyond its lifetime ¢ makes a perfect sense. For different choices of
v, the diffusions X share a common geometric structure related each other only by
time changes. So the study of the boundary problem for X as we shall engage in the
next two sections is a good way to make a closer look at the behavior of the diffusion
process X around 0.

5 One-Point Reflection of X at 9

Denote by E* the one-point compactification E U {3} of E. The measure v is
extended from E to E* by setting v({d}) = 0. vIn this section, we construct a v-
symmetric conservative diffusion extension of X from E to E* by constructing a
regular strongly local Dirichlet form on L*(E*; v). Note that L?(E*; v) can be iden-
tified with L>(E; v).

Recall that the reflected Dirichlet space (F ™', &) of the regular strongly local
Dirichlet form & = (&, %) on L2(E; m) is given by (9). On account of the property
[6, Theorem 4.3.10] of the energy measure ji, for u € Z,., this means that

leg™, &°(1, 1) =0 27)

Furthermore .%, does not contain a non-zero constant funcnon because of the tran-
sience of £ In what follows, every function in the space .%, is taken to be &-quasi-
continuous.

Let us define

€

Fr=u+c:ue, ceRl
E Ny + et +0) =80, ur), up € Fo, c; €R, i =1,2.

(F7, &%) is a subspace of (F'!, &™),

Theorem 5.1 (i) Define I = TN Lj(E' v). The form £ (& f) isthen a
regular strongly local Dirichlet fmm onL” 2(E™ ).

(i1) The extended Dirichlet space ()]‘(S equals (F,, &7). &* is recurrent.

(m) Let X* = (X* P}) be the diffusion process on E* associated with &*. The part
of X* on E being killed upon hitting 9 is then identical in law with the time changed
diffusion X. X* is conservative and irreducible.

Proof (i) Completeness. Suppose w, = u, + ¢, € F*. n > 1, are &;-Cauchy.
Then {u,} C .%, is an &-Cauchy sequence. Due to the transience, it is &-convergent
to some u € %, and some subsequenee {u,, } of it converges to u# g.e. on E in view
of [6, Theorem?2.3.2]. {w,} is L?(E; v)-convergent to some w € L?(E : v) and a
subsequence {w,; } of {w,, } converges to w v-a.e. on E. Hence limy, no¢,; = cexists

and w = i + ¢. Hence {w,} is &}"-convergent to w € € Z*.
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Markov property. This follows from (0 v w) Al =[(—c) VulA (1 —c)+c for
w=u-+ce.F.

Regularity. For any bounded w=u+ce€ 3:1 choose uy € F.NC.(E)
&-converging to u. We may assume that {u;} are uniformly bounded by [17, The-
orem 1.4.2]. By [6, Theorem2.3.2], a subsequence {1} of {uy} converges g.e. to
i. Since /[ uid v is uniformly bounded, the Césaro mean { f;} of a suitable subse-
quence of {if;} converges to f € L?(E; v). Since f; converges to u v-a.e., f = u.
Then f; +c € 7( NC(E™)is a;’l'*—comfergent tou +c=w.

Strong locality. Suppose, for w; = u; +¢;, u; € F,NC(E), i = 1,2, that w; is
constant in a neighborhood of Supp(w,). Whenc; = 0, &*(wy, wy) = Oby the strong
locality of &. When ¢, # 0, the set U = E* \ Supp(w») is either empty or non-empty
relatively compact open subset of E. In the former case, & (wy, wa) = 0. In the latter
case, i, = —cp on U, while Supp(u;) C U and " (w, wy) = & (uy, up) = 0 again.
Therefore &* is strongly local on account of [17, Theorem3.1.2].

(ii) The inclusion C can be shown by using [6, Theorem 3.2.3]. Conversely, for any
u € .F7, its truncations are in Z* and convergent to u pointwise and in &*. Hence
u is in the extended Dirichlet space of &% Since 1 € Frand £%(1,1) =0, & is
recurrent. ;

(iil) By virtue of [17, Theorem4.4.3], the part of 6™ on E admits .7, N C.(E) as its
core. So it coincides with the Dirichlet form (24) on L?(E; v) associated with X.
Hence )v(’vis an extension of X.

Since &* is recurrent, X* is recurrent and in particular conservative.

In order to verify the irreducibility of X*, the resolvents of X*, X are denoted
by R, R,. respectively, and we let i, (x) = E, [e %], x € E. (f.g) will stand for
the integral [, fgdv. By the strong Markov property of X* at the hitting time of 9,
we have for any bounded Borel function f on E,

R f(x) =R, f(x) +u,(x) R, f(3), xekE. (29)

By (25), 1, (x) > Oforq.e.x € Eand1 — 11, (x) = ¢ R, 1(x). x € E.By integrating
, (oo f i
the both hand sides of (29) by v, we thus get R, f(9) = IT-—]% Hence it follows
all,.
from (29) that
e 1)ty Ip)
Uy, Rodp) » Lo W T8) g

(g, 1)

for any Borel sets A, B C E with positive v-measure, yielding the irreducibility of
X*. O

In accordance with [7], we call X* the one-point reflection of X at 9.

This theorem is a generalization of Theorem 3.2 in [18] where a stronger assump-
tion of a Poincaré inequality for & was made. The first construction of such a one-
point reflection at d goes back to [15, Sect. 8] where X = X and X was the absorbing
Brownian motion on an arbitrary bounded domain of R”".
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As has been presented in [18] and [6, Sects.7.5 and 7. 6] thele is an alternative
quite different way to construct a one-point reflection X" of X at d by using a
Poisson point process of excursions of X around 8, which makes the structure of the
constructed process_ X* more transparent but lequnes a certain regularity condition
on the resolvent of X in the construction. Notice that X* becomes irreducible, while
X may not be. See Example 6.2 in [18] in this connection.

In the next section, we shall show that, if & satisfies the Liouville property (1),
then any symmetric conservative diffusion extension of X must equal X up to a
quasi-homeomorphism.

6 Liouville Property of £ and Uniqueness of a Symmetric
Conservative Diffusion Extension of X

Let E be aLusin space into which E is homeomorpically embedded as an open subset
The measure v on E is extended to E by setting u(E \ E) 0.LetY = (Y;, ¢} P})
be any v-symmetric conservative diffusion process on E whose part process on E
being killed upon leaving E is identical in law with X. We denote by (&7, ZY) the
Dirichlet form of Y on LZ(E v). We call Y a v-symmetric conservative diffusion
extension of X.

Theorem 6.1 Suppose & satisfies the Liouville property (1). Then we have the fol-
lowing:
(1) As Dirichlet forms on L*(E, v),

& T = (& F). (30)

(ii) The extended Dirichlet space of (6%, FV) equals (F7, ) = (F'', &),
(1i1) Y under Pz,,‘, and X* under P\L,_\, share the same finite dimensional distributions

for any non-negative g € LY(E; v).

(iv) A guasi-homeomorphic image of Y in the specific sense described in Theoreni 6.2
below is identical with X*

Proof of Theorem 6.1 (i), (ii), (iii) We use basic results due to Albeverio-Ma-Rockner
[1, 221, Fitzsimmons [14] and Chen-Ma-Réckner [9] being formulated in [6]: &7
is a quasi-regular Dirichlet form on L*(E;v) and Y is properly associated with it
[6, Theorem 1.5.3]. By considering the image by the quasi-homeomorphsim j in
[6, Theorem 3.1.13], we can therefore assume that Eisa locally compact separable
metric space, v is a fully SLlpROI ted positive Radon measure on E, (&7, FYyisa
regular Dirichlet form on L*(E;v)and Y isan associated diffusion Hunt process on
E. E is now quasi-open and hence q.e. finely open in E.

Since X is the part on E of Y, we can use [6, Theorem 3.3.8] to characterize its
Dirichlet form (24) as
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F=weF  u=0 qe.on ENE}. =" onF xZ,

where every function in.% " is taken to be quasi continuous. This means that Z isan
ideal of Y ifu € %,, v e F) thenuv € Z,. in other words, .Z" is a Silverstein
extension of .%.

We can then invoke [6, Theorem 6.6.9] about the maximality of the reflected
Dirichlet space of & which equals (F rel - £refy by virtue of Proposition 4.1 (ii) Thus
we have

FY c (= F° N LYE; v)),

a

But under the present assumption (1).

£ =87, X =, 3D

aref _ g
T = 7 )

e

sothat 77 C Z*. As Y is assumed to be conservative while X has a finite lifetime
in view of Proposition 4.1 (i), .Z is a proper subspace of .#" . Hence we must have
the identity Z¥ = Z*. Since Y is a diffusion with no killing inside E, the regular
Dirichlet form (&Y, .ZY) is strongly local so that £¥ (1, 1) = 0. Consequently, for
w=ntc.ueZ, E 0w ow) =E W, u) =&, u) =& (w,w), yielding (30).

The assertion (ii) follows from (30), (31) and Theorem 5.1 (ii).

By (30), Y and X generate the same strongly continuous Markovian semigroup
on L?(E; v) yielding the assertion (iii). O

Here we give one remark on the above proof. Let (&, .%) be a quasi-regular
Dirichlet form and « be the killing measure in the Beurling-Deny representation of
& . Theorem 6.6.91n the book [6] by Z.-Q.Chen and the present author states that,
among all of Silverstein extensions of (&, %), its reflected Dirichlet space is the
maximal one. Actually this statement holds true under the condition that

K = 0. (32)

But the condition (32) is missing in that statement of [6]. We would like to take this
opportunity fo correct it by requiring the condition (32). Of course. (32) is fulfilled
by the present strongly local Dirichlet form (&, 7). In this connection, see also the
proof of Theorem7.1.6 in [6].

In accordance with [17, A.4], we say that a quadruplet (E, m, &, %) is a Dirich-
let space if E is a Hausdorff topological space with a countable base, m is a o-
finite positive Borel measure on E and & with domain % is a Dirichlet form on
L2(E; m). The inner product in L>(E; m) is denoted by (-, -) . For a given Dirichlet
space (E, m, &, .F), the notions of an &-nest, an &-polar set, an &-quasi-continuous
numercal function and ‘&-quasi-everywhere’ (‘6-q.e.” in abbreviation) are defined
as in [6, Definition 1.2.12]. The quasi-regularity of the Dirichlet space is defined
just as in [6, Definition 1.3.8]. We note that the space F,=F NL®(E;m) is an
algebra.
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Given two Dirichlet spaces
(E.m,&,7), (E.n.é. 7). (33)

we call them equivalent if there is an algebraic isomorphism @ from .%;, onto .%,
preserving three kinds of metrics: for u € %,

lullo = 1Pulloe, (U, u)g = (Pu, Pu)p, Eu,u) = E(Pu, Du).

One of the two equivalent Dirichlet spaces is called a representation of the other.

The underlying spaces E, E of two Dirichlet spaces (33) are said to be guasi-
homeomorphic if there exist &-nest {F,}, &-nest {F,,} and a one to one mapping ¢
from Eq = U2, F, onto EO = U2, F,, such that the restriction of ¢ to each F), is
a homeomorphism onto }7“,,. {F,}, {I:“,,} are called the nests attached to the quasi-
homemorphism q. Any quasi-homeomorphism is quasi-notion-preserving.

We say that the equivalence @ of two Dirichlet spaces (33) is induced by a quasi-
homeomorphism g of the underlying spaces if

Qu(X) =ulqg” (%), ue.Z m—ae X

Then m is the image measure of m by g and (&,.F) is the i image Dirichlet form of
(&..F)bygq.

Theorem 6.2 Assume that two Dirichlet spaces (33) are quasi-regular and that
they are equivalent. Let X = (X,,P,) (resp. X = (X, P\)) be an m-symmetric right
process on E (resp. an m-symmelric ngln‘ process on E) properly associated with
(&,.F) on L*>(E; m) (resp. (&, .F) on L2(E; in)). Then the equivalence is induced
by a quasi-homeomorphism g with attached nests { F,,}. {F,} such that X is the i image
of X by q in the following sense: there exist an m-inessential Borel subset N of E

containing M2 F and an m-inessential Borel subset N of E containing N2, F so
that ¢ is one to one from E\N onto E\N and
X, =qX,), PFi=PF, ;. IeFE\N. (34)

A proof of this theorem can be carried out as is explained at the end of Introduction.
See Appendix of [8] for the details.

Proof of Theorem 6.1 (iv) By Theorem 6.1 (i), the two Dirichlet spaces
(E’ v, 8V, FY), (E*,u,c?*,.g‘i‘*)

are equivalent in the above sense by the identity map @ from .Z, onto .%;. Hence
Theorem 6.1 (iv) follows from Theorem 6.2.

To be more precise, there exist a quasi- -homeomorphism ¢ with attached &7 -nest
{F,}on Eand 5“—nest{F,,} on E*,av-inessential Borel set N withN> | F¢ C N C E
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for ¥ and a v-inessential Borel set N with N2, f,‘, C N c E* for X* such that g is
one to one from £ \ N onto £\ N and

X =q), Pi= PJ*W' FeE'\N. 0

We note that the third assertion (ii1) of Theorem 6.1 follows from the fourth one
(iv) because the above map ¢ preserves the v-measure.

An analogous theorem to Theorem 6.1 has appeared in [5, Theorem 3.4] for the
reflecting X on the closure of an Euclidean domain.

Acknowledgements T am grateful to Zhen-Qing Chen and Kazuhiro Kuwae for valuable discus-
sions on the present subject. Indeed I owe the present proof of Proposition propl.1 to their private
communications.
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