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Abstract

For Komatu—-Loewner equation on a standard slit domain, we randomize the Jordan arc in a manner
similar to that of Schramm (2000) to find the SDEs satisfied by the induced motion &(#) on 0H and the slit
motion s(¢). The diffusion coefficient « and drift coefficient b of such SDEs are homogeneous functions.

Next with solutions of such SDEs, we study the corresponding stochastic Komatu—Loewner evolution,
denoted as SKLE,, ;. We introduce a function bgpp measuring the discrepancy of a standard slit domain
from H relative to BMD. We show that SKLE V6.—brn enjoys a locality property.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

In 2000, Oded Schramm [26] introduced a stochastic Loewner evolution (SLE) on the upper
half plane H with driving process &(t) = ./ B;, where B, is the standard Brownian motion
on oH and « is a positive constant. The solution of the SLE is a family of random conformal
mappings from H \ K, to H indexed by # > 0. The increasing family of random hulls {K,; t > 0}
is nowadays called SLE,. It has a certain conformal invariance and a domain Markov property.
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SLE, is a powerful tool in studying two-dimensional critical systems in statistical physics. SLE,
has been proved to be the scaling limit of various critical two-dimensional lattice models, such as
loops erased random walk, uniform spanning trees, critical percolation, critical Ising model, and
has been conjectured for a few more including self-avoiding random walks. In particular, SLEg
was found to have a special property called locality by Lawler—Schramm—Werner [21,22]. Later,
it was proved by S. Smirnov that SLE;g is the scaling limit of the critical percolation exploration
process on two-dimensional triangular lattice. In honor of Schramm, SLE is now also called
Schramm-Loewner evolution.

In this paper, we extend the SLE theory from the upper half plane H to a standard slit
domain —a specific canonical multiply connected planar domain. Based on recent results of
Chen—Fukushima—Rhode [8] on chordal Komatu—Loewner (KL) equation and following the lines
briefly laid by R. O. Bauer and R. M. Friedrich [2—4], we show that, for a corresponding evolution
in a standard slit domain D = H \ U;(V:l C, the possible candidates of the driving processes are
given by the solution (§(¢), s(t)) of a special Markov type stochastic differential equation whose
diffusion and drift coefficients are homogeneous function of degree 0 and —1, respectively. Here
&(t) is a motion on 0H and s(¢) is a motion of slits C, 1 < k < N. When no slit is present, £(¢)
becomes +/k B; as in the simply connected domain H case. The solution (£(¢), s(¢)) of the SDE
then produces a family of random conformal mappings from the multiply connected domains
D \ F, to the canonical slit domains D(s(¢)) via KL equations. This family or its associated
increasing family of random growing H-hulls {F;; > 0} is called a stochastic Komatu—Loewner
evolution (SKLE in abbreviation). We then study the locality property of SKLE.

We now recall the setting formulated in [8] and some of its results that will be utilized in this
paper. They are followed by a detailed description of the rest of the paper.

A domain of the form D = H \ U,ivzl Cy is called a standard slit domain where {Cy}
are mutually disjoint line segments in H parallel to the x-axis. Denote by D the collection
of ‘labeled (ordered)’ standard slit domains. For instance, H \ {C;, C», Cs,...,Cy} and
H\ {C,, Cy,Cs,...,Cy} are considered as different elements of D in general although they
correspond to the same subset H \ U,N: ,Ci of H. For D and Din D, define the distance d(D, 5)
between them by

d(D. D)= max (jzx =%l + Iz — %) (L.1)

where, z; and z; (respectively, Zr and Z}) are the left and right endpoints of the kth slit of D
(respectively, D).
We fix D € D and consider a Jordan arc

y :10,1,) > D with y(0) € 9H and y(0,1,) C D for0 < t, < . (1.2)
For each t € [0, ¢,), let
g :D\yl0,t] - D, (1.3)

be the unique conformal map from D \ y[0, ] onto some D, = H \ U,]{VZICk(t) € D satisfying a
hydrodynamic normalization

2 =7+ “; +Yo(l/lz).  z— oo (1.4)

The coefficient a; is called the half-plane capacity of g;. The slits Ci(¢), 1 < k < N, are uniquely
determined by D and y[0, ¢]. See Fig. 1. Let s(#) denote the endpoints of these slits Cy(¢) (see
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Fig. 1. Conformal mapping g;.

(3.1) for a precise definition) and denote D, by D(s(¢)). We also define

E)=g(y@) edH, 0=<r1<t,. (1.5)

For a Borel set A C H, we use dp A to denote the boundary of A with respect to the topology
induced by the path distance in H \ A. For instance, when A C H is a horizontal line segment,
then 9, A consists of the upper part A" and the lower part A~ of the line segment A.

In [8, Section 8], the following results are established:

(P.1) Forevery 0 < s < t,, g(z) is jointly continuous in (¢, z) € [0, s] x (D U 9,K U 9H) \
y[0, s1), where K = |J,_,Cx.

(P2) a, is strictly increasing and continuous in ¢ € [0, t,,) with ap = 0 so that the arc y can
be reparametrized in such a way that ¢, = 2¢, 0 < t < t,, which is called the half-plane
capacity parametrization.

(P.3) &(¢) € 0l is continuous in ¢ € [0, 7).

(P4) D; € Dis continuous in ¢ € [0, ,,) with respect to the metric (1.1) on D.

Historically g,;(z) has been obtained by solving the extremal problem to maximize the
coefficient @, among all univalent functions on D \ y [0, ¢] with the hydrodynamic normalization
at infinity. But, in order to prove the above continuity properties, we used the following
probabilistic representation of g,(z) given in [8, §7]:

Let ZH* = {ZiHI’*, IE”EH'*, z € D*} be the Brownian motion with darning (BMD) on
D* :== DU {c}, ..., cy} obtained from the absorbing Brownian motion in H by rendering (or
shorting) each slit Cy into one single point c}. That is, Z%* is an m-symmetric diffusion process
on D* whose subprocess killed upon leaving D is the absorbing Brownian motion in D. Here
m is the measure on D* that does not charge on {c7, ..., cx} and its restriction to D is the
Lebesgue measure in D. BMD Z™-* is unique in law and spends zero Lebesgue amount of time
on {c}, ..., cy}; see [8] for details. Set F; .= y[0,t], I, :={z=x+4+iy:y=r}, r >0.Fora
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set A C D*, define o4 = inf{t > 0: ZlHL* € A}. Then (cf. [8, Theorem 7.2]
S g(z) = lim r-P2*op, < op). (1.6)
r—>00 e

Here 3g;(z) stands for the imaginary part of the conformal map g;(z). The above formula was
first obtained by Lawler [20] with Excursion reflected Brownian motion (ERBM) formulated
there in place of BMD. See [8, Remark 2.2], [7, §6] and Remark 6.13 of the present paper for
the relationship between these two processes.

It is proved in [8, Theorem 9.9] that the family of conformal maps {g,(z); t > 0} satisfies the
Komatu—Loewner (KL) equation under the half-plane capacity parametrization of y:

0,8/(2) = —2m Wy (g,(2). (1)) for0 <1 <1,
with go(z) = z € (D U3,K)\ v[0,1,), (1.7)

where ¥,(z, &), z € D,, &€ € oM, is the BMD-complex Poisson kernel for D,, namely, the unique
analytic function in z € D, vanishing at co whose imaginary part is the Poisson kernel of the
BMD for the standard slit domain D, with pole £ € dH. Here 9, := % stands for the partial
derivative in .

The ODE (1.7) was derived in [4] as well as in its original form by Y. Komatu in [18], but
only in the sense of left-derivative in ¢ on its left hand side. In [8, §9], a Lipschitz continuity
of the complex Poisson kernel ¥(z,&) of the BMD for D € D under the perturbation of
D € D is established, which together with (P.4) yields the following property by taking
K (1) = U, Cul0):

(P.5) ¥;(z, &) is jointly continuous in (¢, z, §) € U[E[O.ty){t} X (Dt Uad,K(t) U (0H \ {S})).

P.1), (P.3), (P.5) imply that the right hand side of the Eq. (1.7) is continuous in ¢ and
consequently it becomes a genuine ODE.

The rest of this paper is organized as follows. In Section 2, we show under the above
mentioned setting of [8] that the endpoints s(¢) of the slits C;(t), 1 < j < N, satisfy an ODE
analogous to the KL equation, in terms of the boundary trace of the BMD-complex Poisson
kernel ¥,(z, &).

In Section 3, we introduce a probability measure on a collection of Jordan arcs y using the
half-plane capacity parametrization that satisfies a domain Markov property and an invariance
property under linear conformal map. We then study the basic properties of the induced process
W, = (&(¢), s(?)). In particular, under certain regularity assumption (conditions (C.1) and (C.2)
in Section 3.5), W, is shown to satisfy an SDE for which the diffusion and drift coefficients for
&(t) are homogeneous functions «(s) and b(s) of degree 0 and —1, respectively, and the endpoints
s(?) of the slit motion component satisfy the KL equation.

Conversely, given locally Lipschitz continuous homogeneous functions « and b of degree 0
and —1, respectively, we establish in Section 4 that the corresponding SDE for W, has a unique
strong solution. We show that the solution (£(), s(¢)) has a Brownian scaling property and is
homogeneous in x-direction.

The solution (£(¢), s(¢)) obtained above generates a family of (random) conformal mappings
{g/(2)} via the Komatu-Loewner equation (5.19). The associated random growing hulls {F;} is
called the SKLE driven by (&(¢), s(¢)) determined by coefficients «, b and is denoted by SKLE,, ;.
Its basic properties including pathwise properties as a solution of an ODE as well as a certain
scaling property and a domain Markov property of its distribution are studied in Section 5. The
induced random measures on {F;; t > 0} are shown to have the domain Markov property and a
dilation and translation invariance property.
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In Section 6, we introduce a constant bgyp measuring a discrepancy of a standard slit domain
from H relative to the BMD. We call this constant the BMD domain constant. This section
concerns the locality of SKLE, ;,-hulls {F;}, which is a property that { @4 (F;)}, after a suitable
time change, has the same distribution as {F;} for any hull A C D € D and its associated
canonical map ¢4 : D\ A — D € D. We do not know if {F;} is generated even by a continuous
curve. Nevertheless, a generalized Komatu—-Loewner equation (6.28) for the map g,(z) associated
with the image hulls {®4(F;)} can be derived by first establishing the joint continuity of g;(z)
using BMD and the absorbing Brownian motion. This equation and a generalized It6 formula
(see [9, Remark 2.9]) will lead us to Theorem 6.11 asserting that SKLE for a constant
o > 0 enjoys a locality property if and only if & = /6.

To establish Eq. (6.28), we need a comparison of half-plane capacities obtained by S.
Drenning [11] using ERBM. A full proof of this comparison theorem using BMD instead of
ERBM will be supplied in the Appendix, of this paper.

An SKLE is produced by a pair (£(¢), s(t)) of a motion £(¢) on dH and a motion s(¢) of slits
via Komatu—Loewner equation, while an SLE is produced by a motion on dH alone via Loewner
equation. They are subject to different mechanisms. Nevertheless. as a family of random growing
hulls, it is demonstrated in [9] that, when « is constant, SKLE, ; is, up to some random hitting
time and modulo a time change, equivalent in distribution to the chordal SLE .. Moreover, it is
shown in [9] that, after a reparametrization in time, SKLE N, has the same distribution as
chordal SLEg in upper half space H. In relation to Theorem 6.11 of the present paper, the locality
of SLE¢ will be revisited and examined in [9].

The present paper only treats chordal SKLEs. The study of K-L equations and SKLEs
for other canonical multiply connected planar domains as annulus, circularly slit annulus and
circularly slit disk will be recalled and examined in [9].

Throughout this paper, we use “:=" as a way of definition. For a, b € R, a vV b := max{a, b}
and a A b := min{a, b}.

o, —bpMD

2. Komatu-Loewner equation for slits

We keep the setting and the notations of [8] that are described in the preceding section.

In this and the next sections, we consider simple curves only. We use them to find out
what kind of driving processes should be for general stochastic Komatu—Loewner equation. We
parameterize the Jordan arc y by its half-plane capacity, which is always possible in view of (P.2).
For ¢t € [0, t,,), the conformal map g; from D \ y[0, ¢] onto D, can be extended analytically to
0, K in the following manner.

Fix j € {1,..., N}, and denote the left and right endpoints of C; by z; = a + ic and
Z; = b+ic, respectively. Denote the open slit C; \ {z;, 2’} by C?. Consider the open rectangles

Ry ={z:a<x<b, c<y<c+3d}, R_={z:a<x<b,c—5§<y<c}

and R =R, U C? UR_, where § > 0 is sufficiently small so that R, UR_ C D\ y[0, #,). Since
Jg:(z) takes a constant value at the slit C;, g, can be extended to an analytic function g;" (resp.
g, ) from R, (resp. R_) to R across C? by the Schwarz reflection.

We next take ¢ > 0 with ¢ < (b — a)/2 so that B(zj,e) \ C; C D\ y[0,¢,]. Then
V(z) = (z — z;)"* maps B(z;,¢) \ C; conformally onto B(0, /&) N H. As in the proof of
[8, Theorem 7.4],

ffD=gov ') =gE +z))
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can be extended analytically to B(0, v/¢) by the Schwarz reflection and by noting that the origin
0 is a removable singularity for f;'. Similarly, we can induce an analytic function £’ on B(0, \/¢)
from g, on B(Z, &)\ C;j.

For an analytic function u(z), its derivatives in z will be denoted by u'(z), u”(z) and so on.

Lemma 2.1.

() 9,gF (), (g5 (z) and (gF)'(z) are continuous in (t, z) € [0,1,) x R.
) n(z,¢) = Y,(g:/(2), &) can be extended to an analytic function r);*(z, ) (resp. n;(z,¢))
Jrom R, (resp. R_) to R by the Schwarz reflection, and

(1 (z, ¢)) are continuous in (¢, z, {) € [0,1,) x R x dH. 2.1)

(iii) (gti)/(z) are differentiable in t € (0, t,) and
8,(gti)/(z) are continuous in (¢, z) € [0, £,) x R. 2.2)

Av) 0 £, (f5 (2) and (f1)'(z) are continuous in (t, z) € [0, t,] x B(0, J/¢).
V) 1z, 0) = V(f2), ¢) = ¥(g (¥~ (2)), ¢) can be extended to an analytic function from
B(0, \/e) NH to B(0, \/¢) and

(:(z, ¢))' is continuous in (¢, z, ) € [0,1,) x B(0, /&) x 0H. (2.3)
(vi) (fY(2) is differentiable int € (0, t,) and

3, (£ (z) is continuous in (¢, z) € [0, 1,) x B(0, \/¢€). (2.4)

(vii) The statements (iv), (v), (vi) in the above remain valid with f] in place of f,[.

Proof. (i) This follows from the Cauchy integral formulae of derivatives of g combined with
the property (P.1) and (1.7).

(ii) This can be proved in the same way as (i) using (P.1) and (P.5).

(iii) For 0 < s < t < 1, define g;; = g o g,‘l, which is a conformal map from D,
onto Ds \ g(y[s,t]). Define (1) = g(y(#)) = lime () ep\y0.18:(2). It is easy to see
that £(t) € OH. Furthermore, there exist unique points By(t,s) < Bi(¢,s) from 0H such that
Bo(t,s) <&@) < Bi(t,s),  8&.s(Bo(t, ) = &.s(Bi(t,s)) =&(s), and
=0 for x € aH \ (Bo(t, s), B1(t, 5)),
>0 for x € (Bo(t, s), Bi(t, 5)).

See Fig. 2. We know from [8, (6.22)] that

Bi(t,s)

8s(2) — &(2) = / P (81(2), X)381,5(x)dx. (2.5)
Bo(t,s)

Taking derivative in z yields

B1(t,s)
(5@ - (65)(2) = / (0 (2. 1)) Vg5 (X)dx.
Bo(t,s)

On the other hand, it is established in [8, Lemma 6.2] that for 0 < s < ¢ < 1, that

Sgrs(x +i0+) {

1 Bi(t.s)
20 —t)=a, —a;, = —f Jgrs(x +i0+)dx. (2.6)
T JBo(t.9)
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Fig. 2. Conformal mapping g; ;.

Taking quotient of the last two displays and then passing s 1 ¢ yields

37 (85 (2) = —2n(nF(z, £, Q2.7

where 0, denotes the left-derivative in . In view of (2.1) and the property (P.3), the right hand
side of (2.7) is continuous in ¢ € [0, #,,). Thus, as in the proof of [8, Theorem 9.9], (g5 (z) is
differentiable in . Consequently, (2.2) follows in view of (2.7).

(iv) Let ¥ be a closed smooth Jordan curve in B(0, \/¢). By Cauchy’s integral formula

0N/ _L/ té(é—) . ~
(f,)(z)—zm, n(C—Z)zdg’ z €insy.

Since f4(¢) = g/(¢% + 2 ;) is continuous in ¢ uniformly in ¢ € ¥ by (P.1), we get the desired
continuity. The same is true for (£/)"(z).

(v) Since I7%;(z, ¢) is constant in z on B(0, \/¢) N dH \ {0}, it extends analytically to
B(0, \/¢)\ {0} by the Schwarz reflection. Note that 0 is a removable singularity because 31;(z, ¢)
is bounded near {0}. The second assertion can be shown as the proof of (ii) using (P.1) and (P.5).

(vi) Taking z to be ¥ ~'(z) in (2.5), we have

Bi(t.s)
ff(z) — f,z(z) = / (2, X)Jgr.s(x)dx forz € B(0, \/e)and s < t.
Bo(t.s)
Differentiating in z gives
Bi(t,s)

(5@ - (fH @ = fﬂ (i:(z, X)) Sgs(x)dx  forz € B(0, /e)ands < 1.
0(t,5)
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Taking quotient of the above with (2.6) and passing s 1 ¢ yields 9, (") (z) = 27 (7, (z, £(1))) .
Since the right hand side is continuous in 7 by (2.3) and (P.3), we arrive at the conclusion (vi). [

Denote by z;(¢) and z_’i(t) the left and right endpoints of the slit C;(z), where 1 < j < N,
for D; € Dandt € [0, 1,). Since g is a homeomorphism between 0,C; and 9, C;(¢), for each
t€0,t,)and 1 < j < N, there exist unique

’Zj(t) :fj(l)+lyj € 8pCj and ’Z;(l) = ;;(l‘)-f‘lyj € BPCJ-
S0 that (1)) = 2,(0) and g,Z}() = (0.

Lemma 2.2. (i) If Z;(t) € C] \ {z;, 2}, then

(&) @) =0, (") @) # 0. 2.8)

(i) If Z;(t) € C; \ {z;, 2}, then (2.8) holds with g in place of g;".
(iii) If Z;(t) € 3,C; N B(z}, &), then, for ¥(z) = (z — z))"/?,

FYWE0N=0,  (fY'WE@®)) #0. (2.9)
(iv) If Z;(t) € 0,C; N B(2;, €), then, for Y(z) = (z — Z)'2,

(D' W @) =0, (D" W @) #0. (2.10)

(v) The above four statements also holdfor'Z;(t) in place of Z;(1).

Proof. It suffices to prove (i) and (iii). g;" is analytic on R and Z;(t) € R. Suppose g () —z i@
has a zero of order m at Z;(¢): for some analytic function # with h(Z;()) # 0,

8@ = 2;() = g (2) — & @; (1) = (2 = Z;()"h(2).

Then, in view of [1, p131, Th.11], there exists ¢y > 0 with B(Zj(t), &) C R and §y > 0, such
that, for any w € B(z;(t), do), (g;L)‘l(w) N B(Z;(t), &o) consists of m distinct points. Since g, is
homeomorphic between 9,C; and 9,C;(z), there exists oo > 0 such that, for any § € (0, §oo)
and for any w € B(z;(t),8) N C;(t) with w # z;(1), (g~ (w) C BZ;(1), &) N C;’ consists of
two points because z;(¢) is an endpoint of C;(¢) and so w corresponds to two distinct points of
0,C;(t). Hence m = 2.
(iii) Except for the last part, the following proof is similar to that of (i).

£ is analytic on B(0, \/¢) and ¥ (Z;(1)) € B(0, \/¢). Suppose f(z) — z;(t) has a zero of
order m at ¥(Z;(¢)): for some analytic function & with 2(y(Z;(¢))) # 0,

@) —zi(t) = '@ — ffGi®) = @ — vE0))"h(z), z € B0, Ve).

Then, as in the proof of (i), there exists &y > 0 with B(y/(Z;()), £0) C B(0, /&) and &, > 0,
such that, for any w € B(z;(1), &), (/)" (w) N B(¥(Z;(1)), &) consists of m distinct points.
Since z;(?) is the endpoint of C;(¢) and g; is homeomorphic between d,C; and 9,C;(¢), there
exists doo > O such that, for any § € (0,d00) and for any w € B(z;(t),5) N C;(t) with
w # z;(), (g '(w) C 0,C; N B(z;, ¢) consists of two points. In fact, w corresponds to
two distinct points w,. € C]Jf(t), w_ € C; (1) so that g N(w) = {4, W_} with g, (1) = w.
Then (ff)’l(w) = 1//(gl’1(w)) = {¢¥ (W), ¥ (W_)} consists of two distinct points of B(0, 1/€).
Therefore m = 2. [
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We let h(r, z7) = (g7)(z). Then h(t,z) is a C'-function in (¢, z) € (0, t,) X R by virtue of
Lemma 2.1.
Assume that Z;(10) € C; \ {z;, ). By (2.8),

h(t,Z;(1) =0  fors € (tp— 81,10+ 1) @2.11)

for some §; > 0. On the other hand, |2'(z, z)| = |(g;")"(z)| > 0 by Lemma 2.2. So by the implicit
function theorem , there is some 8, € (0, §;) so that ¢ — Z;(¢) is Clint € (ty — 82, 1y + 82).
Differentiating (2.11) in ¢ yields
d:h(t, z)
h'(t,z)
The same assertions hold for Z;(r) when Z;(t) € Cj_ \ {z;, z;}. A similar argument shows,
by using (iii) and (iv) of Lemma 2.2, that ¥(Z;(¢)) isa C ! function of ¢ in a neighborhood of #,
when %;(10) € 9,C; N (B(zj, &) U B}, ©)),

d.
EZ]‘(Z‘) = — fort € (ty — 82, to + 7). (2.12)

z=7;(t)

Theorem 2.3. The endpoints z;(t) = x;(t) + iy;(1), z;(t) = x?(t) +1iy;(t), of C;(t) satisfy the
following equations for 1 < j < N:

d

E)’j(t) = =23V, (z;(1), (1)), (2.13)
%xj(z) = 27N W, (z,(1), £(1)), (2.14)
d r ¥ r

Exj(t) = 27 RY(2(1), £@1)). (2.15)

Proof. It suffices to prove (2.13)—(2.14). It follows from (1.7) and (i), (iv) of Lemma 2.1 that
8 (2) = =21 ¥y (g, (). £(1))  forz € 0,C; \ {z;., 2} (2.16)
and
& fl(z) = 2w U(fH(2), £(t)) forz € 3,C; N B(zj, &). (2.17)
Note that z;(r) = g(Z;(t)) when Z;(r) € 9,C; \ {z;,2}} and z;(t) = f(Z;(t)) when
Zj(t) € 3,C; N B(z;, €). Since Z;(7) is C' in 7, we have by Lemma 2.2

d d d .
40 = E(gf(z“_,-(r») = 0,8 Z;(1) + (gf)’(zf(r»az (1) = =27 Ui(z; (1), £(1))

when z;(r) € 9,C; \ {z;, z}}, and
d d ¥4 4 NG d ~
sz(t) = Eft @) =3 fr @)+ (f)) (Zj(t))azj(t) = =27 ¥, (z;(1), ¥ (1))
when z;(1) € 9,C; N B(z;, ). This proves (2.13)—~(2.14). [
Remark 2.4. (i) Egs. (2.13)—(2.15) were first derived in Bauer—Friedrich [4] by assuming that
Z;(t) € 3,C;\{z;, 2’;} and also by taking for granted the smoothness of ‘d%g, (z)’ in two variables

(t, ), which is now established by Lemma 2.1.
(i) If

&(zj) = z;(t) and g(z}) = Z;(t) forr € (0,r,)and 1 < j <N, (2.18)
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then Theorem 2.3 is merely a special case of the Komatu—Loewner equation (1.7) with z = z;
and z = z;, 1 < j < N, respectively. But in general (2.18) is not true. [l

We call (2.13)—(2.15) the Komatu—Loewner equation for the slits.

3. Randomized curve y and induced process W

3.1. Random curve with domain Markov property and a conformal invariance

As in the previous sections, for a standard slit domain D = H \ U,ivlek, the left and right
endpoints of the kth slit Cy are denoted by zx = x; + iyx and zj, = x; + iy;, respectively. Recall
that D is the collection of all labeled (or, ordered) standard slit domains equipped with metric d
of (1.1). We define an open subset S of the Euclidean space R*V by

S = {s::(y,x,x’)eRSN: y, X, X e RV, y>0, x<Xx,
either x; < x or x; < x; whenever y; =y, j # k}. 3.D

The Borel o-field on S will be denoted as A(S). The space D can be identified with S as
a topological space. We write s(D) (resp. D(s)) the element in S (resp. D) corresponding to
D € D (resp. s € S).

A set F C Cis called an H-hull if F is compact, F = F NH and H \ F is simply connected.
For D € D and an H-hull F' C D, there exists a unique conformal map g from D \ F onto some
DeD satisfying the hydrodynamic normalization g(z) =z + % + o | ‘
follows, such a map g will be called a canonical map from D \ F. The associated constant a
(which is real and non-negative) will be called the half-plane capacity of g and can be evaluated
as

as z — oo. In what

a= Zlggo 2(g(2) — 2). (3.2)
Set
D={D=D\F: DeDand F C D is an H-hull}.
Forﬁ:D\Feﬁ,let

QD) ={y ={y(): 0 <1 <1,}:Jordan arc, y(0,1,) C D, y(0) € d(H \ F),
0<t, <oo}.

Two curves y, y € Q(D) are regarded equivalent if y can be obtained from y by a
reparametrization. Denote by .Q(D) the equivalence classes of Q(D)

Given y € Q(D) for D = D \F e D, let g: be the canonical map from D \ v[0,¢] =
D\ ([0, t]U F) with the half-plane capacity a,, ¢ € [0, t,,). Note that g, = g; o g, where g is the
canonical map from D \ F onto some D € D and g; is the canonical map from D \ g(y[0,t])
onto some D; € D. It then follows from (3.2) that @, = a + @;, where a and @; are the half-plane
capacity of g and g; respectively.

Since @, = a; — ap is strictly increasing and continuous in ¢ € [0,¢,) with @y = 0 by
(P.2), the curve y can be reparametrized as y(t) = y(&;l) for0 <t <ty = %’c?ty so that the
corresponding half-plane capacity becomes ag+2¢. The curve ¥ is called the half-plane capacity
renormalization of y.

Throughout the rest of this paper, each y € Q(ﬁ) will be represented by a curve (denoted
by y again) belonging to this class parametrized by the half-plane capacity. We conventionally
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adjoin an extra point A to H and define y (1) = A fort > 1y, so that y can be > regarded as a map
from [0, oo] to H U {A}. We then introduce a filtration {g,(D) t > 0} on Q(D) by

G(D):=(o{y(s): 0<s<t)hN{t<ty}, G(D) == a{y(s):s = 0}.

_For each D € D, we consider a family of probability measures {Pp.; z € 0H]} on
(£2(D), G(D)) that satisfies the property

Pp.({y(0) =z} =1, z € 0H, (3.3)

as well as the f0110w1ng (DMP) and (IL). L o
For each D € D and ¢ > 0, define the shift operator 6, : 2(D)N {tr < tp} = 2(D\ y[0, t])
by

@y)s) =y +s) forsel0,t; —1). (3.4)
(DMP) (Domain Markov property): forany D € D, t > 0 and z € 0H,

Pp.. (6,7 4|Gi(D)) = Py, o jio.y.ern(gi(4))  forevery A € G(D \ y[0, t]). (3.5)

Here g;(z) is the canonical map from D\ [0, ¢]. Note that g;(D\ v [0, t]) € D and g,;(y(¢)) € 0H
is well-defined since g;(z) can be extended continuously to d,(D \ y[0, t]).

(IL) (Invariance under linear conformal map): for any D € D and any linear map f from D onto
f(D)eD,

Ps), ) =Ppeo f for every z € oHL (3.6)

Remark 3.1. For D = D \ F € D, let & be the canonical map that maps D onto @(5) eD.
Suppose that ¢ can be extended continuously to d,(H \ F). Then for each z € 9,(IH \ F), one
can define Pp . = Py p) ¢(;) © ®~!. We can therefore restate (3.5) as

Pp.. (67" 4|G(D)) = Pp\yo.1.50(A) forevery A € G(D \ y[0, 1]). (3.7

This explains why we call (3.5) the domain Markov property. The formulation (3.5) avoids the
technical issue whether @ can be extended continuously to 9, (H\ F') for general D=D \F € D.
See Proposition 5.10 and Theorem 5.11 in Section 5. [J

3.2. Markov property of W

ForeachD € D, y € Q(D)and ¢ € [0, t;), y induces the conformal map g, from D \ [0, ¢]
onto D; = g;,(D) € D. The conformal map g;(z) can be extended to a continuous map from
DU,K Ud,yl0,t]UoH onto H. We occasionally write g, as g,D or gp\y[o, to indicate its
dependence on y € Q(D). Note that g, sends y(¢) to £(¢) € oH.

Let {s(t) = s(D;), t € [0, t;)} be the induced slit motion with Do := D. We will consider the
joint process

w, = [ED. s eR xS C N I
8, t>ty.

Here the real part of £(¢) € 0H is designated by &(¢) again and § is an extra point conventionally
adjoined to R x §. We shall occasionally write s(¢) as g, D(s) with s = s(D).
To establish the Markov property of W;, we need the following measurability results.
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Lemma 3.2. Fix D e Dandt > 0.

(i) Foreachz € D, Ig/(z)is a0, 00)-valued Q,(D) measurablefunctwn on Q(D)

(i) g:(z) is an H-valued B(D U 0,K U 3,y[0,¢] UdH) x G,(D)-measurable function on
(DU3,K Ud,yl0,1]UIH) x Q(D)

(i) W, is an R3V ! yalued G,(D)- -measurable function on (D).

Proof. (i) We make use of the probabilistic representation (1.6) of Jg;(z). Take » > 0 such that
the set H, = {z € H : Jz < r} contains y(O t]U K. It suffices to show F. ,(y) = ]P’Eﬂ’*(apr <
0y(0,1]) 15 @ g,(D) measurable function on Q(D) for each fixed z € D.

Let ZHr* (ZH’ , ¢, IP’EH’ *) be the BMD on Hf = (D NH,) U {c], ..., cy} obtained from
the absorbing Brownian motion on H, by rendering each hole Cy into a single point ¢}, with life
time ¢. Then

F..(9) = P& *(op0.1 = 00) = PE*(p(0, 11N Z' s = ). (3.8)

Let H¥ U {A} be the one-point compactification of H.. As the sample space (=, B(Z)) of
ZHr* we take

E={ZeC(0,00) > H'U{AD):Z, = A, t = {(=0a)}
and A(=Z) = o{Z;,t > 0}. We consider the direct product Q(D) X = of the measurable space

((Z(D) g,(D)) and (5, #(=)). Thenthe set A = {(y, Z) € Q(D) x Z 190,10 Zpo.00) = ¥}
is Q;(D) x (Z)-measurable because

A=J N Nr@=2z]> 1/},

n=1ue[0,/]N Q+ veQ+
where Q.. denotes the set of positive rational numbers.

In view of (3.8), F; ,(y) = ]P’H’ *(Ay) for the y-section Ay ={Z € 5 : (y, Z) € A} of A and
so F,,(y)1is g,(D) measurable by the Fubini Theorem.

(i1) By (i) and (1.6), Jg/(2) = lim, ot F, ,(y) is g,(D) measurable in y for each z € D. On
the other hand, it is continuousinz € DU 9,K U d,y[0, t]U dH for each y e (D). Therefore
Jgris B(D U I, K U d,yl0, 1] UH) x QZ(D)—measurable in (z, y).

Since g; is obtained from Jg, explicitly via [8, (10.17)], g; enjoys the same joint measurability.

(iii) This follows from (ii). [

For £ € Rands € §, we denote the probability measure IPp) 40 on (Q(D(s)), G(D(s))) by
Pe.s)-

Theorem 3.3 ‘(Time Homogeneous Markov Property). The process {W;,t > 0;Pgy), & €
R, s € 8} is {G,(D(s(0))); t > 0}-adapted, and

P s(Wo = (§,5)) = 1, (3.9)

Pees) (Wiis € B | G(D(s))) = Pw,(W, € B) fort,s >0, Be BZRxS).  (3.10)

Proof. W, is G,(D(s(0)))-measurable by Lemma 3.2. (3.9) follows from (3.3).
For D =D(s)e D,y € Q(D) and ¢t € [0, £;), gP is a conformal map from D \ y[0, 1] € D
onto D, € D sending y(¢) to £(t) € 9H and so, by (3.5), for A € G(D \ v[0,]) and z € oH

Pp (6" A | G(D)) = Pp, £ (gP (A)). (3.11)
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Set, fort,s > 0and B € ZR x S),
Ay = {ih € 2D\ P10,11) : #(0) = (1), E(s),5(s)) € BY.

Here, by means of the canonical (conformal) map 8s PV from (D \ y[0,tD \ 5[0, s] onto
D, € D, we define £(s) = g”"""*"I(5i(s)) and S(s) = s(D;). Then we have

07'A,s =1{y € 2AD): W,;, € B} and

gl () ={y € (D)) : y(0) = &), W, € B}.
In fact, the first identity is due to the relation

gl‘l?hv(z) = 8p,\gPylt.t+s] © gzD(Z)’

while the second one is obtained by the observation that gP induces a one-to-one map between
D\ 710, 1) and 2(D)).
The conclusion of the theorem now follows from (3.11). [

Remark 3.4. The filtration {Q,(D(s)), t > 0} in the identity (3.10) depends on the second
component s of the initial state (§, s). Nevertheless we can regard the process (W;, P ) as a
Markov process on R x S in a usual sense. If we write w = (£, s) and introduce a transition
function P; on R x S by

Pifw) =Ew[f(W)l, [ eBRxS),

then (3.10) implies that, forany 0 < | < th < -+ < t, f1, f2, -+, fu € B(R x S), and
weR xS,

EW |:l_[ fk(wtk:| f s l_[fk(wk)Ptk —lk— l(wk 1,de)
— RxS)"

with 79 := 0 and wy := w.

3.3. Brownian scaling for W

Lemma 3.5. For D € D,y € (D), let a; = a,(y, D) be the associated half-plane capacity.
Then for any ¢ > 0

a(cy,cD) = c*a(y. D), 1 €[0.1,). (3.12)
In particular, if y is parametrized by the half-plane the half-plane capacity, then
() =cyc?), 0=t<c’ty=1,, (3.13)

is the half-plane capacity parametrization of the curve cy in cD.

Proof. Let g;(z) be the canonical map from D \ y. Then g (z) = cg;(z/c) is the canonical map
from c¢D \ cy. (3.12) follows from (3.2) and

cr) —2) = 22 (o(3y = 2
(i@ - = (a0 2).
(3.13) follows from a,(y, D) = 2t and (3.12). O
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We make a convention that ¢ A = A for any constant ¢ > 0. Then the identity (3.13) holds
for any ¢ > 0; for ¢ > cztl;, the both hand sides of (3.13) equal A. Keeping this in mind, we show
the following:

Proposition 3.6. For D € D, z € 90H and any ¢ > 0

{cil)?(czt), t > 0} under P.p ., has the same distribution as
{y(@), t = 0} under Pp .. (3.14)

Proof. For a fixed ¢ > 0, f(z) = cz is a conformal map from D onto ¢D € D. By the invariance
under linear conformal map (3.6), we have for D € D, z € dH

Pp . (A) = £ Pep.eo(A) = Pep o (f(A), A€ G(D). (3.15)

For A = {y € (D) : y € B} € G(D) with B € & ((ﬁu {A})[Ow), () = {y € DeD) :
(y/c) € B}. By (3.13),

(y/o)t) ="'y, 120, (3.16)
and so (3.14) follows from (3.15). [

Theorem 3.7 (Brownian Scaling Property of W). For§ e R,se€ Sandc > 0

{c™'W,,, t > 0} under Pz o) has the same distribution as
{W;, t > 0} under P ). (3.17)

Proof. For fixed D € D and ¢ > 0, consider the canonical map ng associated with ¢D and a
curve {y(t), t > 0} C Q(CD). The induced process W, = (§(¢), s(1)), t € [0, 1), is given by
s(1) = gfP(cs) for s = s(D) and £(1) = g (y (1)) ] ]

Now the curve on the left hand side of (3.14) defined for y € {2(c D) belongs to £2(D) in view
of (3.16) and the associated canonical map g from D is given by

2P@) =c"gD(cz), zeD, fort€[0,1,,2), (3.18)

which induces the motion {¢™'W., : ¢ € [0,1,
gP(c7y(c*t) = ¢ E(c*t) for t € [0, 1y c2)- )

Let {W;, t > 0} be the (R x S)-valued motion produced by D € D and y € {2(D). Then,
forO0 <t <th < -+ <ty, Wy, Wy, ..., W) equals an (R x §)"-valued G(D)—measurable
function F(y) of y € Q(D) by virtue of Lemma 3.2. Therefore we can conclude from (3.14)
and the above observation that (3.17) holds. [

s2)}, because gP(s) = ¢ 's(c?t) and

3.4. Homogeneity of W in x-direction

Lemma 3.8. For D € D,y € (D), let a; = a,(y, D) be the associated half-plane capacity.
Then for any r € R,

aly +r,D+r)y=a/(y,D), tel0,t,). (3.19)
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In particular, the half-plane capacity parametrization of the curve y + r in D + r is given by
y + r; in other words,

y+rn@O =y +r, 0<t<ty. (3.20)

Proof. Let g;(z) be the canonical map associated with (y, D). Then g/ (z) = g;(z —r) +r is the
canonical map associated with (y + r, D + r). (3.19) follows from (3.2) and

. Z
W@ - =——7--—n@z-n-@E-r).
(3.20) follows from a;(y, D) = 2t and (3.19). O
The identity (3.20) holds for any r > 0 because both hand sides of (3.20) equal A when
t=1.

Proposition 3.9. For D € D, z € dH and anyr € R

{y(@) —r, t > 0}under Pp,, .y, has the same distribution as
{y(t), t = 0} under Pp .. (3.21)

Proof. For a fixed r € R, consider the sift f(z) = z+r, <z € D. By the invariance under linear
conformal map (3.6), we have for D € D, z € dH

Pp(A) = £ Ppirzir(d) = Ppiroir (f(A), A€ G(D). (3.22)
A € G(D) can be expressed as A = {y € AD):y e B} for B € # ((EU {A})[O'oo)). Then

fM)=1{ye2D+r):(y—r)e B}
This combined with (3.20) and (3.22) leads us to (3.21). [

For r € R, denote by 7 the vector in R3¥ whose first N entries are 0 and the last 2N entries
are r. Note thats(D +r) =s(D)+7 forD e D, r e R.

Theorem 3.10 (Homogeneity of (W,, Peys) in x-Direction). For§ € R, s € Sandr € R,
{(E(t) = r,8(t) = T7), t > O} under P4, 17 has the same distribution as {(§(¢), s(t)), ¢t > 0}
under P ).

Proof. Fixed D € D, z = &£ +i0 € 0H,r € Rand puts = s(D)._Consider the canonical
map gP*" associated with D + r and a curve {y(t), t > 0} C (D + r). The process
W, = (s(t),£(1)), t € [0,t;), being considered under Pp, .1, = Py 545 is induced from
gtDJrr by

ED) =g (@), st)=g T (s+7).

Now the curve on the left hand side of (3.21) belongs to Q(D) in view of (3.20) and the

associated canonical map g” is given by

§2() =g’ (z+r)—r, zeD, fortel0, ).
The induced motion is

{5}’(70) - =g yw) —r=£0)-r,

P =g+ —T=s0)—T.
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The theorem now follows from (3.21) by the same reason as in the last paragraph of the proof of
Theorem 3.7. O

3.5. Stochastic differential equation for W

We write w = (£,8) € R x §. We know from Theorem 3.3 that W = (W,, Py) is a time
homogeneous Markov process taking values in R x S C R3N*!, The sample path of W is
continuous up to its lifetime #; < oo owing to (P.3) and (P.4). Let P, be its transition semigroup
defined as

P f(w) =Ew[f(W)], t>0, welR xS.

Denote by Coo(R x S) the space of all continuous functions on R x S vanishing at infinity.

In this section, we assume that the Markov process W satisfies properties (C.1) and (C.2)
stated below.
(C1) P(Cx(RxS) CCxRxS), t >0, CFRxS)CDUL),

where L is the infinitesimal generator of { P;, t > 0} defined by

Lf(w) = ltifg%(Ptf(W) —fw), weRxS,

D(L) = {f € Coo(R x S) : the right hand side above
converges uniformly inw € R x S}. (3.23)

Under condition (C.1), W = {W;, P} is a Feller—Dynkin diffusion in the sense of [24]. In view
of [24, 111, (13.3)], the restriction £ of L to C2°(RxS) is a second order elliptic partial differential
operator expressed as

3N 3N
Lf(w) = % D i) fuw; (W) + Y bi(W) fu, (W) + c(W) f(W), weR xS, (3.24)
i, j=0 i=0

where a is a non-negative definite symmetric matrix-valued continuous function, b is a vector-
valued continuous function and c¢ is a non-positive continuous function.

The second assumption on W is
(C2)c(w)=0, weRxS.

This property is fulfilled if W is conservative: Pp .(f;, = 00) = 1 forany D € D and z € dH,
or equivalently,

Pl(w)y=1 foranyt>0andwe R x S. (3.25)

In fact, c(w) can be evaluated as
1
c(w) = lifg ;(P,l(w) -1, weRxS,
t

according to Theorem 5.8 and its Remark in [12]. Hence (3.25) implies (C.2). Condition (C.2)
means that W admits no killing inside R x S, and so it is much weaker than the conservativeness
of W.

We take this opportunity to point out that the exit time V;, , employed in [24, III, Lemma 12.1]
and in the formula following it should be corrected to be V), , A ¢, where ¢ is the lifetime, as
this lemma was taken from [12, V, Lemma 5.5] where an exit time had been defined in the latter
form.
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Recall that, for s = (y, x,X"), z; = x; +iy;, z; = x}; + iy; denote the endpoints of the jth
slit C; in D(s) € D. For s € S, denote by ¥s(z, &) the complex Poisson kernel of the Brownian
motion with darning (BMD) on D(s). The KL equations (2.13)—(2.15) established in §2 for slits
can be stated as

t
s;j(t) —s;(0) :/ b;(W(s)ds, t=>0, 1=<j=<3N, (3.26)
0
where
—2n3 (2, ), 1<j=<N,
bj(w) = { —27R¥s(z,, &), N+1<j<2N, (3.27)
=27 N (2}, £), 2N +1<j <3N.

It follows that b;(w) in (3.24) is given by the above expression (3.27) for j > 1 and g;;(w) =0
for i + j > 1. Thus under the condition of (C.1) (in fact, (3.24)) and (C.2), it is known (see for
example, [23, VII, (2.4)]) that W, = (£(¢), s(¢)) satisfies

{ d& (1) = /aoo(W,)d B, + bo(Wy)d, (3.28)
ds;(t) = b;(W,)dt, J=1...,3N, '

where B is a one-dimensional Brownian motion.
A real-valued function u(w) = u(&, s) on R x S is called homogeneous with degree 0 (resp.
—1)if

u(cw) = u(w) (resp. u(cw) = ¢ 'u(w)) for anyc >0andw e R x S.

The same definition of the homogeneity is in force for a real-valued function u(s) on S.

Lemma 3.11. Assume conditions (C.1) and (C.2) hold.

(1) apo(w) is a homogeneous function of degree O, while b;(w) is a homogeneous function of
degree —1 for every ) <i < 3N.
(ii) Forevery0 < j<3N,£eR seSandr eR.

ap(§ +r,s+7) = aw(§, s), bj(6 +r,s+7)=b;(&,9). (3.29)

Proof. (i) By virtue of the Brownian scaling property (3.17), we have P,(w, E) = P.,(cw, cE).
Consequently, P, f(W) = P., f©(cw) and L f(w) = 2L f(cw), where f(w) = f(w/c).
Hence we get the stated properties of the coefficients a;; and b; of L.

(i) By virtue of the homogeneity in x-direction from Theorem 3.10, we have P, f(w) =
P, f"(w + (r,7)) so that Lf(w) = Lf"(w + (r,7)) where f"(w) = f(w — (r,7)). Hence we
get (3.29). O

Remark 3.12. The properties of b; for 1 < j < 3N stated in the above lemma can be derived
without using conditions (C.1)—(C.2). In fact they follow directly from their definition (3.27)
combined with the conformal invariance of the BMD on D € D established in Theorem 7.8.1
and Remark 7.8.2 of [6]. Indeed, let K (z, %), z € D(s), § € 0D(s), be the Poisson kernel of
the BMD on D(s) € D for s € §. Then, by the stated invariance of the BMD under the dilation
¢(2) = cz for ¢ > 0 that maps D(s) to D(cs), we have

ce

K} (cz, §)dE =/ K!(z,8&)dg, €>0.

—ce —&
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Dividing the both hand sides by 2ce and letting ¢ | 0, we get KX (cz,0) = ¢'K}(z, 0). Since
the complex Poisson kernel ¥s(z, &), z € D(s), &€ € 0H, is the unique analytic function in z with
the imaginary part KJ(z, &) satisfying lim__, , ¥s(z, £) = 0, we obtain

Ues(cz, 0) = ¢ (2, 0),  z € D(s). (3.30)

Therefore b;(0, s) is homogeneous in s € S with degree —1 for b; defined by (3.27),1 < j <
3N. A similar consideration for the shift ¢(z) = z +r, r € R, leads us to

Kz, &) =K (z+ré+r) and Us(z,8) = Usr(z+r.§ +71) (3.31)
fors € S,z € D(s)and &, r € R, and so the second property in (ii) holds. [
Let
a(s) = Vap(0,5),  b(s) =by(0,s), seS.

It follows from Lemma 3.11 that «(s) and b are homogeneous functions on S with degree 0 and
—1, respectively. Moreover,

V(€. s) = a(s —§) and by(§.s) = b(s — 5.
Thus we have the following from (3.28) and Lemma 3.11

Theorem 3.13. Assume conditions (C.1) and (C.2) hold.

(1) The diffusion W, = (§(t), s(t)) satisfies under P ) the following stochastic differential
equation:

E() =&+ /0 a(s(s) — E(s))d By + /0 b(s(s) — E(s))ds, (3.32)
s;j(t) =s; —i—/ bj(6(s),s(s))ds, t=>0, 1=<j<3N. (3.33)

(i) For each 1 < j < 3N, b;(&,s) is given by (3.27), which has the properties that
bj&,s)=0;(0,s— E ) and that b (0, 8) is a homogeneous function on S of degree —1.

4. Solution of SDE having homogeneous coefficients

We consider the following local Lipschitz condition for a real-valued function f = f(s) on
St
(L) For any s € S and any finite open interval J C R, there exist a neighborhood U (s?) of
s in S and a constant L > 0 such that
1fV =8 — fs@ =B <L |sV—s? fors? s? e U andé € J. 4.1

Recall thatg denotes the vector in R3M whose first N-entries are 0 and the last 2N entries are £.
Recall that the coefficient b;(&, s) in Eq. (3.33) is defined by (3.27) and satisfies (3.29).

Lemma 4.1.

(i) The function ljj (s) == b;(0, s) enjoys property (L) for every 1 < j < 3N.
(i) If a function f on S satisfies the condition (L), then it holds for any sV, s® e U(s?) and
forany &, & € J that

1£60 —8) = f6¥ =Bl = L (18" —s®| + V2Nl — &) (42)
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Proof. (i) This follows immediately from [8, Theorem 9.1].
(i) Suppose a function f on S satisfies the condition (L). For any s, s® e U(s?) and for
any &1, & € J with & < &, we have

IF60 =8 = f6P =8l = 1f 6V —5) - f6P 8
+HIfEP &)~ fP -8l

Since s@ e U(s?), there exists § > 0 such that s — E € U(s"?) for any £ € R with |£| < 6.
Choose points r;, 0 <i < ¢, withrg =&, 0 <r; —ri_1 <48, 1 <i <¥, r, = &. The first
term of the right hand side of the above inequality is dominated by L|s‘" —s®|. The second term
is dominated by -7 | /(s = 7) = (s =Tl = L If (62 = G —Fie) =iyl <
YLl =Tl = LV2N(& = &). O

In the rest of this section and throughout the next section, we assume that we are given a

non-negative homogeneous function «(s) of s € S with degree 0 and a homogeneous function
b(s) of s € S with degree —1 both satisfying the condition (L).

Theorem 4.2. The SDE (3.32) and (3.33) admits a unique strong solution W, = (£(t), s(t)), t €
[0, &), where ¢ is the time when W, approaches the point at infinity of R x S.

Proof. In view of Lemma 4.1, every coefficient, say, f(£,s), £ € R, s € §,in (3.32) and (3.33)
is locally Lipschitz continuous on R x S (C R3*¥*1) in the following sense: for any s© e S and
for any finite open interval J C R, there exists a ball U(s(?’) C S centered at s and a constant
Lo such that

Lf 1, sD) = (&, s < Lo(Is) —sP| + & — &), sV, sP e UEY), &, & e J.

Thus (3.32) and (3.33) admit a unique local solution. It then suffices to patch together those local
solutions just as in [17, Chapter V, §1]. O

Proposition 4.3. The solution W, = (£(¢), s(t)), t € [0, ), of the SDE (3.32), (3.33) enjoys the
following properties:
(1) (Brownian scaling property) For s € S, & € R and for any ¢ > 0,
{c’IWCz,, t > 0} under P ) has the same distribution as
{W;, t > 0} under P ).
(ii) (homogeneity in x-direction) For s € S, & € R and for anyr € R,
{(¢(t) — r,s(t) —T7), t > 0} under P, 547 has the same distribution as
{(§(r),s(t)) t = 0} under P ).

Proof. (i) We put W, (1) = ¢ 'W(c?t) = (£.(1), s.(t)) with £.(1) = ¢7'E(c?t), s.(t) = ¢ 's(ct).
W(r) = (£(2), s(t)) under P(.¢ .5 satisfies the Eq. (3.32) with ¢£ in place &£. Hence, by taking the
homogeneity of «, b into account, we get

2 2

1) = £+ / w(s(s) — E(s))dB, + ¢! f b(s(s) — E(s))ds
0 0
=£4c! / Q(c(5(5) — E(5))d B2y + ¢ / b(c(s(s) — E(s)))ds
0 0

_ty /0 w(so(s) — Eu(s)d By + /0 blsu(s) — E.(s))ds.
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where B, = ¢ 'B,a,. Therefore the Eq. (3.32) with a new Brownian motion B, is satisfied by
W, (t) under P ). Similarly, (3.33) is also satisfied by W, () under P ).

(ii) This is immediate from the expressions (3.32) and (3.33) of the SDE and the property
(3.29). O

5. Stochastic Komatu-Loewner evolutions

5.1. Stochastic Komatu—Loewner evolutions

Let us fix a pair of functions (§(¢), s(¢)), t € [0, ¢), taking values in R x &S satisfying the two

following properties (I) and (II):
(@) &(z) is areal-valued continuous function of ¢ € [0, ¢).
(D &), (1)), t € [0, ¢), satisfies Eq. (3.33) with b;, 1 < j < 3N, given by (3.27).

We have freedom of choices of such a pair in two ways.

The first way is to take any deterministic real continuous function £(¢), ¢ € [0, 00), substitute
it into the right hand side of (3.33) and get the unique solution s(#) on a maximal time interval
[0, ¢) of the resulting ODE by using Lemma 4.1.

The second way is to choose any solution path W, = (£(¢), s(r)), t € [0, ¢), of the SDE
(3.32) and (3.33) obtained in Theorem 4.2 for a given homogeneous functions « and » on S with
degree 0 and —1, respectively, both satisfying condition (L).

We write D; = D(s(t)) € D, t € [0, ¢), and define

G=J 1xDb,
1€[0,¢)

G=|J 1 x (DUd,KnUEH\ {£O)),
1€[0,¢)

where K(t) = U?’:le(t) and D, = H\ K(#). Foreach 1 < j < N, let BPC?(I) =
C;-H(t) U C?’f(t) denote the set 9,C;(¢) with its two endpoints being removed, and 9, K O@) :
U?’zlapcg(t). Note that G is a domain of [0, ¢) x H in R? because ¢ — D, is continuous.

We first study the unique existence of local solutions z(¢) of the following equation

20 = ~2m Wi 2(0), £0) 5.1)
with initial condition

2(t) =20 € D, U3, K %(t) U (H \ £(1)) (5.2)
for r € [0, ¢).

Proposition 5.1.

(1) Yswy(z, &) is jointly continuous in (t, z) € G.

(i) lim,— o0 Ysy(z, £(2)) = O uniformly in t in every finite time interval I C [0, {).

(i) Y (z, £(1)) is locally Lipschitz continuous in z in the following sense: for any (z, zo) € G,
there exist ty > 0, p > 0 and L > 0 such that

V=[r—-t)", 1+l x{z:lz—2/<p}CG
and

| Usir (21, E()) — YUsy(22, E(@))| < L |z1 — 22| forany (z,z;), (t,22) € V. (5.3)
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(iv) Fix1 < j < N.Foranyt € [0,¢)and zp € C;H(r), there exist ty > 0, L > 0 and an
open rectangle R C H with sides parallel to the axes centered at 7o such that

RN C}L(t) #@Pand RN C;r(t) - C?’+(t) forevery t € [(t — t9)", T + 101,

and the function Ll'/s'ft)(z,g(t)) satisfies (5.3) for any (t,z1), (t,z2) € V;, where V; =
[(t —t)", 7 + 1] x R and Ws'ft)(z, £(t)) is the extension of Wy (z, £(t)) from the upper
side of R\ C;’(t) to R by the Schwarz reflection for each t € [(t —to)*, T +1], An analogous

statement holds for zy € Cj.)‘_(r).
(v) Foranyt € [0,¢)and zo € OH \ {£(7)}, there exist tg > 0, p > 0 and L > 0 such that

o=Ile—t)tt+nlxfzel:z—zl<ptc |J ©
tel(t—19)t,T+10]

x D, U@HN\ {§(0)})

and (5.3) holds for any (t, z1), (t,z2) € V.

(vi) For every t € [0,¢) and zo € D, U (0H \ &(7)), there exists a unique local solution
{z(t);t € (v —tg, T + 19) N[0, &)} of (5.1) and (5.2) satisfying z(t) = zo.

(vil) Fix 1 < j < N. For each initial time t € [0, ¢) and initial position zy € C?’+(7:),
there exists a unique local solution {z(t);t € (t — ty, T + tp) N [0, 00)} of the Eq. (5.1)
with !l/;(“r)(z, £()) in place of Ysy(z, £(t)) and z(t) = zo. An analogous statement holds for
20 € C) ().

Proof. (i) This can be shown in the same way as that for (P.5) in [8, §9] using the continuity of
t — D, = D(s(t)).

(i) Take R > 0 sufficiently large so that the closure of the set U, 1(U§Y=IC @) UE@)is
contained in B(0, R) = {z € C : |z|] < R}. Extend the analytic function h(z, t) = WYyy(z, £(1))
from H \ B(0, tho C\ B(0, R) by the Schwarz reflection. By (i), M = SupzeaB(O,R),teL'h(Z’ )|
is finite. Define h(z,t) = h(1/z,t), |z] > R. Since h(z, t) tends to zero as z — 00, h(z, t) is
analytic on B(0, 1/R) and, by [1, (28)-(29) in Chapter 4],

T 27 i0
lﬁ(z, 1) = L[ Mdé- = i/ Md@
‘ 2ri Jigi=1yr €6 = 2) 27 Jo (el — R2z)

Consequently,

sup |z Wiz, £(1))] <2RM if  |z] > 2R, (5.4)
tel

(i) Yyr)(z, &(1)) is jointly continuous by virtue of (i) and analytic in z € D;, Therefore we
readily get (iii) from the Taylor expansion [1, (28)-(29) of Chapter 4] for n = 1 again.

For (iv) and (v), we extend Yy )(z, £(¢)) using Schwarz reflections.

(vi) and (vii) follow from (iii), (iv) and (v). O

Lemma 5.2. (i) Fix1 < j < N. Forany t € [0,¢) and zo € C;H(t), there exists a unique
solution z(t), t € [(t —to)™, T + 1o, of (5.1) and (5.2) for some ty > O such that

2r)=2z0, 2(t) € C)T(t)foreveryt € [(r — 10)", T + to]. (5.5)

An analogous statement holds for z € C?’_(r).
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(i) For any t € [0,¢) and zo € OH \ {£(1)}, there exists a unique solution z(t), t €
[(t — 1), T + 0], of (5.1) and (5.2) for some ty > O such that

2(t) =z0, z(t) € AH \ {€(t)} forevery t € [(t — to)", T + to]. (5.6)

Proof. (i) In view of the explicit expression (5.2) in [CFR], when z € 9,C;(t), I ¥gy(z, £(1)) is
a bounded function 5(¢) of ¢ independent of z. Thus (5.1) under the requirement (5.5) becomes

Jz(t) = zgexp (— f;o n(s)ds) and

%Sﬂz(t) = 270 Uy (N2 (1) 4 i32(0), E(1)). (5.7)

Eq. (5.7) has a unique solution for Rz(¢) in view of Proposition 5.1.
(ii) By (5.2) in [CFR], we have J ¥y)(z, £(t)) = O for z € 0H \ {£(¢)}. Hence Eq. (5.1) under
the requirement (5.6) implies that Jz(#) = 0 and

%mz(z‘) = 270 Uy (R2(t), £(1)). (5.8)

The above equation uniquely determines 9iz(¢) in view of Proposition 5.1. O

Denote by z;(¢) and z;(t) the left and right endpoints of the jth slit C;(z) of s(z). We know
from (3.27) and (3.33)

% = =27 Uy (2 (1), §(@)), 1 €[0,0). (5.9

A solution {z(¢), t € I} of Eq. (5.1) for a time interval I C [0, ¢) is said to pass through
G C R¥if(t,z(t)) € G forevery t € I.

Lemma 5.3. Fix 1 < j < N and let I = (a, B) be a finite open subinterval of [0, ¢). Let

(1) Suppose that {z(t); t € I} is a solution of (5.1) passing through G with z() = Z;j(B) but
2(t) # z;(t) for t € (a, B). Then there exists to € (0, 8 — a) so that z(t) € 0 Co(t)for
t € [B— 19, B). The same conclusion holds if z;(B) and z;(t) are replaced by Z “(B) and zZ "(1).
(i) Suppose that {z(t);t € 1} is a solution of (5.1) passing through G with z(ot) = z; (a) but
2(t) # z;(t) for t € (a, B). Then there exists to € (0, 8 — a) so that z(t) € 0 Co(t)for
t € [a, o +19). The same conclusion holds if zj(«) and z;(t) are replaced by z';(at) and Z5(0).

Proof. We only prove (i) as the proof for (ii) is analogous. For { € C and ¢ > 0, we use B(¢, €)
to denote the ball {z € C : |z — | < ¢} centered at ¢ with radius .

Suppose that {z(#), ¢ € [B — t1,8)} a solution of (5.1) passing through G and that
2(B) = z;(B). Taking t; smaller if needed, we may assume that there is ¢ > 0 so that

B(z;(t),e) CH and Z;(l‘) & B(z;(t),¢) foreveryte[B —1, Bl (5.10)
We can further choose 7y € (0, #1] so that

z2(t) € B(z;(t),e/2) N (D; U93,C;(t)) foreveryt e [B — 1o, B (5.11)
For eacht € (8 — 11, B], let

V(@) =z —z;()  B@;(1). &)\ Ci(t) > B0, V&) NH,

and

[1(2) = Uy (¥, 1(2), E()) = V(2% + 2;(1), £(1)) = B(O, &) NH — C.
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Then f; is an analytic function on B(0, ,/¢)NH, which can be extended to be an analytic function
on B(0, \/¢) \ {0} by the Schwarz reflection because S f;(z) is constant on B(0, \/¢) N 9H. On
account of [1, Chap. 4 (28), (29)], it holds for every a € (\/¢/2, +/¢) and z € B(0, a),

) 1 f:(©)
. —f o t h t = 5.
f@ = O =2k with k@) =27 | -2

In particular, |A)(z)| is uniformly bounded in (z,7) € B(0,./¢/2) x [B — fo, B] in view
of Proposition 6.1(i). Accordingly h,(z) is Lipschitz continuous on B(0, \/¢/2) uniform in
IS [,8 - tOV ,8]

lhi(z1) = hi(z2)| < Llz1 — 22|, 21,22 € B(0, /¢/2), (5.13)

d¢, ze B0,a), (5.12)

for a constant L > 0 independent of t € [8 — 19, B].
We now let Z(t) = ¥,(z(t)) = /z(t) —z;(t) for t € [B — 1o, B). On account of (5.11),
2B) =0,

Z2(t) € B(0, Ve/2) NH for everyt € [B — 1y, B), (5.14)
and

dz(t)

ke =21 Us)(2(1), E()) = =21 fi(Z(1)), t € [B — 1o, ). (5.15)
By (5.9), dz;t(') = —21f,(0). Therefore we have by (5.12), (5.14) and (5.15) that for any
tep—1.p)

dz(t) 1 dz(t) dz;(1)\ _ T .

el ( o ) = —55 (@) = /i) = —7 Wy @),

Since h,(z) is Lipschitz on B(0, /¢/2) uniform in ¢ € [8 — ty, B], the solution Z(¢) to the above
equation with Z(8) = 0 exists and is unique. On the other hand, note that I( f;(z) — f;(0)) = 0
on B(0, \/¢) N 9H. Thus by (5.12)

Sh(z)=0  on B(0, /&) N oH. (5.16)
It follows that the unique solution 7 to % = —m h;(Z(t)) withZ(B) = 0 is real-valued. It follows

then z(¢) € 9,C;(t). A similar argument shows that the second part of (i) holds as well. [J

Due to (i) and (iii) of Proposition 5.1, and a general theorem in ODE (see e.g. [16]), there
exists, for each (t, zg) € G, a unique solution z(¢) of Eq. (5.1) satisfying the initial condition
z2(t) = zo and passing through G with a maximal time interval I; .,(C [0, ¢)) of existence.
Such a solution of (5.1) will be designated by ¢(¢; 7, 29), t € I ;. Let o and B be the left and
right endpoints of I ., respectively, both depending on (7, zo). Then (¢, ¢(t; 7, z0)) € G for any
t el )\ {a, B}

Proposition 5.4. For any (z, zo) € G, the maximal time interval I ,, of existence of the unique
solution ¢(t; T, z0) of (5.1) with ¢(t; T, 20) = 20 passing through G is [0, B) for some B > t
and

hTI? Se(t; T, z0) = 0, li&lko(t; 7,20) — £(B)] = 0 whenever 8 < ¢. (5.17)
t t
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Proof. Fix By € (0,¢) and zo € Dg,. Let (o, B) be the largest subinterval of (0, ¢) so
that Eq. (5.1) has a unique solution z(#) = ¢(¢; o, z0) in t € («, B) satistying z(By) = zo
and passing through G. By (i) and (iii) of Proposition 5.1, such an interval («, 8) exists with
0 <a < By < B < ¢. For simplicity, we write ¢(t; T, z9) as ¢(t). We claim that

a=0 and ¢@0+):= lifgw(t) e D. (5.18)
t

Since the right hand side of Eq. (5.1) is negative, J¢(¢) is decreasing in ¢. By (i) and
(ii) of Proposition 5.1, @(a+) = lim, ,@(t) exists with Jp(a+) > 0. Set p(a) = @(a+),
which takes value in D, U U?’zl 9,C (o). By Proposition 5.1(vi), Lemma 5.2(i) and Lemma 5.3,
o(a) & U?’zlapCj(a) as p(t) € D, fort € (a, By). Thus p(a) € D,. If o > 0, then the solution
() of (5.1) can be extended to (o —¢, By] for some ¢ € (0, «). This contradicts to the maximality
of («, B). Thus a = 0 and the claim (5.18) is proved.

Since J¢(?) is decreasing in ¢, lim,44J¢ () exists. Assume 8 < ¢. Were lim43¢(t) > 0,
it follows from (i) and (ii) of Proposition 5.1 that ¢(8—) = lim;ge(t) exists and takes
value in Dg U U?’zlapCj(ﬂ). By Proposition 5.1(vi), Lemma 5.2(i) and Lemma 5.3 again,
o(B—) & U?’zlapcj(ﬁ) as ¢(t) € D, fort € (Bo, B). Hence ¢(B—) € Dg and thus the solution
() of (5.1) can be extended to [By, B + ¢) for some ¢ € (0,¢ — B). This contradicts to the
maximality of («, 8) and so lim;4g3¢(t) = 0.

We now proceed to prove the second claim in (5.17). Suppose limsup,,4l¢(t) — §(B)| > 0.
Then by the continuity of &, lim Sup;44 lo(t) — &E(¢)| > 0. Thus there is an ¢ > 0 and a sequence
{t.;n > 1} C (B — ¢, B) increasing to B so that infycip—, g1leo(f,) — E(s)| > ¢ forevery n > 1.
By (i) and (ii) of Proposition 5.1, Yy)(z.£(¢)) is bounded on

Go={6.0eGsclp—epl _inf Ic—&0)|=e/2].

say, by M > 0. So as long as (¢, ¢(t)) € 60, |j—t<p(t)| < 27M. Let § = ¢/(4nM). This
observation implies that |¢(#,) — @(t)| <27 M(t —t,) < ¢/2 forevery t € [t,, t, + 8] N [ty, B).
Consequently, (8—) = lim;4g¢(¢) exists and takes value in oI \ {£(B8)}. But this contradicts
to Proposition 5.1(vi) and Lemma 5.2(ii) as ¢(t) € D, for t € [t;, 8). This implies that

lim;yglp(1) —§(B) = 0. O
We write Dy = D(s(0)) € D as D.

Theorem 5.5.
(1) Foreach z € D, there exists a unique solution g,(z), t € [0, t,), of the equation

0;81(2) = =27 Y(1)(8:(2), §(1))  with go(z) =z € D (5.19)

passing through G, where [0,t,), t, > 0, is the maximal time interval of its existence. It
further holds that

li¢m Jg(z) =0, li¢m|g,(z) — &(t;)| = 0 whenever t, < ¢. (5.20)
1ty 1t
(i) Define

Fi={zeD:t,<t}, t>0. (5.21)

Then D \ F; is open and g, is a conformal map from D \ F; onto D, for eacht > 0.
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Proof. (i) This just follows from Proposition 5.4 with (z, zg) = (0, z).
(i1) Since Yy (z, £(¢)) is analytic in z and jointly continuous in (¢, x) by Proposition 5.1, by
a general theorem on ODE (see e.g [10]), g:(z) is continuous in (¢,z) € [0,7,) X D (and so
D\ F, = g,‘l (Dy) is open) and g;(z) is analytic in D \ F;. It follows from Proposition 5.4 that g;
is a one-to-one map from D \ F; onto D,. [

Note that the complex Poisson kernel of the absorbing Brownian motion (ABM) in H is

o 1 1
UiN(z,6) = ————, zeM, &ecol, (5.22)
mz—§

whose imaginary part P(z, &) := J¥H(z, £) = %w is the Poisson kernel of ABM in H.

Let I be a finite subinterval of [0, ¢), and R, M be the positive constants in the proof of
Proposition 5.1(ii).

Lemma 5.6. (i) Let M := sup,_, |£(1)|. Then

Vs (z, £(2))

<47 RM for|z| > 2R*V M.
wH(z, £(1))

tel
(i) For any Ry > R,
sup  sup | Wy (z, E(1) — ¥z, £(1))]| < 0.

tel zeDy, |z|<R;

Proof. (i) This follows from (5.4) as

ﬁ;)((zz—’é(tt)))) = 7|z — ()| | Us(z. §0))] < 2|2 Uy (2. £(t))|  fort € I and |z| > M.

(i) For z € D, = D(s(t)) and & € 0H, let

Hi(z, §) = W)z, §) — U7z, 6), ul(z,8) =K/ (z,§) — Pz, §),

where K[(z,&) = I ¥(z, §), which is the BMD-Poisson kernel on D;. Since SH,(z,&) =
v:(z, &) vanishes for z € JdH \ {£}, by the Schwarz reflection for each £ € oH, we extend
z — H;(z, &) analytically to D, U II D, U (0H \ {&}) which is still denoted as H,(z, &). Here
II denotes the mirror reflection with respect to the x-axis in the plane. On the other hand,
it follows from the explicit expression of v,(z, &) given by (5.2) and (12.24) from [8] that
7+ v(z, &) = IH,(z, &) is bounded in a neighborhood of £. Hence £ is a removable singularity
of H,(z, §) and so H,(z, &) is analytic for z € D, U II D, U 9H.

Choose ¢ > Oand £ > Osothattheset A = {w =u +iv: |u| < £, 0 < v < &} contains
J = {&(t) : t € I} but does not intersect with the slits of D, for any + € I. On account of
Proposition 5.1(i), we see that, for any Ry > £, sup,;Sup,cp,\ 4, 1o1<r, 1 Hi (2, §(0))] = My < oo.
Due to the maximum principle for an analytic function, H,(z, £(¢)) has the same bound for
ze A O

We fix T € (0,¢)and set I = [0, T']. By Lemma 5.6,

M, = sup sup 27|z — E(t)|| Ysry(z, £(1))| < o0. (5.23)

tel zeDy

The next lemma extends [19, Lemma 4.13] from the simply connected domain H to multiply
connected domains.
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Lemma 5.7. Foreveryt € I, F; C B(§(0),4R,), where R; = supy_,,|§(s) —&§(0)| v /M 1/2.

Proof. Fixt € I. For z € D with |z — £(0)| > 4R,, define 0 = inf{s : |g;(z) — z| > R,}. If
s <t Ao,then |g(z) —z] < R; and

1E(s) — &5 = [(6(s) —§(0)) — (z — EONI — |gs(z) —z| > 3R, — R, = 2R,.
Hence we have by (5.23)

19,85(2)] = |27 Wy()(85(2), E())| < _ M M
- BRI = e @ — €l T 2R,
Consequently, |z — g,(2)| = |fos 0,8-(2)dr| < éMT‘Ts for s € [0, A o]. We claim that o > .

Suppose otherwise, then by the definition of o, we would have R, = |7 — g,(2)| < é‘%o and
2

SO o > ER? > t. This contradiction establishes that o > ¢. So for all s € [0, ¢], we have
|gs(z) —z| < R; and |&(s) — gs(z)| > 2R,. Thus we have by (5.20) thatt < f, and z € H\ F;,. O

Theorem 5.8.

(1) The conformal map g,(z) in Theorem 5.5 satisfies the hydrodynamic normalization (1.4) at
infinity.

(1) The set F; defined by (5.21) is an H-hull; that is, F; is relatively closed in H and bounded,
and moreover H \ F, is simply connected.

(i) {F;} is strictly increasing in t. It has the property

ﬂgt(FH-B \ F)={@)} fortel0,0). (5.24)

§>0

Proof. (i) From (5.19), we have

G —z=—2m /O Wiy (85(2). £(5))ds.

We let z — oo. Since the right hand side remains bounded by (5.23), g,(z) — o0 as z — oo.
Then we can use (5.23) again to see that right hand side converges to 0 as z — 00, yielding the
desired conclusion.
(ii) It follows from Theorem 5.5 and Lemma 5.7 that F; is relatively closed and bounded. Were
H\ F; not simply connected, D \ F; would be multiply connected of degree at least N 42, which
is absurd as the conformal image of D \ F; under g, is the (N + 1)-ply connected slit domain D;.
(iii) Suppose F, = F, for some ' > t > 0. Then both g, and g, are conformal maps from D \ F;
onto standard slit domains satisfying the hydrodynamic normalization. By the uniqueness, we get
8:(2) = gv(2), z € D\ F,, which is absurd because Jg;(z) is strictly decreasing as ¢ increases.
By Lemma 5.7 and the fact that lim;_, o R, = 0, we have Ns=oFs = {£(0)}. So (5.24) holds for
t = 0. For every 1) € (0, ¢), {f,o = &(Fip4s \ Fyy);t € [0, ¢ — 19)} is the family of increasing
closed sets associated with KL-equation (5.19) in Theorem 5.5 but with s(), £(¢) and D being
replaced by S(1) = s(tp + 1), E(t) = &(tp + t) and D = D(ty), respectively. Thus the same
argument for ¢ = 0 above applied to {fa; 8 > 0} yields that (5.24) holds for t = #,. U

In accordance with [19, p 96], we call the property (5.24) the right continuity at t with limit
&(1).

We started this subsection by fixing a pair of functions (£(z), s(¢)) satisfying properties (I),
(II). In the rest of this subsection, we shall make a special choice of it, namely, we fix a solution
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path W, = (£(¢), s(?)), t € [0, ¢), of the SDE (3.32), (3.33) in Theorem 4.2 for a given non-
negative homogeneous function «(s) of s € S with degree 0 and a given homogeneous function
b(s) of s € S with degree —1 both satisfying the condition (L).

We can now view the associated family {g;(z),t € [0, ,)} of conformal maps and the
associated growing H-hulls {F;, t > 0} constructed in Theorem 5.5 and studied in Theorem 5.8
as random processes. Indeed, Proposition 4.3 combined with Remark 3.12 implies the following
scaling properties.

Proposition 5.9. Lets€ S, § e R, r > 0and c € R.

() {rg;2(z/r), t = O} under P ,s/r) has the same distribution as {g:(z), t > O} under P ).

@) {r Fip2, t = 0} under Pgy.s/r) has the same distribution as {F;, t > 0} under P ).

(i) {g(z—c)+c, t >0} and {F; —c, t > 0} under P ¢ stc) have the same distribution as
{g:(z), t = 0} and {F;, t = 0} under P ), respectively.

Proof. (i) Let W(s) = (&(s), s(s)) be @e solution of the SDE (3.32)—(3.33) with initial value
(£.). Note that by Brownian scaling, W(s) := r~'W(r%s) is a solution to SDE (3.32)—(3.33)
driven by Brownian motion By = r~!B,», with initial value (£/r,s/r). Let g:(z) be the unique
solution of the Komatu—-Loewner equation (5.1) driven by w:

t
0@ =2 = =21 [ B (a0 60PN, 2 € D.
0

By Theorem 5.5(i) and Proposition 4.3(1), it suffices to show that /,(z) :=rg, /12 (z/r) solves the
Eq. (5.1).
By the homogeneity (3.30) and (3.31),

Uy 1426)(85(2), T E(29)) = Wi (g29) 8020 (85(2) — 1 E(r%s), 0)
= r Uy,25 20285 (2) — E(r?s), 0) = r Uy 0, (rgy(2), £(r’s)).

2
and 50 g,(z) — 2 = =277 [j Uy,20(rgs(2), E(r25))ds = =2 [ Wy (rg,,,2(2), £(s))ds.

Consequently, h,(z) —z = —27 fol Uss)(hs(2), £(s))ds. That is, {h;(z); t = 0} under P, s/r)
has the same distribution as {g;(z); t > 0} under P ).

(i1) By Theorem 5.5, we have F; = {z € D : t, <t} ={z € D : Jg,—(2) = 0, for some s <
t}.

Hence the hulls {f’\,; > 0} associated with {h,(z); t > 0} is given by

F, = {z € D :3h,_(z) =0, for some s <t}
={z€ D:3g,2-(z/r) =0, forsomes <t} =rF,,.

(i1) now follows from (i).

(iii) Let W(s) = (&(s), s(s)) be the unique solution of the SDE (3.32)—(3.33) with initial
value (£, s), and g,(z) be the unique solution of the Komatu—Loewner equation (5.19) driven
by W(t). As b;(&,s) = b;(0,s — E), W) + ¢ = (E(t) + ¢, s(t) + ¢) is the unique solution
of the SDE (3.32)—(3.33) with initial value (¢ + ¢, s 4 ¢). In view of second identity in (3.31),
h,(z) = g:(z — ¢) + c is the unique solution of the Komatu—-Loewner equation (5.19) driven by
W(s) + ¢ with ho(z) = zforx € D +c := {w € H: w — ¢ € D}. This implies the conclusion
of (ii). O

See [25, Proposition 2.1] for corresponding statements for the case of the simply connected
domain HI.
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We call the family of random growing hulls {F;;¢# > 0} in Theorem 5.8 the stochastic
Komatu—Loewner evolution (SKLE) driven by the solution of the SDE (3.32)- (3.33) with
coefficients o and b. We designate it as SKLE, ;. Recall that the functions o and b are
homogeneous functions on S with degree 0 and —1 respectively, and satisfy the Lipschitz
condition (L) in §4. In §6.1, we shall give a typical example of such a function b.

Besides the scaling property of SKLE,, , demonstrated in Proposition 5.9, we now present its
domain Markov property. Since SKLE,, , depends on the initial value w = (§,5) € R x S, we
shall denote it also as SKLEy, 45 or SKLE¢ 5 5.

Let W = (W(z), Py) be the diffusion process on R x S corresponding to the solution of the
SDE (3.32)—(3.33). W satisfies the Markov property with respect to the augmented filtration {G,}
of the Brownian motion appearing in the SDE.

Let g;(z) be the unique solution of the ODE (5.19). Define g,(Z) = gi+s 0 g, '), 7 € D, =
D(s(1)). Then {g;(Z)}s>0 is the solution of the KL-equation

0,85 = =27 Ys49)(&: (D), E(t + 5)), 20 =7

for the driving process {W(t +s) = (§(t + s5),s(t +5)) : s > 0} that is the solution of the SDE
(3.32)—(3.33) with initial vglue W(z). Consider the associated growing hulls {F;} in D, for g
according to (5.21). Thus {F;}s>¢ is the SKLEw ;) a,5-
Take an arbitrary 7 € D, and set z = g, '(Z) € D \ F,. Using the Markov property of W, we
have fors > 0
PwZ € F,) = Pw(life time of 2.3) < s)
= Py(life time of g,1.(2) <5 | G) = Pu(z € Fiys \ F, | G))
=P € g(Fiis \ F) | g), weRxS.
By Theorem 5.5, the set-valued random variable F; is G,-adapted. Denote by g? the sub-o-field

of G, generated by {F,; u < t}. In view of Theorem 5.5 and Theorem 5.8, W(t) = (&(¢), s(¢)) is
GP-adapted so that

Pu € g(Fiis \ F) | ) =PwinG e F), weRxS. (5.25)

This can be rephrased as follows:

Proposition 5.10. For every w € R x S, Py-a.s. the conditional law of {g,(F,+s \ Ft)}s>0 given
QO has the same distribution as that of SKLEw ) «.p-

It will be shown in Theorem 5.12 that the half-plane capacity of SKLEy o , is 27.

ForD = D \ F € D, where D € D and F C D is an H-hull, let Q(D) denote the collection
of families of increasing bounded closed subsets F = {F(¢); t > 0} of D such that each F U F(1)
is an H-hull. For D € D, we introduce a filtration {G,(D); t > 0} on 2(D) by

G(D) =0o{F(s): 0<s <1}, g(D) :=o{F(s):s > 0}.
For D € D, we then intr/(\)duce ag-ﬁeld g(ﬁ) on !2(5) by g(ﬁ) = ¢ lg (@(5)) , using the
canonical map @ from D to #(D) € D. For D € D and ¢+ > 0, define the shift operator
0, : 2(D) — (D \ F(t)) by

@, F)(s) =F@ + s) \ F@®) fors > 0. (5.26)

For D € D and z € d0H, we use Pp ; to denote the induced probability measure on 2(D)
by Py, where w = (z,s(D)). Observe that by Theorem 5.8, {g,(z); ¢t > 0} driven by the
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solution W, = (£(¢), s(t)) of the SDE (3.32)—(3.33) with initial condition Wy, = w is the
unique conformal map from D \ F; to a standard slit domain for each fixed r > 0 satisfying the
hydrodynamic normalization at infinity, where {F;; t > 0} are the associated SKLEy, , ,-hulls.
Thus the probability measures Py, and IPp , are in one-to-one correspondence.
Theorem 5.11. The probability measures {Pp .; D € D, z € 0H} enjoy the following properties.
(i) Forany D € D and z € 0H]|,

Pp. (N=oF(t) = {z} and the half-plane capacity of F(t) is 2t for every t > 0) = 1.

Let g,(z) be the canonical map on D \ F(t) and's(t) = s(D,), where D, := g,(D \ F(¢)) € D.
Then

Pp., (ﬂ’g\,(F(t + 8\ F@)) = {E(r)} C 0H for every ¢ > O) =1.
§>0
Moreover, (g(t),i(t)) has the same distribution as the unique solution (£(t), s(t)) of (3.32)—
(3.33) with initial condition (£(0), s(0)) = (z, s(D)).
(i) (Domain Markov property): For each t > 0,

Pp.. (6,7 4|G/(D)) = Pp, 7, (&(A) forevery A € G(D \ F(t)). (5.27)

(iii) (Invariance under linear conformal map): for any D € D and any linear conformal map
f from D onto f(D) € D,

Pty sy =Ppro f! for every z € oH. (5.28)

Proof. (i) follows immediately from Theorem 5.8.

(ii) Consider a generic event A= {F e 2D, :7 € i(s)} € G(D,) for7 € D;, s > 0. Such
sets generate the o-field G(D;). Define A = §t‘1(71). Clearly, A € G(D \ F(¢)) and A= 2:(A).
Observe that

07'A = {Fe2D): {Flu+1t)\Ft)},=0 € A}
= [F e 2D): {&(Fu+ )\ Ft)}izo € (A = 4)
={Fe(D):ZegFs+1)\F@).

Now (5.27) follows from Proposition (5.25) and thus (ii) is established as such A4 = ’gT'(Z)
generates G(D \ F(1)).

(iii) Let f(z) = ciz+ ¢, c1 > 0, ¢ € R, be a linear conformal map from D to
f(D) € D. Clearly, f~'(z) = (z — ¢2)/c. It follows from Proposition 5.9 that for £ € 9H
and s € S, {cl_l(gczl(clz — ) + ¢2);t > 0} under P(s), r¢s) has the same distribution as
{g:(2); t = 0} under P ). Consequently, {F;, ¢ > 0} under Pf(p) s has the same distribution
as {c;F.—2, — ¢c;t > 0} under Pp¢. That is, Py(p) sy = Pp. o /', under the 2z-half-plane
capacitylparametrization. O

We remark that the shift operator 6, in (5.26) is a natural extension of é, in (3.4), and the
identity (5.27) is analogous to (3.11) in Section 3.2.
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5.2. Half-plane capacity for SKLE

We return to the general setting made in the beginning of §5.1, and consider the conformal
maps {g;(z)} and H-hulls {F;} in Theorem 5.5. Let a; be the half-plane capacity of F;; that is,
a; = lim;, 2(8:(z) — 2).

Theorem 5.12. It holds that a, = 2t for every t > 0.

This theorem follows immediately from the following proposition, which compared with
Eq. (5.19) implies that g, is differentiable and 4% = 2.

Proposition 5.13. a9y = 0, a, is strictly increasing and right continuous. g,(z) is right
differentiable in a; and
"8
T = U (@260, g =z D, tel0.1). (5.29)
1

Here WdLa:(Z) is the right derivative of g;(z) with respect to a;.

To prove this, we make arguments parallel to [8, §6.2, §6.3, §8]. Note however that, while F;
is a portion of a given Jordan arc in [8], F; is now defined by (5.21) for the solution g,(z) of the
(5.19) for a given continuous function (£(¢), s(¢)) satisfying the property (II).

Fixfyp > O0and, for0 < s <t < fg,set gy = g5 © g,‘l, which is a conformal map from D,
onto Dy \ g,(F; \ Fj). Its inverse map gl‘,s1 is a conformal map from D; \ g,(F; \ Fy) onto the
standard slit domain D, and satisfying a hydrodynamic normalization. Therefore, in view of the
proof of [8, Theorem 7.2], we can draw the following conclusion: let £, ; be the set of all limiting
points of &, S‘ o g5(z) = g:(z) as z approaches to F; \ Fj, then £, ; is a compact subset of 0H and
g, sends 9H \ g,(F, \ F;) into H homeomorphically.

LetA ={x+iy:a <x <b, 0 <y < c}be a finite rectangle so that ¢, ; C {x +i0 :
a <x < b}yand A C My<;< D;. Then Jg, ((z) is uniformly bounded in z € A and, by the Fatou
theorem (cf. [15]), it admits finite limit

Sgrs(x +i04) = hﬂ)l Sgrs(x +iy) forae. x € (a,b). (5.30)
y

In exactly the same way as the proof of [8, Lemma 6.2, Theorem 6.4], we get the following.

Lemma5.14. ForO<s <t <ty a, —a, =m"! f&  Sg1,s(x +i0+)dx and

8s(2) — g2 = f s (8:(2), X)Jg; s(x +i0+)dx, z € D\ F;.
L s

1

By the Schwarz reflection, we can extend g, to a conformal map on

Dy U IID; UOH N\ (g5(Fy \ Fy) U I1g,(F; \ Fy)).

Lemma 5.15.

(1) For any compact subset V of D; UoH \ {£(s)}, lim,wg;sl (z) = zuniformlyinz € VUIIV.
(1) a, is right continuous in t.
(iii) a, is non-negative and strictly increasing in t.
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Proof. (i) Without loss of generality, we may assume s = 0 and so g, ! = g, Let V be any
relatively compact open subset of D U (0H \ {£(0)}). In Theorem 5.5, we considered the family
of solution curves {(g,(z), 0 <t < t,) : z € D} of (5.19) parametrized by the initial position
7 = go(z) € D. We add to this family the solution curve (g;(z), 0 <t < t,) of (5.19) with initial
position z = go(z) € oH \ {£(0)} satisfying g,(z) € 0H, 0 <t < t,, where

1. =supfr € [0,): Sei%ft]lgs(Z) —&(s)| > 0}

By Proposition 5.1 (vi) and Lemma 5.2 (ii), such a solution exists uniquely and takes values
in 0H. Define F,(0H) = {z € oH \ {£(0)} : t, < ¢}, t > 0. By a general theorem on ODE
cited in the proof of Theorem 5.5 already, g,(z) is jointly continuous on G = {(¢,2) : z €
DU @HN\{£0)}), t € [0, 1)} L

For the set V as above, Theorem 5.8 (iii) implies that there exists § > 0 such that Fs U Fs(dH)
is disjoint from V. So [0, 8] x V is a compact subset of G. Hence sup, o5 .cvurrv|€i (@) =
SUP;c[0.6].:v |€:(2)] 1s finite by the continuity of g;(z) mentioned above, and accordingly {g:(z) :
0 <t < 4} is anormal family of analytic functions on V UII'V. This implies that lim, 0g;(z) = z
uniformlyinz e VU II'V.

(i) This follows from (i) as in the proof of [8, Theorem 8.4].

(iii) Choose R > 0 so large that F; U K C {|z| < R}. By (A.20), we then have

2R (7 0N # [ 7
a =" /O hi(Re)sin6do for hi(z) =E: 325, 10 < oo

Here Z* = (Z},¢*,P7) is BMD on D U {c], ..., cy}. Since, by Theorem 5.8, F; is strictly
increasing in ¢ and H \ F; is simply connected, F; is non-polar for the planar Brownian motion
and consequently for the absorbing Brownian motion on D. Hence the above expression implies
thata, > O fort > 0. As {F;} is strictly increasing, so is {a,} by its additivity under the composite
map. [

Proof of Proposition 5.13. We now know from Lemma 5.15 that g, is strictly increasing and
right continuous. For any gy > 0 with B(£(s), &9) N H C Dy, there exists § > 0 so that

gs(Fy \ Fy) U Il gs(F; \ Fy) C B(§(s), &0) foranyt € (s,s +9)

by virtue of Theorem 5.8(iii). In particular, ¢, ; is in the interior of the region bounded by the
Jordan curve g;SI(E)B(é(s), £0)). By Lemma 5.15, we have for sufficiently small § > 0,

g, (2) — z| < &0, forany z € dB(£(s), &) and for any ¢ € (s, s + §).

1

In particular, the diameter of g; (3 B(§(s), &o)) is less than 3¢y. Therefore, we get forany x € ¢,

&(s) — x| < [&(s) — 2l + 1z — g, (@) + |87y (2) — x| < 5¢0, (5.31)

by taking any z € g, 1@ B(&(s), £)). On the other hand, from the Lipschitz continuity of ¥ and
the continuity of s(f), we can conclude that Yy;)(z, x) is jointly continuous in (¢, z, x) as in the
proof of [8, Theorem 9.8]. Fix z € D. Since g,(z) is continuous in ¢, Wy)(g:(z), x) is continuous
int > 0 and x € H. Therefore, for any ¢ > 0, there exist § > 0 and &y > 0 such that

[ Ys()(81(2), X) — Wy(5)(85(2), E(5))] < € (5.32)
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forany ¢ € (s, s+4) and for any x € dH with |[x —&(s)| < 5¢&¢. It now follows from Lemma 5.14,
(5.31) and (5.32) that, there exists § > 0 such that, for any ¢ € (s, s + §),

81(2) — g5(2)

+ 7 Us(5)(85(2), §(5))| < e.
a, — ag

This proves the Proposition. [
6. Locality of SKLE
6.1. BMD domain constant bgyp

For each standard slit domain D € D, let ¥(z,&) = V¥p(z, &),z € D, & € 0H, be the
BMD-complex Poisson kernel of D, and define

1 1
bgmp(§; D) = 27 lim (WD(Z, &)+ ——) , &eR (6.1)
>k Tz—§
Since ¥H(z,&) = —#ﬁ is the complex Poisson kernel for the ABM on H, bgmp(§; D)

indicates a discrepancy of the slit domain D from H relative to BMD. It follows from
Lemma 5.6(ii) that bgymp(§; D) is well-defined by (6.1) as a finite real number. Sometimes we
also write bgmp(€; D) as bgmp(€, s) in terms of the slits s = s(D) of D. We set bgyp(s) =
bemp(0, s) and call it the BM D domain constant of D = D(s).

Lemma 6.1.

(i) bemp(S), s € S, is a homogeneous function of degree —1 on S.
(11) bBMD(f, S) = bBMD(S — "§)f0r seS andé e R
(iii) bpmp(s) satisfies the Lipschitz continuity condition (L) (see (4.1)).

Proof. (i) By (3.30) in Remark 3.12, for any s € S and ¢ > 0,

2
bevip(cs) = 27 lim (Pe(cz, 0) + (cm2) ") = 7” lim (42, 0) + (72)~") = ' brmn(s)-
—> —>

(i) By (3.31), we have for any n € R

1 1 1 1
21 (Ws(z,§)+ nz_s> =2r (Ws+n(z+n,é+n)+ N(z+n)—($+n)>'
Taking z — 0 yields bgmp (€, S) = bpmp(€ + 0, s + 7).
(iii) For s;,s € S, bpwp(s1) — bpmp(s2) = 27lim, o (¥ps;)(z, 0) — sy (z, 0)). The
Lipschitz continuity of bgpp(s) in s € S follows from the Lipschitz continuity of ¥p in D € D
established in [8, Theorem 9.1]. [

6.2. Generalized Komatu—Loewner equation for image hulls

In the rest of this paper, we make a special choice of the driving process (£(¢), s(¢)) as in the
last part of §5.1: let W, = (£(¢), s(t)) be the solution of the SDE (3.32)—(3.33) in Theorem 4.2
for a given non-negative homogeneous function «(s) of s € S with degree 0 and a given
homogeneous function b(s) of s € S with degree —1, both satisfying the condition (L).

We shall use the term ‘“‘canonical map” introduced in the second paragraph of §3.1. Let
{g:(z)} and {F;} be the family of the random conformal maps and the random growing hulls in
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Fig. 3. Conformal mappings ®4 and A;.

Theorem 5.5. Recall that { F;} is called the SKLE driven by the solution of the SDE (3.32)—(3.33)
with coefficients determined by « and b, and is designated as SKLE, . For each t > 0, g, is the
canonical map from D \ F; onto D, = D(s(t)) where D denotes D(s(0)).

To formulate a locality property of SKLE, take any H-hull A C D and define

T4y =inf{t >0: F,NA # @}

In what follows, we only consider those parameter ¢ with 74.

Let &, be a canonical map from D \ A onto D € D and define F, = P,(F,). Let g;
be the canonical map from D \ F, onto D, € D and @, the half- -plane capacity of g;, that is
a; = lim,_,  z(g,(2) — z). @, will be also denoted by a(r). Along with the canonical maps g;, @4
and g;, we consider the canonical map &, from D, \ g;(A). Then

gioPy=hog (6.2)

because both of them are canonical maps from D \ (F; U A). See Fig. 3. The union of the slits in
domains D and D are denoted by K = U C and K (s) = Ujv 1C (s), respectively. Denote
by A the set of all limiting points of $4(z) as z approaches to A.

Define

E(t) = h(E(1)). (6.3)

We further denote by FLTV/,(z, x), 7 € 5,, x € dH, the BMD-complex Poisson kernel of 5t.
In this subsection, we aim at proving Proposition 6.6 for {F;} stated below that is analogous
to Proposition 5.13 formulated for { F;}. To this end, we prepare three lemmas and a proposition.
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Lemma 6.2. {17,} is strictly increasing in t. It is right continuous at t with limit g(t) in the
following sense:

(&(Fis \ Fr) = E@). (6.4)

>0

Proof. The first statement follows from the corresponding statement in Theorem 5.8. The second
one follows from (5.24), (6.1) and (6.2) as

(&:(F N\ Fy) =) hsge @ (F \ Fy) = [ | hegs(Fi \ Fy) = hy(6(s) = &(s). D

t>s >s t>s

For0 <s <t < ‘L’A, set g5 = gs o gL . Denote by E,s the set of all limiting points of
ngs 0 2,(Z) = g:/() as 7 approaches to F, \ Fj.

Lemma 6.3.

@) Z_s is a compact subset of 0H and

S
a, —a, = —f gr.s(x +i04+)dx, (6.5)
7 I
5.0~ ) = / T(@.(2), 138 + i00)dx, ze DUI,K\F, 6.6)
les

where 3g,; ;(x + i0) is the Fatou boundary limit existing a.e. on Eﬁs.
(i) @ > 0anda is strictly increasing.
(iii)) Foreacht >0andz € D\ F,, supogsg|§;(z)| < 0.

Proof. (i) This can be shown in the same way as that for Lemma 5.14. The identity (6.6) can be
obtained first for z € D \ F, and then extended to z € D U 9, K \ F,.

(i1) This can be proved exactly in the same way as that for Lcmma 5.15(iii) by the probabilistic
expression (A.20) for ;.

(iii) For0 < s < #,(6.5) and (6.6) imply that |g;(2)| =< [g(2)|+7 sup,7, ,| U,(3(2), )| . O

We next present a probabilistic representation of Jg,(z) which enables us to derive the joint
continuity of Jg; (z) with a uniform bound from those of Jg;(z).

For D = H\ U _1C;, we consider Jordan curves n; surrounding C; that are mutually disjoint
and disjoint from F, U A U 9H. Denote by ZP* = (ZP*, PP*) the BMD on D U {c}, ..., ciy}
obtained from the absorbing Brownian motion (ABM) Z]HI (Z%, PE) on H by renderlng each
slit C; into a single point cj, and set K = UFIC}. Notice that Z”* was denoted as Z™* in [8].
The notation Z?** is more convenient for later discussions. Define a measure v; on 1, by

v(B)=PRNZE* e 1), I'e By, 1<j=N. (6.7)
J J

Proposition 6.4.
(i) Define for z € D\ (F, U A)

q:(2) = 3g1(2) — ZW) PE(ZE € Cji ok < o4)
j=1
—E¥ [3g/(ZL,): o4 <ok ]. (6.8)
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where k(1) is the y-coordinate of the jth slit of D,. It holds for z € D \ I*N} that

N
J%1(2) = q:/(P, z)+Z]P’¢_1 ZHK € C;; ox < 04) Z / q:/(z)v;(dz), (6.9)

for some positive constants y;;, 1 <1, j < N, independent of t.
(i) For each T € (0, t4), the function Ig,(z2) is extended to be jointly continuous in (t,z) €
[0, T] x H\ Fr \ A and has a bound, for some constant y > 0,

0<33(:) <3;'z4+y for 1€[0.T], z €M\ Fr\ A (6.10)

Proof. (i) For D, = H\ K(¢), K(t) = U?’:le(t), g:(n;) are Jordan curves surrounding C;(t)
that are mutually disjoint and disjoint from g,(A) U 9H. Let ZP* = (ZP+*, PP+*) be the BMD
on D; U {cj(?), ..., cy(t)} obtained from the ABM ZH = (zH, IP’H) on H by renderlng each slit
C;(t)into a single point c;‘(t). Analogously to (6.7), define a measure vj on g:(n;) by

Vi) =P

2o (z2: e). IeBm). 1=j=N. 6.11)

Ogr(n)

Owing to the conformal invariance of the BMD (see [6, Remark 7.8.2]), we have
Vi(g () =v;(I") forany I' € B(n,). 6.12)

Applying [8, Theorem 7.1] to the canonical map &, from D; \ g,(A) with g,(»n;) in place of
nj, 1 <j <N, weget

N

Shi(z) = vi(2) + Y fi(t, i (@)
j=1

w(@ =32~ B [SZ8 o < o] (6.13)

N

M (1)

Vi) =)y — v (2)vp(d2).

! k; L= Ri(®) S ‘
Here
filt. =P (ZE e Ciiok, <opw), Ri=[ filt.ovid,  (614)

gr(nk)

and M (t) is the entry of Zf’:OQ*(t)” for the matrix Q*(¢) with zero diagonal entry and off-
diagonal entry given by

a0 = PRNZEE = 0, ok < 0ga)/(L = REW), i # . (6.15)

OK*(1)
By the conformal invariance of the ABM Z™ under the map g; (see [6, Theorem 5.3.1]),
fi(t. &) =P (Z; €Cj, ox <o4) (6.16)
and

v (81(2)) = Jgi(2) — EX [Sg/(Z2

OTKUA

); Okua < 0] = ¢;(2). (6.17)
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Thus by (6.12),
H  ~H . .
Ri(t) = / P (Z,, € Ci;ox <oa)v(dz) = R,
Nk

/ w(VL(dz) = / G (V(d2).
&t (i)

Nk

(6.18)

Finally we use again the conformal invariance of the BMD ZP”* under the map g, to get
from (6.15)

0] —Pli*(sz;: =%, ox <on)/(1 = R})=:qj;, i # j. (6.19)

Denote by M;; the entry of Y - (Q*)" for the matrix Q* with zero diagonal entry and off-
diagonal entry q* It follows from (6.13) and (6.16)—(6.19) that

N
Shyog(2) =qi(2)+ Y PE(ZE € Cis ox <04 Zm, / a,(2)v;(d2), (6.20)

i=l1

forz € D\ F, \ A, where y;; = 1= R* This together with (6.2) establishes (6.9).

(i1) As g;(z) is a solution of the KL equation (5.19), Jg;(z) is jointly continuous and satisfies
0 < J3g:(z) < 3z. The functions {«;(t); 1 < j < N} are continuous due to the continuity of s(z).
Therefore by (6.8), ¢;(z) is jointly continuous. Since the function u(z) = 3z is excessive with
respect to Z™, v,(z) defined by (6.13) is non-negative. Hence 0 < ¢,(z) = v,(g:(2)) < Jg:(2) <
Jz. Tt follows from (6.9) that Jg;(z) is jointly continuous in (z,z) € [0, T] x (5 \ FT) and
qt(djlz) <3 @le. Thus we readily obtain the stated joint continuity with a bound (6.10). O

Lemma 6.5.

(1) For each T € (0, t,), the functions {g;(z),t € [0, T]} are extended to be locally equi-
continuous and locally umformly bounded in z € (D Ua, Ku oH) \ FT r\ A.

(i) Fors > 0 hmtwg, h (2) = z uniformly on each compact subset of D ua K(s) U (0H \
E@N 2 A, o

(iii) ForT € [0, 14), &) is jointly continuous in (t, Z2) € [0, TIx[(DUJ,K UIH)\ Fr \ A].

@iv) a, is right continuous in t and D, is continuous in t.

) W,(z X) is jointly continuous in (¢, z, x) € U,elo TA){t} X [D, Ua K(t) U@H\ {x})] x oHL.

Proof. (i) follows from Proposition 6.4(ii) together with Lemma 6.3(iii) exactly in the same way
as the proof of [8, Theorem 7.4]. (ii) follows from (i) and Proposition 6.4(ii) as the proof of [8,
Theorem 8.2]. (iii) can be shown in a quite similar way to (ii). The right continuity of @, follows
from (ii) as the proof of [8, Theorem 8.4]. The continuity of l~), is a consequence of (iii). (v)
follows from the continuity of D, in (iv) and the Lipschitz continuity of ¥ as the proof of [8,
Theorem 9.8]. [

Proposition 6.6. ?io~: 0, a; is strictly increasing and right continuous. For each T € (0, T4)
and z € DU 3,K \ Fr, g(z) is right differentiable in @, and
0 +§I(Z)

= = 7 U(3(2),50), Z(@) =z, for tel0,T] (6.21)

Here the left hand side indicates the right derivative.
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Proof. This follows from Lemma 6.2, Lemma 6.3 and Lemma 6.5 just as in the proof of
Proposition 5.13. [J

Note that Eq. (6.21) does not characterize the conformal map g; since its left hand side
involves only the right derivative. To characterize g; uniquely, we need to show that g; is
differentiable in 7; see [9, Remark 2.7]. The first assertion of the next proposition is crucial
not only for this purpose but also in legitimating the stochastic calculus in the next subsection.

The conformal map #,(z) (resp. @4(z)) from D; \ g,(A) (resp. D \ A) onto D, (resp. D) is
extended to a conformal map on

(D, UIID, U3H) \ (g(A)U I g,(A)) (resp.(DUIIDUH)\ (AUIIA)) (6.22)

by the Schwarz reflection. Note that hy(z) = Pa(2).

Proposition 6.7. (i) For any t € (0, t14) and z € D, UdH\ g,(A), h,(2), h,(z), h}(z) are jointly
continuous in (t, ). _
(ii) Locally uniformly in z € (D U 0H) \ A,

limh,(z) = Pa(z), limh,(z) = P4(z), limh)(z) = &)(2). (6.23)
110 t}0 10

Proof. (i) It follows from (6.2) that forz € [0, 74), 0 <s <tand z € D; \ g/(A),

h(z)=g, ) ohs;0g.(z) where g, =g;0g 'and g, =508 " (6.24)

Fort > Oand z € D, U (QH \ {£(1)}), let @(u;t,z), u € I, be the unique solution of

the ODE (5.1) in variable u with initial condition ¢(¢; ¢, z) = z and with the maximal time

interval I, ; of existence. If z € Dy, then I, = [0, t;) by Proposition 5.4 and it holds that

ou; t,z) = g.u(2) foru € [0, t]. But, if z € 0H \ {£()}, then ¢(:; ¢, z) is a continuous motion

on oM and it could be that [, ; = (o, ;, Br.;) With 0 < o, ; <t < B, .. Our strategy for the proof

of (i) is to use the identity (6.24) for some fixed s € (0, ¢) along with the joint continuity of
@(s; t, z) and that of g; (@) =3g o §; (?) basically shown in Lemma 6.5.

Recall that 7, = inf{u > 0 : F, N A # ¢} and define [Tz = Z, z € H.. Fix T € (0, T4).
Take any smooth Jordan curve I ¢ C with III" = I" such that I" surrounds F T, the sets A and
K =UY i1 ,C; are located outside I, and I intersects dIH at only two points. For ¢ € (0, T'), we
extend g, by the Schwarz reflection and let I, = g,(I"). Then I surrounds g,(Fr \ F;) and the
sets g;(A) and K (¢) are located outside I;. In particular, £(¢) & I in view of (5.24).

From now we fix an arbitrary t € (0, T) and let I; N 0H = {z;, z2}. The ODE (5.1) and
its solution ¢(u; ¢, z),u € I, ., are extended to II D, by mirror reflection. We then choose any
s € (o7, V oy z,, 1) so that ¢(s; £, z) is well defined for all z € I}. According to a general
theorem [16, Theorem V.2.1] on ODE, (¢, z) + ¢(s; t, z) is joint continuous in the following
sense: forany ¢ > 0, there exists § = (¢, t,z) > Owiths <t—6 < t+8 < T such that, for any
u>0, weCwith|lu—t| <§, lw—z| <8, wehave o, ,, < s and |o(s; u, w)—@(s;t,2)| < ¢
for any z € I;. A covering argument then yields the existence of § € (0, t — s) such that

oy, <sand|o(s;u,z) —@(s;t,z)| < e
forany u € [t — 6, ¢ + &] and for any z € I7;. (6.25)

Observe that ¢(s; t,z) = g,(z) for z € D,. Hence, by the continuity of ¢(s; ¢, z) in g,
we get the identity {w = ¢@(s;¢,2) : z € I3} = I5. We can choose ¢ > 0 so that the
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e—neighborhood I, of I} is disjoint from g,(Fr \ Fy) U g;(A). On account of the relation
hs(w) = g5 0 D40 g (w), w € Dy, we have

hy(I,.) C Dy U ITD, UJH \ (m UTTZ.(Fr \ F)UZ.(A) U ng(K)) . (6.26)
On the other hand, we have the following variant of Lemma 6.5(iii):
ForT € (0,t4)ands € [0, T), §;1(Z) = §M(§;1(Z)) is jointly continuous in
(,2) € [s, T1 x [(Dy UIH) \ & (Fr \ F)\ Z(A)]. (6:27)

This can be proved as follows. By using the relation (6.24), we first express \sgu s> U = s,1n terms
of the BMD on D and the ABM on H in analogy to (() 9), which yields the joint continuity of
\sgu’s(\) in (u,2) € [s,T] x [H\ gx(FT \ Fy) \ gS(A) . This combined with Lemma 6.3(iii)
(replacing (s, t) by (u, T)) implies, in the same way as the proof of [8, Theorem 7. 4] the local
uniform boundedness of the family {gu T(2') uels, T]}inZ € D UoH \ gS(FT \ F )\ Zs (A)
Thus we can get (6.27) as the proof of [8, Theorem 8.2].

By [16, Theorem V.2.1] again, ¢(s; u, z) is jointly continuous in (u,z) € [t — §,t +
8] x I;. Since hy(o(s; u,z)) € hs(Is.) by (6.25), we conclude from (6.26) and (6.27) that
the relation (6.24) extends to h,(z) = §; i(hs((p(s; u, z))) to be jointly continuous at each
(u,z) € [t = 6,1+ 8] x I. In particular sup,c(,_s 1. zer, |hu(2)| is finite. Moreover, by the
joint continuity of the solution of (5.1), we may assume that I} C [),¢p,—s.s+61(Du \ gu(A)).

As h, is analytic, the Cauchy integral formula yields that 4,(z), h/(z), h/(z) are jointly
continuous in (1, z) € [t — 8, t + 8] x U(t), where U (¢) is an open set enclosed by I7.

(ii) We continue to work with the function ¢(u; t, z), u € I ;, as above and claim the following:
for any ¢ > 0, there exists § > 0 such that, for any ¢ € (0, §] and any z € H\ [£(0)—¢, £(0)+¢€],
I, ., = [0, B) for some § > t.

To see this, we fix ¢ € (0,¢) and take {5 > O with {€(m) : u € [0,5]} C (£(0) —
€1, £(0) + &1). Since the solution ¢(z, u, £(0) = &1) of (5.1) with ¢(u, u, £(0) £ 1) = £(0) £ ¢
is jointly continuous in (¢, u), there is § € (0, o] with £(0) — ¢ < info<y<i<s¢(t, u, £(0) —
€1), SUPgey<i<sPt, u,E0) + &1) < &(0) + €. Take any ¢+ € (0,6] and any z € OH with
z > £(0) +&. Suppose I, . = («, B) for some a € (0, 1). As liminf, o |¢(u, t, 7) — &(u)| = 0, we
find u; € (o, t) with ¢(uy, t, z) = £(0) + €, arriving at a contradiction z = (¢, u, £(0)+ &) <
£(0) + €. Hence I, ; = [0, B). The same is true for z € dH with z < £(0) — ¢.

Observe that g~ "(2) = (0, ¢, z) for (t,z) € [0,8] x D U[(H \ [£(0) — &, £(0) + £])], and
it is jointly continuous in (¢, z) there by the theorem cited above. Let V be a compact subset
of DU (QH \ [£(0) — ¢,5(0) + ¢]) \Z. We may assume that § < 74 and V is disjoint from
Usero,5185(A)-

Combining this with the identity 2, = g0 Pa0g,” ! from (6.2) and with Lemma 6.5(ii), (iii), we
see that i,(z) is jointly continuous at each (¢, z) € [0, §]x V and consequently sup, (o 5 ;cv |2:(2)]
is finite and lim, | oh,(z) = Pa(z) for each z € V. By taking appropriate circles as V, we get the
local uniform convergence (6.23) in a similar way as in the proof of (i). U

In the remaining part of this paper, the derivative of a function f in the time parameter will
be designated by f.

Theorem 6.8. Fors € (0,t4) and z € DU ap'IE U I*N} 85(2) is continuously differentiable in
s € [0.t] and
dgv(z)

5 C R, EO® U(Z(2). (). go(2) = z. (6.28)
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Proof. It suffices to prove
dy = 2AREE)I. (6.29)

This is because (6.29) together with (6.21) implies that (6.28) holds with the right derivative
e v

% in place of %. But since the right hand side of (6.28) is continuous in s in view of
Lemma 6.5 and Proposition 6.7, g(Z) is actually continuously differentiable in s.

For D € D and an H-hull K C D, we denote by Cap”(K) (resp. CapH(K )) the half-plane
capacity of K for the canonical map from D \ K (resp. the Riemann map from H \ K onto
H). For a set A C H, we put rad(A) = sup,.4lz|. Fix s > 0 and let K. = g,(Fs+c \ Fy) and
K = 3(Fyie \ Fy). Then rad(K. \ {£(s)}) = o(e) and rad(K \ {E(s)}) = o(e) by (5.24) and
(6.4), respectively. Consequently we have by Theorem A.l of Appendix

Cap® (K.) — Cap™(K,) = o(¢), Cap”(K.) — Cap™(K.) = o(e). (6.30)
Since I?S = hy(K¢), we get from (6.30) and [19, (4.15)] that
Gyve — @y = CapP(K0) = Cap™(hy(Ko) + o(e)
= @[(&(s))*Cap" (Kc) + o(€) = B}(£(5))*Cap™ (Kc) + o(e)
= D(E(5)(as1e — ay) + 0(€),
which yields (6.29) as a;+. — a; = 2¢ by Theorem 5.12. [

6.3. Characterization of locality of SKLE, _pg\ i

We continue to operate under the setting in the preceding subsection. To investigate the
locality, we need to compute the driving processes for {F;; t < t4}. It follows from (5.19) that
the inverse map g, ! of g, satisfies

§71(2) =218, () Vs (2, E(1)), gy ' (2) =z (6.31)

From (6.2), we have
hi(2) = 8,(Pac g () + @ o @a) (g (&' @),  z€ D\ gilA).
This together with (6.31), Theorem 6.8, and then by (6.2) again yields that for z € D; \ g,(A),

hi(z) = =27 |REE)] U(F 0 Pa o g (2), E(1))
+(Z 0 Ba) (g7 (227 (g7") () Wi (2, £(1))

= =27 | (E @) Uy (2), i (E (1)) + 27 1) (2) s (2. E D). (6.32)

Functions /,(z) and h)(z) are extended to the region (6.22), call it G,, by the Schwarz
reflection. Fix 75 > 0 and take a disk B centered at &£(zy) with B C Nit—11<s G and {£(2) :
|t — to| < 8} C B for some § > 0. Denote the right hand side of (6.32) by f(¢, z). By virtue of
Proposition 6.7(i), Lemma 6.5(v) and Proposition 5.1(1), f(¢, z) is jointly continuous and hence
uniformly bounded in (7,2) € [fo — 8,7 + 8] x (4B N H). By taking Schwarz reflections of
Uy (z, hy(§(2))) and Py (z,&(1)) in z, f(¢, z) admits an extension to [ty — §, % + 8] x dB to
be jointly continuous and uniformly bounded there, and the identity &,(z) = f(z, z) extends to
(t,z) € (th — 8,10+ 6) x (OB \ 0H).

Expressing (h,(z) —h,(2))/(u—1), z € B, t € (ty— 38, th+ ), by the Cauchy integral formula
and letting u — t, we see that /,(z) is differentiable in ¢ for any z € B with hi(2) being analytic
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in z € B and jointly continuous in (¢, z) € (fp — §, fp + §) x B. In particular, fz,(&(t)) can be
computed by lim,_.¢(), ;emh,(z) explicitly. Indeed, by the definition (6.1) of bpmp(s, &), we get
from (6.32)

hi(E(1)) = RI(E() bemp(E (1), () — [hLEW)]” bemp (i (E(1)), hi((1)))
. 20h(E®)) 2h(2)
+ lim —
e \ () — h(E(D) 7z —E(1)

= hy(£(1)) bemp(§(1), s(1)) — |h;(€(t))|2bBMD(ht(g(t))v hi(s(2)))
— 3K/(E®)). (6.33)

Thus h,(z) is differentiable in ¢ for each z € 0H N G; with fzt(z) being jointly continuous in
t >0, z € 9H N G,. Moreover, h;(z) and &/ (z) are jointly continuous by Proposition 6.7. Since
E(t) = h,(&(t)) and &(¢) is the solution of the SDE (3.32), we can readily apply a generalized It
formula (see [9, Remark 2.9]) to get

dE(t) = (Msa» + R (E@)b(s(t) — E(1) + %h;’@(r»a(s(r) - E(r>)2> dt
+hE@)a(s() — E(1)d B,
This combined with (6.33) gives the following.
Theorem 6.9. It holds that
d&(t) = h)(E(®0)) (b(s(t) — E(1)) + bpmp(E (1), (1)) dt
- %h;’@(r» (a(s(t) — E(1))* — 6) dt
— R EE) bampE (1), hy(s(t))dt + h(E(1)e(s(t) — E(1)d B,. (6.34)
Let {F}},<¢, be the half-plane capacity reparametrization of the image hulls { F}}, ., , namely,
F, = Fy1), Ty =d(ta)/2 (6.35)

where E(t)Nis the half-plane capacity of F, and @' is its inverse function. Accordingly, the
processes (1) = h,(§(t)) = g o Pa(§) and’S;(r) = h,(s;(t)) = g o Da(s;) are time-changed
into

E)=E£@ ') and §;(1)=%,@ '), 1<j<3N, 1<t (6.36)

respectively. 5 _
Set & = gz-100y and ¥, = W1, It follows from (6.28), (6.29), Lemma 6.5(v) and
Proposition 6.7(i) that, for T € (0, T4), g,(z) is continuously differentiable in z € [0, T'] and

dg(z) . .oy . ~ s s
’2’—[ = 27 U (3(2). E(t)).  g0x)=z€ DU,K\ F. 6.37)
Lemma 6.10. It holds under P ) that
t
$;(1) = Dals)) + / bi(E(s),8(s)ds, t€[0,%4), 1<j<3N, (6.38)
0

where 51- (w) = l;j (&, 8) is defined by (3.27) with WU being replaced by .
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Proof. We can get (6.38) from the K-L equation (6.37) exactly in the same way as the proof of
Theorem 2.3, if Lemma 2.1 for g,, ©a, @, in place of g;, 1, ¥, is once established. Let us call
Lemma 2.1" such a counterpart of Lemma 2.1.

The first and second assertions of Lemma 2.1” follow from Lemma 6.5(v), Proposition 6.7(i),
(6.29) and (6.37) as in the proof of those of Lemma 2.1. The third assertion of Lemma 2.1’ can be
obtained by proving an analogue to (2.7) using a similar method to the proof of (6.21) combined
with (6.29). The rest of assertions of Lemma 2.1’ can be proved quite similarly. [

Let M, = [, h.(£(s))dBy. Clearly by (6.29), (M), = [, hl(£(s)*ds = a(t)/2. Hence
B, := M1y, is a Brownian motion. The formula (6.34) can be rewritten as

-~

E(t) = D4(E(0) +/O ﬁ;(g (s~ (b(g (5) — () + baup(€ (), 8 (S))) ds

1 4. o . o ° o
+§z;w@(n»hxsm»4<a@@>—anf—6)ﬁ

—/ bBMD(é(S)vg(s))ds‘i‘/ o (s) — E()NdBy, 1 €0, ), (6.39)
0 0

where h/(z) == hid_l(m(z), hl(z) = hg_]as)(z), £ () = €@ '(21)) and gj(t) =s;(@"'(2r)) for
1 < j < 3N. Note that since /,(z) is univalent in z on the region (6.22), h}(z) never vanishes
there.

Let {F,} be a SKLE, ;. Since {F;} depends also on the initial value (£, s) for SDE (3.32)—
(3.33), we shall write SKLE, , occasionally as SKLEg s , , for emphasis on its dependence on
the initial position (£, s). Recall that, for an H-hull A C D(s), t4 = inf{r > 0: F,NA # @}. Let
{I:“,}{K; ) be the half-plane capacity reparametrization of the image hulls {F, = Pa(F)}i<ey)
specified by (6.35).

SKLE, is said to have the locality property if, for the SKLE¢ s o, {F;} with an arbitrarily
fixed (§,s) € R x S and for any H-hull A C D(s), {ﬁ,, t < T4} has the same distribution as
SKLEqﬁvA(E),q’)A(s),a,b restricted to {r < ‘L’q}A(A)}. Here SKLE,, ; and SKLE(I)A(E),J)A(S),a,b can live on
two different probability spaces.

Theorem 6.11. SKLE, _py,,, for a constant a > 0 enjoys the locality if and only if o = V6.

Proof. “If” part. Assume that @ = V6 and b(g, s) := b(s — E) = —bpwmp(£&, s). Then (6.39) is
reduced to

dE(t) = —bmp(E (1), $(1)dt + /6 dB,. (6.40)

Thus {I*V}} is an increasing sequence of H-hulls associated with the unique solution g, of the
Komatu-Loewner equation (6.37), driven by (é (1), (1)), which is the unique solution of (6.40)
and (6.38). Therefore {ﬁ,}{,<;A} is SKLE%(E)’ B 4(5).v/6.—bEvD restricted to {t < 74,4}, yielding
the ‘if” part of the theorem.

“Only if”’ part. Assume that « is a positive constant and b(¢, s) = —bgmp(&, s). Then (6.39) is

reduced to

a2 -6

E(t) = Da() +

Aﬁﬁwwﬁémﬁm

— / bemp(E(s), §(s))ds +aB,, t>0. (6.41)
0
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Let {F,} be a SKLE; 5 o —ppyp> A C D(s) an H-hull, and {F,} be defined by (6.35). Eq. (6.41)
forS and (6.38) for § describe the evolution of {F,} through (6.37).

Assume now the locality of SKLE, _;,, . Then {(é(t)), S(t);t € (0,7T4)} has the same
distribution as the solution {(é(t), 8(1)); t € [0, Tp,(a))} of the equation

t = -
(1) = Da(5) — /0 bemp(S(s) — &(s))ds + aB; (6.42)

for some Brownian motion B, coupled with the Eq. (6.38) with (§ (1), s(¢)) in place of (é (1), 5(2)).
On the other hand, if we let
2

2

t o . ©
w0y i= 2 [RE ) BE o) s,
0
then we see from (6.4lv) that é (1) is, under the Girsa_nov transform generated by the local
martingale —a~'5(¢) dB,, locally equivalent in law to £(¢). It follows that n(t) = 0, t < T4,
almost surely, and accordingly

L2ty
(oz2 — 6)/ h;/(é(s))ds =0, t>0. (6.43)
0

Dividing (6.43) by a~'(2t) and then letting t 1 0, we get (@> — 6) (&) = 0 for every
£ € 3H \ A by virtue of Proposition 6.7. If &> # 6, then &’/ () = 0 forevery & € 0H \ A, This
would imply that @4 is an identity map, which is 1mposs1ble unless A =¢. [

Remark 6.12 (An Effect of the Second Order BMD Domain Constant). Along with the BMD
domain constant bgyp introduced in Section 6.1, we define for D € D

1
T (- )

which is a well defined real number by Lemma 5.6(ii). We also denote it by cgmp(§; s) for
s = s(D). We set cgmp(s) = cgmp(0,8), s € S, and call it the second order BMD domain
constant. On account of (3.31), we then have cgmp(€; S) = cgmp(s —E) fors € Sand & € R.

For a constant o € (0, 2), SKLE,,;, is generated by a simple curve just as SLE > [9]. As is
well known, SLEg/; enjoys the so called restriction property that was established by showing that
h;(ét)s/ 8 is a local martingale in [22]. Here / and & were defined for the SLE in exactly the same
manner as above for the SKLE. But we can hardly expect a straightforward generalization of
this martingale property to SKLE s73 _,. - due to the effect of the second order BMD domain
constant cgyp as will be seen below. See [9, §6] for some related literatures.

It follows from the identity (6.32) that

hi(2) = —=2m | EO) T (hy(2), hi EODRR) + 2k} (2) ¥, (@ E@)
+ 27k (2) Usa(z, (1))
We then have analogously to (6.33)
RE®) = —|hEO) camp(hi(E@)), h(S())h]E())
+ hy(E@)epmp (& (1), s(1) + R/ (E()bemp(§ (1), s()) + ZEIEI(lt) I1(z, 1),

cemp(é; D) =2n lirré (W’D(z &) — > , & eoH, (6.44)

where

11z, t) = =2|RE@) hi(z) + h)(2) h&— =

2
hi(z) — hi(§(1))? e-E0r S(t)'
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. . _ hEw? 4w
It holds as in [22, §5] that lim,_, ¢ I (z,t) = S ED) Fh(5(0).

Consider the process n(t) = h;(& (1))? for 8 > 0. Using a generalized It6 formula, we have

1d
3 nnTEt)) = —|hEO) cmp(h (E0)). hi(s()d1 + caup(E (D). s())dt

h{ (&)
hi(§(1))

{b(&(1), s(1)) + bemp(§(1), s(1))} dt

1 2 hy(E@)*
+ {6 = D). s + 17 dr

1 2 A\ hGEW) RI(E@))
+ <2a($(t), s(1)) 3> WED) dt + HED)

When o = /8/3, b = —bgmp and § = 5/8, we get from the above identity

dn(t) _ \/E SHED) o
n0 V38 hED)

5 !
+ 2 (emvn€(0). 5(0)) = [ EO) conm b (E D). hi(s(1)) dr. (6.45)
The drift term of the right hand side does not vanish unless either 4, is the identity map or cgmp

is vanishing.

a(§(1), s(1))d B;.

t

Remark 6.13 (ERBM and BMD). As is explained in Introduction, the derivation of the Komatu—
Loewner equation and its fundamental properties in [8] is partly based on the probabilistic
considerations in terms of the Brownian motion with darning (BMD). We had constructed
and characterized the darning of a general symmetric Markov process ([6, §7.7]) when we
encountered an article of G. Lawler [20] where the Komatu—Loewner equation on a standard slit
domain previously obtained analytically by Bauer—Friedrich [4, Theorem 3.1] was investigated
in terms of the excursion reflected Brownian motion (ERBM). We were strongly motivated by
these papers. In the present paper, the BMD is also used crucially in Section 6.2 to derive the
generalized Komatu—Loewner equation (6.28) for the image hulls and in Appendix to extend
Drenning’s result [11] on the comparison of half-plane capacities.

[7, §6] gives a detailed proof of the identification of ERBM with BMD (especially in the
doubly connected case). Some comprehensive account on BMD and BMD-harmonic functions
can be found in [5,8,13].
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Appendix. Comparison of half-plane capacities

We fix a standard slit domain D = H \ K, K = U?’lej. For r > 0, define B, = {z € C :
|z] < r}.Let T > 0. We consider an increasing family {F;; ¢ € (0, T']} of H-hulls such that there
is an increasing sequence of positive numbers 7, so that

limr, =0 and F, C B, fort e (0,7, (A1)
t—
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Let a, be the half-plane capacity of the hull F;. Let g? be the unique Riemann map from H \ F;
0

onto H satisfying the hydrodynamic normalization g°(z) = z + %’ + o0 (1/|z]) at infinity. Clearly,

a? - hmz—)OOZ(g?(Z) - Z)'

Theorem A.1. lim, ga,/t exists if and only if lim, wa? /t exists. If both limits exist, they have the
same value.

When {F;} are Jordan subarcs, such a statement of comparison has appeared in S. Dren-
ning [11, Lemma 6.24]. Its proof uses a probabilistic expression of a, in terms of the excursion
reflected Brownian motion (ERBM) for D. A key step of its proof'is [1 1, Proposition 4.5], where
an estimate of the ERBM-Poisson kernel under a small perturbation of the standard slit domain
D is obtained using an expression of the ERBM-Poisson kernel that involves the boundary
Poisson kernel, excursion measures and an induced finite Markov chain among the holes. But
BMD counterpart of [11, Proposition 4.5] to be formulated in Proposition A.2 admits a more
straightforward proof due to a simpler expression of the BMD-Poisson kernel in [8].

Denote by D* = DU {cj, ..., cy} the space obtained from H by rendering each hole C; into
a single point ¢}. Fix &y > 0 with B;; NH C D. For any ¢ € (0, &9), we consider perturbed
domains

D. =D\ B,, D =D*\ B, =D, U{c},...,cy}

Let K}(z,¢), z € D*, ¢ e 0H, (resp. Kf)g(z, $), z € DX ¢ e 9(H\ B,),) be the Poisson
kernel of BMD on D* (resp. D}).

Proposition A.2. It holds that
K}, (z,8¢") = 2K },(z,0) sin6 (1 + O(e)) (A.2)

where O(e) is a function whose absolute value is bounded by c(z,0)e with c(z,0) being
uniformly bounded in 0 < 0 < w and |z| > &y.

Sz

Proof. (i) PutH, = H \ B,, ¢ > 0, and consider the Poisson kernel Ku(z, ) = % T (resp.
K, (z, ¢)) of H (resp. H,). Then
Ky, (z, e€'”) = 2Ku(z,0)sin6(1 + O(e)), uniformly in 0 < 6 < 7, and
|z] > &o.
In fact, if we denote by " = (z,, ¢, IP’]EI) (resp. z% = (z,,¢, IP’IZHIS)) the absorbing Brownian
motion (ABM) on H (resp. H), then according to [19, p 50],

2R 3z .
T P sinf (1 + O(R/|z]))dO, R >0, (A4)
Z

(A3)

Pz € Re%do) =

O3 BRNH

O(R/|z|) being uniform in R > 0, z € H\ Bg, which yields (A.3). We note that, for z € H,,
BN f (Zoyy, o) Cosert < 00] = € f Ky, (z, e'?) f(ee)do. (A.5)
0

Let Gp(z, 7') be the Green function of D, namely, 0-order resolvent density of ABM on D
(see §4 of [8]), and Kp(z,¢), z € D, ¢ € dH, be the Poisson kernel of D. The corresponding
quantities for D, are designated by Gp,(z,z’) and Kp,(z,¢),z € D, ¢ € d(H \ B,). In view
of [8, §4], we have, for the outer normal n; at ¢.

1 0o 1 0
Kp(z,¢) = _EEGD(Z’O’ Kpe(z,¢) = —EEGDE(Z, o). (A.6)
¢ 9
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(i1) We next show
Kp,(z,¢¢"") = 2K p(z,0) sind (1 + O(e)), (A7)
O(e) being uniformly in 6 € [0, ] and |z| > &¢. By the strong Markov property of Z™
Kp(z.0) = Ki(z, 0) — E[Kp(Zoy . 0); 0g < o0]. (A.8)
By the strong Markov property of Z"¢ and then by (A.3) and (A.8),
Kp,(z, ge'?) = Ky, (z, ge'’) — Egﬂf [KHS(ZGK, ee'?); o < oo]
= (2Ku(z,0) — ZIEIZHIS[KH(Z(,K,O); o < o0])sinf(1 + O(e))
= (2Kp(z,0)+2A)sin6(1 + O(e)),
where
A = B [Ku(Zoy, 0), 0k < 00] — EX*[Ku(Zoy, 0), 0k < 0]
= E[Ki(Zoy, 0), 0x < 00] = E[Kii(Zoy . 0), 0k < 0yp, ]
= E;[Ku(Zog, 0), 035, < 0]

= EF[ES  [Ku(Zoy. 0),0x < ook oy < 00).

Since Ku(Z,,,0) < C for some constant C > 0,0 < A < CIP’IZHI(GE)BEQH < 00). It then follows
from (A.3), (A.5) and (A.8) that A < 4eCKy(z, 0)(1 + O(e)) = O(e)Kp(z, 0) uniformly for
|z| > &g, proving (A.7).

(iii) Define

9i(2) =P (0 <00, Zgy €Ci), z€D, 1<i <N,
9f(z) =P (ox <00, Zyy €C;), z€D,, 1<i<N.
By the strong Markov property of ZH,
97 (2) = 9i(2) = B [0i(Zoyp, )i Oaper < 0] . (A.9)

Since ¢ can be extended to be a differentiable function up to oH, we get from (A.3), (A.5)
and (A.9)

@£ (2) = ¢i(z) + O(¢*) uniformly for |z| > &. (A.10)
(iv) By virtue of [8, (5.2)], the BMD-Poisson kernels K}, and K7, admit the expressions
al 9
K} ) =K ) - bi i i . Y )
5 ) =Kz, 0) UZZI  0i2) 5@

N
a
Kb, (@ )= Kp.(2,0) = Y bfj ¢](2) 5 —¢}(©).
¢

ij=1

(A.11)

Here (b;j)1<i,j<n (tesp. B = (b;)1<i,j<n) is the inverse matrix of (a;;)1<i,j<n (resp. (¢;)1<i,j<n)
whose entry is the period of ¢;(z) (resp. ¢; (z)) around C;, namely,

aij =/wd~v(§), a;; =/wdS(§), (A.12)
y 3n§ y 8]’]{

for any smooth Jordan curve y surrounding C; so thatins y D C; andins y NCy = @ fork # j.
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We claim that

by, = bij + O(&?), 1<i,j<N. (A.13)
It suffices to show

af; = ai; + O(e), 1<i,j<N. (A.14)
By (A.9), ¢{(z) = ¢i(z) — h(z) for h(z) = Egﬂ [go,-(Z(,aBéﬂH); O9B.NH < oo] , For y in (A.li),
take J surrounding y with y N B,, = ¥ and let G = insy. Since A is harmonic on G,

h@) = [;pcz EhE)sE), z e G, for the Poisson kernel pg of G. Then %(f) =
f~ 3PG(5 5>h(g)s(d§) ¢ €y Assup.., rey “”’G“ 2| s finite and h(§) = O(e?), & € 7, we

have f 3 ds(¢) = O(e?), and hence (A.14) follows from (A.12).
) We énally show that

19

& — _i . 1
_ EE‘”J‘@‘F“’P = ~m; 95(0)],_q sin6 (14 0(e)). (A.15)

We put D/ = DUC; and let zb =z, ]P’sz, z € D/} be the ABM on D/ . 7P’ is obtained from
Z™ by killing upon hitting Uk#j Ci. Then ¢;(z) = IP’fj (ch < o0) forz € D/. Let Gp;(z,7)
be the Green function (0-order resolvent density) of Z”’. By Corollary 3.4.3 and the 0-order
version of Lemma 2.3.10 of [14], there exists a finite measure v concentrated on C; such that

®(2) =/ Gpi(z, 7)v(d7), zeD’. (A.16)

Cj
Analogously we put D} = D, U C; and let zZb! = {Z,, P?g, z € D/} be the ABM on D.
Then <p§ () = IP?'; (0¢c; <), z € D!. By the strong Markov property of Z Dj, we have
05(2) = 9;2) — B [01(Zs,p,): O, < 00| forz € D],
and also, for the Green function G D! (z,7)of Z D} ,
G (@) = Gpi(2.2) —EP' [G i (Zoyy, e 2): Ot < 00].

Therefore we can deduce from (A.16) that

¢5(1)=/ G,i(z.2wdz), ze D] (A.17)
C &

J

Thus we have by (A.6), (A.16) and (A.17) with D/ and Dg in place of D, respectively, that

0l
3= [ Koo ¢ com (A1)
19
SO = [ Ky@ovas) ¢ e B (A19)
ng c; F

Consequently we get (A.15) from (A.18), (A.19) and (A.7) with Dg and D/ in place of
D, and D, respectively. We arrive at (A.2) by combining (A.7), (A.10), (A.13) and (A.15)
with (A.11). O
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Proof of Theorem A.1. The proof is essentially along the line of the proofin [11, Lemma 6.24],
but with some simplifications by using BMD instead of ERBM.
Without loss of generality, we may assume that By NH C D. We write S = 9 B; N H and take
t so small that F, C By N H. Along with the ABM Z" = (Z,, ¢, PY) on H, we consider BMD
=(Z;,¢*, P))on D* = DU/{cj, ..., cy} and define

b1
My (1) = / E, [QZ(,F, < oo sin6 do,
0

b
M) = / E} o [352;,,: 0n < 00| sin6 do
0

T
My(t) = f E, .o [SZGFI; O < 0g| sinf do,
0

T -
Mi(t) = / " [QZ;';F, < o] sin6 d6.
0

It is known (see [5, Theorem 1.6.6]) that, if a real valued function u(z) defined on a planar
domain E with K C E C H is continuous on E, constant on each slit C;, harmonic on
E \ K and its period around each slit vanishes, then u is harmonic with respect to BMD
on (E\ K)U{c],...,cy}. Let g/(z) be the canonical map from D \ F;. Since the function
h:(z) = S(z — g:(2)) enjoys all these properties, it is BMD-harmonic on (D \ F;) U {c7], ..., cy}.
As h,(z) = Sz on F; and h, vanishes on 0H and at oo, we have by the maximum principle

h(z) =E; [SZ";H ;0F, < oo] .

We fix R > 0 so large that 1 \ By C D. By (3.2), a; = limy_iy(g:/@{y) — iy) =
lim,_, o yh,(iy). By the strong Markov property of Z* and (A.4), we have for y > R,

. * * 2R " 0y o;
yhi(iy) = yEi) [h (ZaaB nH)] = ?/0 hi(Re™)sin0d0 - (1 + O(R/y)),

yielding an expression

2R [7 . .
a, = — h;(Re') sin6 db. (A.20)
T Jo
Define K},(00, 0) = limy1,y K}, (iy, 0). Since K7j,(z, 0) is Z"_harmonic on H \ Bg, we have
from (A.4)

2R 3z

K} (z,0) = s U K,”‘)(Reie,O)sinOd@} (14 O(R/Iz])),

which implies that
* 2R " * i0 .
K5(00,0) = = | K3(Re", 0)sin6d6,
N” 0 (A21)
K} (z,0) = 2P K;(00,0) + O(1/|z]?).

Notice that (A.21) holds not only for a standard slit domain D but also for a more general domain
D =H\ Uj.V:lA j where {A;} are mutually disjoint compact continua contained in H.
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It follows from (A.20), the strong Markov property of Z*, and Proposition A.2 for ¢ = r, that

2R T T
a; = ?A /(; E;eml [ht(Z:aB,,ﬁH); GBBrtﬁH < OO] sin91d91

_ 2Ry [T [T, i it 0, -
= KD,(Re ,re )h,(r,e )d@z sm@ldel
7w Jo Jo "

2R (7 A ,, A
= / K3 (Re™™,0)sin6,db, - 2r, / hy(r:e'®) sin 6:,d0,(1 + O(ry)),
T Jo 0

which combined with (A.21) gives

a, = 2r K} (0o, )M (t)(1 + O(ry)). (A.22)
We claim that
1
K}(00,0) = —. (A.23)
i
To this end, consider the conformal map f(z) = —= from H onto H and the i image domain

D= f(D)=H\ U, W f(Cj)of D. Let K% (z &) be the BMD-Poisson kernel of D.
We first show for K% 5(00,0) = llmy_moyK (iy, 0) that

K%(00,0) = % (A.24)

Let W(z &) be the BMD-complex Poisson kernel of D: W(z §) = K5(z, 6), llmzﬁoo J/(z &) =

0. Let b be a half of the BMD-domain constant defined by (6.1) for D: b = lim,_,o( !I/(z 0)+1 2.
Define pp(z) =7 !P(—l 0) — b. Then msgoD(z) =nK% (f(z) 0) is constant on each slit C; and
lim,_, oo (pp(z) — 2) = llmwﬁo(n W(w 0+ 5 ) —b= O Therefore ¢p is a canonical map from
D, and consequently z = ¢p(z), z € Dsothat y = mK%5(i/y,0). On the other hand, we
see from (A.21) for D*and z = i/y that K% (z/y, 0) = yK* (oo 0) + O(y?), and accordingly
y = myK%(c0, 0) + 0(y?), yielding (A.24).

We next prove

K3 (00,0) = K (00, 0), (A.25)

which together with (A.24) gives (A.23). Let G} (z, 7)) (resp G*% Sw, w’)) be the Green
functlon (0-order resolvent density) of BMD on D* (resp. D*) Then we have K} (z,0) =
llmgw 5:Gp(z, i) and K;(z, 0) = limg g 2SGD(z, ig). The conformal invariance of BMD ([6,
remark 7.8.2]) readily implies the identity G*ﬁ(w, w) = G*D(f’l(w), F~(w")) of BMD-Green
functions for f(z) = —%. Accordingly, using the symmetry of G7,, we get

, VG (iy, ie)
K%5(00,0) = hm yK @(@y,0) = lim lim ———

y—00 )0 2¢
= lim lim yGp(f~ (l}’), /- Lig))
y—>0o0 ¢l0 2
G (i/y.i o G* (i fe. i
= lim lim 282U ) i iy 2GR/
y—=>00 /0 Q¢ €10 y— 00 e

1
= lim - K}(i =K; :
lim p(i/e,0) = Kp(00,0)
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From (A.22) and (A.23), we finally arrive at

2
a; = ;rtMik(t)[l +0@r)], r — 0. (A.26)
An analogous formula holds for a? ([19, p 70]):
0 2
a, = ;r,Ml(t). (A.27)
We now use Proposition A.2 again to verify that
M (t M (t
lim rt—l() exists if and only if lim rt—z() exists, (A.28)
10 t 110 t
and, in this case, they are equal. In fact, we have for /,(z) = ]Ej [onF 3 0F < oo] ,
hi(re”) =57 o [325, 3 07, < 05| + B2, [n(Zoy)s 05 < o0]
and so
Mi(t) = M) +/ IE]SIE,-B [h,(ZaS); oy < oo] sin0d0. (A.29)
0

By substituting (A.2) into &,(z) = fon I*Jr, (z, rie'Mh,(re’Mr,dn, z € S, we obtain

h(z) = 2r,K;;(z, OMi(t)(1+ O(r)), zE€S. (A.30)

l() ht(z)

is uniformly bounded in ¢ > 0 and z € S by (A.30), and
2<t)

If lim, o i =y ex1sts then

we conclude that lim; tO M0 by (A.29). Conversely, suppose lim, tO = y’ exists.
Since M{(t) — Mj(t) < Cr,M*(t) for some constant C > O from (A.29) and (A.30), we get

M *(t) < 2M}(¢) for sufficiently small ¢ > 0. Hence lim sup, iO 1( )
1( )

< o0 and we conclude that

lim, tO =y’ just as above.
In the same way, we can use (A.7) to verify that
reMi(1) reMo(1)

lim 217 exists if and only if lim ——— exists, (A.31)
110 t 110 t

and, in this case, they are equal. As M>(t) = My(t), the desired statement of Theorem A.l
follows from (A.26), (A.27), (A.28) and (A.31). O

References

[1] L.V. Ahlfors, Complex Analysis, McGraw-Hill, 1979.

[2] R.O. Bauer, R.M. Friedrich, Stochastic Loewner evolution in multiply connected domains, C. R. Acad. Sci. Paris,
Ser. 1339 (2004) 579-584.

[3] R.O. Bauer, R.M. Friedrich, On radial stochastic Loewner evolution in multiply connected domains, J. Funct. Anal.
237 (2006) 565-588.

[4] R.O. Bauer, R.M. Friedrich, On chordal and bilateral SLE in multiply connected domains, Math. Z. 258 (2008)
241-265.

[5] Z.-Q. Chen, Browniam Motion with Darning, Lecture Notes for Talks Given at RIMS, Kyoto University, 2012.

[6] Z.-Q. Chen, M. Fukushima, Symmetric Markov Processes, Time Changes, and Boundary Theory, Princeton
University Press, 2012.

[7]1 Z.-Q. Chen, M. Fukushima, One-point reflection, Stochastic Process Appl. 125 (2015) 1368—1393.

[8] Z.-Q. Chen, M. Fukushima, S. Rhode, Chordal Komatu-Loewner equation and Brownian motion with darning in
multply connected domains, Trans. Amer. Math. Soc. 368 (2016) 4065—4114.


http://refhub.elsevier.com/S0304-4149(17)30144-8/sb1
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb2
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb2
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb2
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb3
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb3
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb3
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb4
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb4
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb4
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb5
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb6
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb6
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb6
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb7
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb8
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb8
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb8

594 Z.-Q. Chen, M. Fukushima / Stochastic Processes and their Applications 128 (2018) 545-594

[9] Z.-Q. Chen, M. Fukushima, H. Suzuki, Stochastic Komatu-Loewner evolutions and SLEs, Stochastic Process. Appl.

127 (2017) 2068-2087.

[10] E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, Krieger, 1984.

[11] S. Drenning, Excursion reflected Brownian Motions and Loewner equations in multiply connected domains, 2011,
arXiv:1112.4123.

[12] E.B. Dynkin, Markov Processes, Vol. I, Springer, 1965.

[13] M. Fukushima, H. Kaneko, On Villat’s kernels and BMD Schwarz kernels in Komatu-Loewner equations,
in: D. Crisan, B. Hambly, T. Zariphopoulous (Eds.), Stochastic Analysis and Applications 2014, in: Springer Proc.
in Math. and Stat., vol. 100, 2014, pp. 327-348.

[14] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, second ed., De Gruyter,
2011.

[15] 1.B. Garnett, D.E. Marshall, Harmonic Measure, Cambridge University Press, 2005.

[16] P. Hartman, Ordinary Differential Equations, John Wiley, 1964.

[17] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, 1981.

[18] Y. Komatu, On conformal slit mapping of multiply-connected domains, Proc. Japan Acad. 26 (1950) 26-31.

[19] G.F. Lawler, Conformally Invariant Processes in the Plane, in: Mathematical Surveys and Monographs, AMS, 2005.

[20] G.F. Lawler, The Laplacian-b random walk and the Schramm-Loewner evolution, Illinois J. Math. 50 (2006)
701-746 (Special volume in memory of Joseph Doob).

[21] G. Lawler, O. Schramm, W. Werner, Values of Brownian intersection exponents, I: Half-plane exponents, Acta
Math. 187 (2001) 237-273.

[22] G. Lawler, O. Schramm, W. Werner, Conformal restriction: the chordal case, J. Amer. Math. Soc. 16 (2003)
917-955.

[23] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, 1999.

[24] L.C.G. Rogers, D. Williams, Diffusions, Markov Processes and Martingales Vol. 1, Cambridge University Press,
1979.

[25] S. Rohde, O. Schramm, Basic properties of SLE, Ann. of Math. 161 (2005) 879-920.

[26] O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000)
221-288.


http://refhub.elsevier.com/S0304-4149(17)30144-8/sb9
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb9
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb9
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb10
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://arxiv.org/1112.4123
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb12
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb13
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb13
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb13
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb13
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb13
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb14
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb14
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb14
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb15
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb16
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb17
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb18
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb19
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb20
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb20
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb20
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb21
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb21
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb21
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb22
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb22
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb22
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb23
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb24
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb24
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb24
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb25
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb26
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb26
http://refhub.elsevier.com/S0304-4149(17)30144-8/sb26

	Stochastic Komatu–Loewner evolutions and BMD domain constant
	Introduction
	Komatu–Loewner equation for slits
	Randomized curve γ and induced process W
	Random curve with domain Markov property and a conformal invariance
	Markov property of W
	Brownian scaling for W
	Homogeneity of W in x-direction
	Stochastic differential equation for W

	Solution of SDE having homogeneous coefficients
	Stochastic Komatu–Loewner evolutions
	Stochastic Komatu–Loewner evolutions
	Half-plane capacity for SKLE

	Locality of SKLE
	BMD domain constant bBMD
	Generalized Komatu–Loewner equation for image hulls
	Characterization of locality of SKLEα,-bBMD

	Acknowledgments
	Comparison of half-plane capacities
	References


