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Abstract

For an absorbing diffusion X0 on a one dimensional regular interval I with no killing inside, the
Dirichlet form of X0 on L2(I ;m) and its extended Dirichlet space are identified in terms of the canonical
scale s of X0, where m is the canonical measure of X0. All possible symmetric extensions of X0 will
then be considered in relation to the active reflected Dirichlet space of X0. Furthermore quite analogous
considerations will be made for possible symmetric extensions of a specific diffusion in a higher dimension,
namely, a time changed transient reflecting Brownian motion on a closed domain of Rd , d ≥ 3, possessing
two branches of infinite cones.
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1. Introduction

As a famous saying of William Feller goes, a one dimensional diffusion process X travels
according to a road map indicated by its canonical scale s and with speed indicated by its
canonical (speed) measure m. This was legitimated in the book of Kiyosi Itô and Henry
McKean [18] by showing that a time change of X by means of a positive continuous additive
functional (PCAF in abbreviation) with full support amounts to a replacement of the speed
measure m while keeping the scale s invariant.
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This idea has been a driving force to develop the theory of symmetric Markov processes
[21,11,13,4]. It is well understood now that a time change of a symmetric Markov process X
on a state space E by means of a PCAF A corresponds precisely to the replacement of the
symmetrizing measure m and the extended Dirichlet space Fe, respectively, with the Revuz
measure of A and the restriction of Fe to the support F of A. The road map is nothing but
the Beurling–Deny formula [1] of the Dirichlet form E which is unchanged when F = E , but
otherwise changed into a due restriction of E to F with an additional jump term specified by the
Feller measures [10] that express the joint distribution of end points of excursions of X on E \ F
around F [7,4].

As is well known (see Itô [15, Theorem 5.15.1], Itô–McKean [18, Section 4.11]), a generic
one dimensional diffusion process X has a symmetric resolvent density with respect to the speed
measure m so that X is m-symmetric. To my knowledge however, the Dirichlet form of X on
L2(m) and its extended Dirichlet space have not yet been identified precisely. The first aim of
this paper is to identify them for the absorbing diffusion X0 on a regular open interval with no
killing inside.

Once the Dirichlet form of X0 is identified, it provides us with two ways of quick recovery of
X0 from the pair (s,m) and also a transparent way to introduce and construct possible symmetric
extensions of X0. Among symmetric extensions, there is a maximal one corresponding to the
general concept of the reflected Dirichlet space [21,2,4]. We shall discuss the possibility of
symmetric extensions of X0 in relation to its reflected Dirichlet space.

In the final section, we shall make an analogous consideration on the possibility of symmetric
extensions of time changed transient reflecting Brownian motion on a special domain in Rd , d ≥
3, possessing two branches of infinite closed cones that has appeared in a recent joint paper with
Chen [5]. Here the construction of the extensions can be carried out by means of the Poisson
point processes of excursions due to Kiyosi Itô [16,14,6]. The consideration will be extended in
a more general context elsewhere.

2. Absorbing diffusion X0 on a regular interval

Let I = (r1, r2) be an open interval of R and X0
= (X0

t ,P0
x , ζ

0) be a Markov process with
state space I satisfying the following conditions:

(1) X0 is a Hunt process, namely, a normal strong Markov process satisfying the quasi-left-
continuity on [0,∞).

(2) X0 is a diffusion process, namely, the sample path X0
t is continuous in t ∈ [0, ζ 0) almost

surely.
(3) X0 admits no killing inside I : P0

x (ζ
0 <∞, X0

ζ 0−
∈ I ) = 0, x ∈ I .

(4) Each point a of I is regular: E0
a[e
−σa+ ] = 1 and E0

a[e
−σa− ] = 1, where E0

a[e
−σa± ] =

limb→a± E0
a[e
−σb ] and σb denotes the hitting time of the point b.

We call X0 an absorbing diffusion on I because the sample path X0
t is killed upon approaching

to the point at infinity of I due to the condition (1).
Denote by {Rλ; λ > 0} the resolvent of X0 and by Bb(I ) (resp. Cb(I )) the space of all

bounded Borel measurable (resp. continuous) functions on I . We refer to Itô [17, Section 6] or
Itô–McKean [18, Chapter 3, Section 4.2] for the following facts: Rλ(Bb(I )) ⊂ Cb(I ) and the
generator G of X0 is well defined by

D(G) = Rλ(Cb(I )),

(Gu)(x) = λu(x)− f (x), x ∈ I, for u = Rλ f, f ∈ Cb(I ),
(2.1)



Author's personal copy

592 M. Fukushima / Stochastic Processes and their Applications 120 (2010) 590–604

independently of λ > 0. Furthermore there exist a strictly increasing continuous function s on I
and a positive Radon measure m on I of full support such that

Gu = Dm Dsu, u ∈ D(G), (2.2)

in the following sense: if u ∈ D(G), then u is absolutely continuous with respect to s, a
version Dsu of the Radon Nikodym derivative is of bounded variation and absolutely continuous
with respect to dm, and a version Dm Dsu of the Radon Nikodym derivative is continuous
and coincides with Gu. s and m are called a canonical scale and a canonical measure of X0,
respectively. The pair (s,m) is unique up to a multiplicative positive constant in the sense that, if
(̃s, m̃) is another such pair, then d̃s = cds, dm̃ = c−1dm for some constant c > 0.

More specifically, for any J = (a, b), r1 < a < b < r2, it is shown in [17, Section 6] that

E0
x [σa ∧ σb] <∞, P0

x (σa < σb) > 0, P0
x (σa > σb) > 0, x ∈ J. (2.3)

If we let

sJ (x) = P0
x (σa > σb), m J (x) = −

dE0
x (σa ∧ σb)

dsJ (x)
, x ∈ J, (2.4)

then (2.2) holds on J for any u ∈ D(G) with sJ , m J in place of s,m. For different intervals
J, sJ differs only by a linear transformation on their intersection and so s and m can be defined
consistently on I to satisfy (2.2).

Lemma 2.1. Fix λ > 0. For an interval J = ( j1, j2) with r1 < j1 < j2 < r2, let

ϕi (x) = E0
x

[
e−λτJ : XτJ = ji

]
, x ∈ J, i = 1, 2,

where τJ = σ j1 ∧ σ j2 . Then

(λ− Dm Ds)ϕi (x) = 0, x ∈ J, i = 1, 2, (2.5)

and

ϕ1( j1+) = 1, ϕ1( j2−) = 0; ϕ2( j1+) = 0, ϕ2( j2−) = 1. (2.6)

Proof. This lemma was proved in Theorem 5.9.2 of Itô’s book [15] which was first published
as early as in 1957 so that the definition of a generator G employed in it was different from the
later one (2.1) although they are equivalent to each other (cf. [18, Section 3.8]). For the reader’s
convenience, we supply here an alternative and simpler proof of this lemma.

(2.5) can be shown as above by considering the stopped process of X0 on [ j1, j2] in place of
X0. To show (2.6), putψ(x) = E0

x [e
−λσ j2 ], x ∈ I , and let f be the indicator function of [ j2,∞).

Then Rλ f ∈ Cb(I ) and Rλ f (x) = ψ(x)Rλ f ( j2), x < j2, so that Rλ f ( j2) = ψ( j2−)Rλ f ( j2).
Since Rλ f ( j2) > 0 by (2.3), we have ψ( j2−) = 1, which in turn implies that, for any
ε > 0, P0

j2−
(σ j2 < ε) = 1. Now, for any ε > 0 and x ∈ J ,

ϕ2(x) ≥ E0
x

[
e−λσ j2 ; σ j2 < ε, σ j1 ≥ ε

]
≥ E0

x

[
e−λσ j2 ; σ j2 < ε

]
− E0

x

[
e−λσ j2 ; σ j1 < ε

]
≥ e−λεP0

x (σ j2 < ε)− E0
x0

[
e−λσ j2 ; σ j1 < ε

]
, for j1 < x0 < x < j2.

By letting x ↑ j2 and then ε ↓ 0, we obtain the last identity of (2.6). Using (2.3), we get

ϕ1(x) ≤ 1− P0
x (σ j1 > σ j2) ≤ 1− P0

x (σ j2 < ε)+ P0
x0
(σ j1 < ε),



Author's personal copy

M. Fukushima / Stochastic Processes and their Applications 120 (2010) 590–604 593

which leads us to the second identity of (2.6) similarly. The first and third ones can be proved
analogously. �

In accordance with Itô–McKean [18], the left boundary r1 is called exit (resp. entrance) if∫
(r1,c)

m((x, c))s(dx) <∞

(
resp.

∫
(r1,c)

(s(c)− s(x))m(dx) <∞

)
for c ∈ I. (2.7)

An analogous definition is in force for the right boundary r2.
We still fix a λ > 0. Let u1 (resp. u2) be a positive strictly increasing (resp. decreasing)

solution of the equation

(λ− Dm Ds)u(x) = 0, x ∈ I

such that their Wronskian equals 1. The functions ui , i = 1, 2, were constructed and their
detailed boundary behaviors were studied in Itô [15, Section 5.13]. If the boundary ri of I is
exit and entrance simultaneously, there are many choices of ui but otherwise they are unique
up to multiplicative positive constants. When the left (resp. right) boundary r1 (resp. r2) is exit
and entrance, then we make a special choice of u1 (resp. u2) such that u1(r1+) = 0 (resp.
u2(r2−) = 0). Define

Kλ(x, y) =

{
u1(x)u2(y), r1 < x ≤ y < r2,

u2(x)u1(y), r1 < y ≤ x < r2.

The next theorem is taken from Itô [15, Theorem 5.15.1]. For a function f on I , the right
(resp. left) limit of f at r1 (resp. r2) will be denoted by f (r1) (resp. f (r2)) if it exists.

Theorem 2.2. It holds for x ∈ I that

Rλ(x, B) =
∫

B
Kλ(x, y)m(dy), B ∈ B(I ) (2.8)

E0
x

[
e−λζ ; Xζ− = r1

]
=

u2(x)

u2(r1)
, E0

x

[
e−λζ ; Xζ− = r2

]
=

u1(x)

u1(r2)
. (2.9)

Observe that, as J ↑ I, τJ ↑ ζ almost surely. Therefore this theorem is readily derived just as
in [15] by using Lemma 2.1 together with the stated construction of functions ui .

We say that the boundary ri is approachable in finite time if

P0
x (ζ <∞, Xζ− = ri ) > 0 x ∈ I. (2.10)

From (2.9) and [15, Section 5.13], we can conclude that ri is approachable in finite time if and
only if it is exit.

Since Kλ(x, y) is symmetric in x, y ∈ I , (2.8) implies that X0 is symmetric with respect to
the canonical measure m in the sense that its transition function {P0

t ; t ≥ 0} satisfies∫
I

P0
t f (x)g(x)m(dx) =

∫
I

f (x)P0
t g(x)m(dx), f, g ∈ B+(I ).

In the next section, we shall identify the Dirichlet form of X0 on L2(I ;m).
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3. Identification of the Dirichlet form

Define

E (s)(u, v) =
∫

I
Dsu(x)Dsv(x)ds(x) (3.1)

F (s) =
{

u : u is absolutely continuous in s and E (s)(u, u) <∞
}
. (3.2)

From the elementary identity u(b)− u(a) =
∫ b

a Dsu(x)ds(x), a, b ∈ I , we get

(u(b)− u(a))2 ≤ |s(b)− s(a)|E (s)(u, u), a, b ∈ I, u ∈ F (s). (3.3)

We call the boundary ri approachable if |s(ri )| < ∞, i = 1, 2. If ri is approachable, then any
u ∈ F (s) admits a finite limit u(ri ) by (3.3). Let us introduce the space

F (s)0 =

{
u ∈ F (s) : u(ri ) = 0 whenever ri is approachable

}
. (3.4)

When ri is approachable, we have

u(b)2 ≤ |s(b)− s(ri )|E (s)(u, u), b ∈ I, u ∈ F (s)0 . (3.5)

(3.3) and (3.5) in particular mean that, if {un} ⊂ F (s)0 is E (s)-Cauchy and convergent at one point

a ∈ I , then it is convergent to a function of F (s)0 uniformly on each compact subinterval of I .
Therefore we are led to the first assertion of the next lemma just as in [13, Example 1.2.2] and
the second one by the Banach–Saks theorem.

Lemma 3.1. (i) If {un} ⊂ F (s)0 is E (s)-Cauchy and convergent to a function u m-a.e. as n→∞,

then u ∈ F (s)0 and limn→∞ E (s)(un − u, un − u) = 0.
(ii) Consider the contractive real functions ϕ`(t) = t − (−1/`) ∨ t ∧ (1/`), t ∈ R, ` ∈ N.
For any u ∈ F (s)0 , the Cesàro mean sequence {un} of a certain subsequence of {ϕ`(u)} is E (s)
convergent to u.

Cc(I ) will denote the space of continuous functions on I with compact support.
√
E (s)(u, u)

will be designated by ‖u‖E (s) occasionally.

Theorem 3.2.

(E,F) = (E (s),F (s)0 ∩ L2(I ;m)) (3.6)

is a regular, strongly local, irreducible Dirichlet form on L2(I ;m).
Let (Fe, E) be its extended Dirichlet space. Then

Fe = F (s)0 , E = E (s). (3.7)

Proof. By Lemma 3.1(i), (3.6) is a closed symmetric form on L2(I ;m), and just as in
[13, Example 1.2.2], it can be shown to be Markovian so that it is a Dirichlet form on L2(I ;m).
Obviously it is strongly local. Suppose there is a Borel set A ⊂ I such that the indicator function
1A equals some function u ∈ F m-a.e. Since u is continuous and takes values 0 or 1 only, u−1(1)
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is a closed and open subset of I , and consequently either A or Ac is m-negligible, yielding the
irreducibility of (3.6).

Lemma 3.1(i) also implies the inclusion Fe ⊂ F (s)0 . To prove the converse inclusion, take any

u ∈ F (s)0 . We may assume without loss of generality that u is bounded, that is, |u| ≤ M for some
constant M .

We consider a sequence of functions ψn ∈ C1
c (R+) such that{

ψn(x) = 1 for 0 ≤ x < n; ψn(x) = 0 for x > 2n + 1;

|ψ ′n(x)| ≤
1
n
, n ≤ x ≤ 2n + 1; 0 ≤ ψn(x) ≤ 1, x ∈ R+.

Put wn(x) = un(x) · ψn(|s(x)|) for x ∈ I , where un, n ≥ 1, are the functions constructed
in Lemma 3.1(ii) for u. Then, wn ∈ F (s)0 ∩ Cc(I ) because un vanishes on a neighborhood of
ri if ri is approachable, while so does ψn(|s(x)|) otherwise. Further, since u(x) − wn(x) =
u(x)(1− ψn(|s(x)|))+ (u(x)− un(x))ψn(|s(x)|) and |u(x)− un(x)| ≤ |u(x)|,

‖u − wn‖
2
E (s) ≤ 4

∫
I
(Dsu(x))2(1− ψn(|s(x)|))

2ds(x)

+ 8
∫

I
u(x)2ψ ′n(|s(x)|)

2ds(x)+ 4
∫

I
(Dsu(x)− Dsun(x))

2ψn(|s(x)|)
2ds(x)

≤ 4
∫
|s(x)|≥n

(Dsu(x))2ds(x)+ 8M2
∫

n≤|s(x)|<2n+1
ψ ′n(|s(x)|)

2ds(x)+ 4‖u − un‖
2
E (s)

≤ 4
∫
|s(x)|≥n

(Dsu(x))2ds(x)+ 16M2 n + 1

n2 + 4‖u − un‖
2
E (s) → 0 as n→∞.

This shows that {wn} ⊂ F is E (s)-Cauchy. Since wn converges to u pointwise, we get u ∈ Fe.
For any bounded u ∈ F , the same functions {un, n ≥ 1} as above are in F ∩ Cc(I ) and E1

convergent to u as n → ∞. Obviously F ∩ Cc(I ) is uniformly dense in Cc(I ). Thus (E,F) is
regular. �

Let us call the boundary r1 regular if r1 is approachable and m((r1, c)) < ∞ for c ∈ I .
In view of (2.7), we see that r1 is regular if and only if it is exit and entrance. An analogous
definition is in force for the right boundary r2.

The inner product in L2(I ;m) is denoted by (u, v) and we put Eλ(u, v) = E(u, v) +
λ(u, v), λ > 0.

Theorem 3.3. (3.6) is the Dirichlet form of X0 on L2(I ;m).

Proof. Let (E,F) be defined by (3.6). It suffices to show for any λ > 0 that

Rλ(Cc(I )) ⊂ F , (3.8)

Eλ(Rλ f, v) = ( f, v), f ∈ Cc(I ), v ∈ F ∩ Cc(I ). (3.9)

(E,F) is regular by Theorem 3.2 so that F ∩Cc(I ) is Eλ-dense in F . Therefore, if (3.8) and (3.9)
hold true, then (3.9) holds for any v ∈ F , which means that the resolvent {Rλ; λ > 0} of X0 is
associated with (E,F).

Take f ∈ Cc(I ) and set w = Rλ f . By Theorem 2.2, w(r2) = u2(r2)
∫

I f (y)u1(y)m(dy)
which vanishes if r2 is regular. Similarly w(r1) = 0 if r1 is regular. By (2.1) and (2.2), we have
for any open subinterval J of I with a compact closure

−

∫
J

Dm Dsw · wdm =
∫

J
( f − λw)wdm.
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Integrating by parts and letting J ↑ I , we get

E (s)λ (w,w) =

∫
I

fwdm + Dsw(r2)w(r2)− Dsw(r1)w(r1).

Since Dsw(r2) = Dsu2(r2)
∫

I f (y)u1(y)m(dy), the second term on the right-hand side is finite
on account of [15, Theorem 5.13.4], and actually it vanishes regardless the type of the boundary
r2 due to the present choice of the function u2. Similarly, the third term on the right-hand side
vanishes.

We have shown that w ∈ F (s) ∩ L2(I ;m). We have also seen that w(ri ) = 0 provided that ri
is approachable and m is finite in a neighborhood of ri , namely, ri is regular. If ri is approachable
but m is divergent in a neighborhood of ri , then w admits a finite limit w(ri ) which must vanish
because w ∈ L2(I ;m). We get (3.8).

The same computation as above yields (3.9) but more easily because v is of compact
support. �

Corollary 3.4. If either r1 or r2 is approachable, then X0 is transient. Otherwise X0 is recurrent.

Proof. By the above two theorems, the extended Dirichlet space (Fe, E) of X is given by (3.7).
If either r1 or r2 is approachable, then u ∈ Fe, E(u, u) = 0 implies that u vanishes identically
on I . Otherwise, 1 ∈ Fe and E(1, 1) = 0. The assertions then follow from [13, Chapter 1]. �

4. Two ways of constructing X0 from (s, m)

In the preceding two sections, we have started with a Markov process X0 on an interval
I = (r1, r2) satisfying conditions (1), (2), (3), (4) and found that X0 is symmetric with respect
to its canonical measure m and its Dirichlet form on L2(I ;m) is given by (3.6) in terms of its
canonical scale s.

In this section, we assume conversely that we are given an arbitrary strictly increasing
continuous function s on I and an arbitrary positive Radon measure m on I of full support.
(s,m) then defines a Dirichlet form (3.6) on L2(I ;m).

Theorem 4.1. There exists a unique m-symmetric Markov process X0
= (X0

t ,P0
x , ζ

0) on I
associated with the Dirichlet form (3.6) and X0 satisfies conditions (1), (2), (3), (4).

Proof. The Dirichlet form (3.6) is regular, strongly local and irreducible by Theorem 3.2. Further
we see from (3.3) that, for each compact set K ⊂ I , there exists a positive constant CK
with supb∈K u(b)2 ≤ CKE1(u, u), u ∈ F , which particularly means that each one point of
I has a positive 1-capacity relative to the Dirichlet form (3.6). Therefore, by using general
theorems in [13], we readily conclude the existence of an m-symmetric Markov process X0

on I uniquely associated with the Dirichlet form (3.6) that satisfies properties (1), (2), (3) as well
as P0

a(σb <∞) > 0 for any a, b ∈ I , from which property (4) for X0 also follows. �

We can also recover Itô–McKean’s construction of X0 from the pair (s,m) in the following
manner. Let Ĩ = (s(r1), s(r2)) ⊂ R. s maps I homeomorphically onto Ĩ . Let m̃ be the image
measure of m by s. We consider the absorbing Brownian motion Z = (Z t ,Qx , η) on Ĩ and its
time changed process X̃0

= (X̃0
t , P̃0

x , ζ̃
0) by means of the PCAF At =

∫
Ĩ `(t, x)m̃(dx) where

`(t, x) is the local time of Z at x , or more specifically, the PCAF of Z with Revuz measure δx
relative to the symmetrizing measure 2dx . Thus X̃0

t = Zτt , τt = A−1
t , P̃0

x = Qx , ζ̃
0
= Aη.
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Theorem 4.2. The m-symmetric Markov process X0
= (X0

t ,P0
x , ζ

0) associated with (3.6) can
be obtained as the inverse image of the time changed absorbing Brownian motion X̃0 on Ĩ by the
map s:

X0
t = s−1 X̃0

t , t ≥ 0, P0
x = P̃0

s(x), x ∈ I, ζ 0
= ζ̃ 0. (4.1)

Proof. As the pair of canonical scale and canonical measure for the absorbing Brownian motion
Z on Ĩ , we make a special choice (x, 2dx). On account of Theorem 3.3, the Dirichlet form
(E Z ,F Z ) of Z on L2( Ĩ ; 2dx) and its extended Dirichlet space F Z

e are then given by

F Z
e = He,0( Ĩ ), F Z

= He,0( Ĩ ) ∩ L2( Ĩ ; 2dx), E Z (u, v) =
∫

Ĩ
u′(x)v′(x)dx,

where

He,0( Ĩ ) =

{
u : absolutely continuous on Ĩ ,∫
Ĩ

u′(x)2dx <∞, u(s(ri )) = 0, if |s(ri )| <∞

}
.

Since the above PCAF A of Z possesses m̃ as its Revuz measure relative to 2dx , we can use a
time change theorem in [13] to conclude that X̃0 is m̃-symmetric, and its Dirichlet form (Ẽ, F̃)
on L2( Ĩ ; m̃) and extended Dirichlet space F̃e are given by

F̃e = He,0( Ĩ ), F̃ = He,0( Ĩ ) ∩ L2( Ĩ ; m̃), Ẽ(u, v) =
∫

Ĩ
u′(x)v′(x)dx .

Theorem 4.2 is then an easy consequence of the next lemma and Theorem 3.3. �

Lemma 4.3. Let (Ẽ, m̃) be a σ -finite measure space, X̃ = (X̃ t , P̃x̃ ) an m̃-symmetric Markov
process on Ẽ, (Ẽ, F̃) the Dirichlet form of X̃ on L2(Ẽ; m̃) and F̃e its extended Dirichlet space.
Let γ be a one-to-one transformation from Ẽ onto a space E and m the image measure of m̃:
m(B) = m̃(γ−1(B)). We put

X t = γ (X̃ t ), t ≥ 0, Px = P̃γ−1x , x ∈ E .

Then X = (X t ,Px ) is an m-symmetric Markov process on E. The Dirichlet form (E,F) of X on
L2(E;m) and its extended Dirichlet space Fe are given respectively by

F =
{

u ∈ L2(E;m) : u ◦ γ ∈ F̃
}

E(u, v) = Ẽ(u ◦ γ, v ◦ γ ), u, v ∈ F , (4.2)

Fe =
{
u : m-measurable u ◦ γ ∈ F̃e

}
. (4.3)

(4.2) has been shown in [9, Lemma 3.1]. (4.2) can be restated as

F =
{

u : m-measurable u ◦ γ ∈ L2(Ẽ; m̃) ∩ F̃e

}
,

from which follows (4.3).
As X̃0 is a time change of the absorbing Brownian motion Z on Ĩ = (s(r1), s(r2)), limt→ζ̃ 0 X̃0

t
= s(ri )with positive probability if and only if s(ri ) is finite. Therefore we get from Theorem 4.2.
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Corollary 4.4. The boundary ri of I is approachable if and only if

Px

(
lim

t→ζ 0
X0

t = ri

)
> 0, x ∈ I.

This legitimates our usage of the term ‘approachable’ for the boundary ri of I .

5. Reflected Dirichlet space and symmetric extensions

First we present some general results on the reflected Dirichlet space and symmetric
extensions of a general regular irreducible Dirichlet form.

Let E be a locally compact separable metric space, m a positive Radon measure on E with
full support, (E,F) a regular irreducible Dirichlet form on L2(E;m) and X = (X t ,Px , ζ ) an
associated Hunt process on E . Denote by Fe the extended Dirichlet space of (E,F): u ∈ Fe iff
there exists a sequence {un} ⊂ F such that it is E-Cauchy and limn→∞ un = u, m-a.e. E then
extends to Fe × Fe and

F = Fe ∩ L2(E;m). (5.1)

Each element of Fe will be represented by its E-quasicontinuous m-version.
For any u ∈ Fe, the unique decomposition

u(X t )− u(X0) = M [u]t + N [u]t , t ≥ 0

holds true where M [u] is a martingale additive functional (MAF in abbreviation) of finite energy
and N [u] is a continuous additive functional of zero energy of X . M [u],c denotes the continuous
part of the MAF M [u]. The predictable quadratic variation 〈M [u],c〉 is a PCAF of X and so admits
its Revuz measure denoted by µc

〈u〉.
Let (N (x, dy), H) be a Lévy system of X . The jumping measure J and the killing measure κ

of X are then defined by

J (dx, dx) = N (x, dy)µH (dx), κ(dx) = N (x, {∂})µH (dx),

respectively, where µH denotes the Revuz measure of the PCAF H and ∂ is the cemetery
adjoined to E .

We then have the following Beurling–Deny formula [1,13,4]: For any u ∈ Fe, E(u, u) is
represented as

E(u, u) =
1
2
µc
〈u〉(E)+

1
2

∫
E×E\d

(u(x)− u(y))2 J (dx, dy)+
∫

E
u(x)2κ(dx).

Denote by Floc the space of functions u on E such that, for any relatively compact open set
G ⊂ E , there exists v ∈ F with v = u m-a.e. on G. Any u ∈ Floc admits an E-quasicontinuous
m-version and the measure µc

〈u〉 is well defined for u ∈ Floc. Therefore

Ê(u, u) =
1
2
µc
〈u〉(E)+

1
2

∫
E×E\d

(u(x)− u(y))2 J (dx, dy)+
∫

E
u(x)2κ(dx)(≤ ∞)

is well defined for any u ∈ Floc. For a function u on E , we let τku = ((−k) ∨ u) ∧ k for k ∈ N.
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The reflected Dirichlet space of X is then defined byF
ref
=

{
u : |u| <∞ m-a.e. τku ∈ Floc, sup

k≥1
Ê(τku, τku) <∞

}
E ref(u, u) = Ê(u, u), u ∈ F ref,

(5.2)

while the active reflected Dirichlet space of X is defined by

F ref
a = F ref

∩ L2(E;m). (5.3)

A Dirichlet form (Ẽ, F̃) on L2(E;m) is said to be a Silverstein extension of (E,F) if Fb is an
ideal of F̃b (that is,Fb ⊂ F̃b and f g ∈ Fb for every f ∈ Fb and g ∈ F̃b) and Ẽ = E onFb×Fb.

We introduce a semi-order≺ among Dirichlet forms on L2(E;m) as follows: for two Dirichlet
forms (E (i),F (i)), i = 1, 2, on L2(E;m), we write (E (1),F (1)) ≺ (E (2),F (2)) if

F (1) ⊂ F (2) and E (1)(u, u) ≥ E (2)(u, u) for every u ∈ F (1).

The next theorem is taken from [4]. See also [2,20].

Theorem 5.1. (i) The active reflected Dirichlet form (E ref,F ref
a ) of X is a Dirichlet form on

L2(E;m) and a Silverstein extension of (E,F).
(ii) (E ref,F ref

a ) is maximal among all Silverstein extensions of (E,F): if (Ẽ, F̃) is a Silverstein
extension of (E,F), then (Ẽ, F̃) ≺ (E ref,F ref

a ).
(iii) If X is recurrent, then (E ref,F ref) = (E,Fe) and consequently (E ref,F ref

a ) = (E,F).
If X is conservative, namely, Px (ζ <∞) = 0, x ∈ E, then (E ref,F ref

a ) = (E,F).
Clearly F ⊂ F ref

a and E ref(u, u) = E(u, u) for u ∈ F .
We say that X admits a reflecting extension if

F 6= F ref
a . (5.4)

In view of Theorem 5.1, the condition (5.4) is equivalent to the existence of at least one proper
Silverstein extension of (E,F). Furthermore, for (5.4) to be fulfilled, it is necessary that X is
transient, and even more strongly, non-conservative.

We now return to the diffusion X0 on a interval I = (r1, r2) satisfying (1), (2), (3), (4). X0 is
symmetric with respect to its canonical measure m and its Dirichlet form (E,F) on L2(I ;m) is
given by (3.6) in terms of the canonical scale s by virtue of Theorem 3.3. Recall that the boundary
ri is called approachable if s(ri ) is finite and regular if ri is approachable and m is finite near ri .

Theorem 5.2. X0 admits a reflecting extension if and only if either r1 or r2 is regular.

Proof. We can readily see from (3.6) and (5.3) that

F ref
a = F (s) ∩ L2(I ;m). (5.5)

Therefore the ‘if’ part is obvious. Suppose both r1 and r2 are non-regular. If both of them are
non-approachable, then Fe = F (s) and (5.4) fails. If ri is approachable, then any u in the right-
hand side of (5.5) admits a finite limit at ri , which must vanish because u ∈ L2(I ;m) and m is
infinite near ri . This means u ∈ F . �

Suppose either r1 or r2 is regular. Denote by I ∗ the interval obtained by adding the point ri to
I if ri is regular. Denote by m∗ the extension of m from I to I ∗ obtained by setting m∗({ri }) = 0
when ri is regular. We identify L2(I ;m) with L2(I ∗;m∗). Then the active reflected Dirichlet
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form

(E ref,F ref
a ) = (E (s),F (s) ∩ L2(I ;m)) (5.6)

can be regarded as a regular, strongly local irreducible Dirichlet form on L2(I ∗;m∗) and
accordingly admits an associated diffusion process Xr

= (Xr
t ,Pr

x , ζ
r ) on I ∗ with no killing

inside I ∗. [4, Section 2.2.3] makes a direct consideration of the Dirichlet form (5.6) without
referring to (3.6).

The Dirichlet form (3.6) is the part of the Dirichlet form (5.6) on I : F = {u ∈ F ref
a : u =

0 on I ∗ \ I }. Accordingly, X0 is the part process of Xr on I , namely, X0 is obtained from Xr by
killing upon hitting I ∗ \ I . In other words, Xr is a symmetric extension of X0 from I to I ∗ with
no sojourn nor killing on I ∗ \ I . We call Xr the reflecting extension of X0. See also [19].

Suppose next that both r1 and r2 are regular. Then, besides the reflecting extension of X0, there
are three other symmetric extensions of X0 with no sojourn nor killing at the added boundary
points; the extension to [r1, r2) reflecting only at r1, the extension to (r1, r2] reflecting only at r2
and an extension to the one point compactification İ = I ∪∆ of I . The last one can be described
as follows. Extend m to ṁ on İ by setting ṁ({∆}) = 0. Then

(Ė, Ḟ) =
(
E (s), {u ∈ F (s) : u(r1) = u(r2)}

)
(5.7)

is a regular strongly local irreducible Dirichlet form on L2( İ , ṁ) and the associated diffusion Ẋ
on İ is a symmetric extension of X0 with no sojourn nor killing at ∆. The diffusion Ẋ can be also
constructed from X0 probabilistically as in [14] by piecing together excursions of X0 around ∆
evolving as a Poisson point process with a characteristic measure uniquely determined by the pair
(s,m). Similarly, the reflecting extension Xr can be constructed from X0 by a repeated usage of
certain Poisson point processes of excursions as in [6].

Suppose r2 is non-regular and r1 is exit in the sense of (2.7). Then r1 is approachable in
finite time in the sense of (2.10) and X0 is non-conservative. Nevertheless, Theorem 5.2 says
that X0 does not admit any symmetric extension when m(r1, c) = ∞, c ∈ I . In this case, r1 is
non-entrance in the sense of (2.7).

6. Domain with two branches of infinite cones

Let D be a domain of Rd with d ≥ 1 and L2(D) be the L2-space of functions on D based on
the Lebesgue measure dx . We consider the space

BL(D) =
{

u ∈ L2
loc(D) :

∂u

∂xi
∈ L2(D), 1 ≤ i ≤ d

}
, (6.1)

where the derivatives are taken in Schwartz distribution sense. Members in BL(D) are called BL
(Beppo Levi) functions on D (cf. [8]). The Sobolev space of order (1, 2) is defined by

W 1,2(D) = BL(D) ∩ L2(D).

Let D(u, v) =
∫

D ∇u(x) · ∇v(x)dx . Then

(E,F) =
(

1
2

D,W 1,2(D)

)
(6.2)

is a strongly local irreducible Dirichlet form on L2(D). The extended Dirichlet space of (6.2)
will be denoted by W 1,2

e (D).
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A domain D ⊂ Rd is called recurrent (resp. transient) if the Dirichlet form (6.2) is recurrent
(resp. transient). D is recurrent if either d ≤ 2 or the Lebesgue measure of D is finite [12]. If
d ≥ 3, any domain containing an infinite cone is transient [4, Section 3.5]. But an infinite cylinder
is recurrent for any d . In what follows, we assume that D is transient (in particular d ≥ 3 and D
is of infinite Lebesgue measure) and D is of continuous boundary in the sense that D locally lies
above the graph of a continuous function.

The Dirichlet form (6.2) can then be regarded as a regular Dirichlet form on L2(D; 1D(x)dx)
and the associated diffusion process Z = (Z t ,Qx ) on D is the reflecting Brownian motion by
definition. Z = (Z t ,Qx ) is always conservative due to Takeda’s test [13]. But we see from
[5, (3.2)] that Z escapes to infinity as t →∞:

Qx

(
lim

t→∞
Z t = ∂

)
= 1 x ∈ D, (6.3)

where ∂ is the point at infinity of D. Any function in the space BL(D) is represented by its
quasicontinuous version. As is verified in [5], any u ∈ W 1,2

e (D) then satisfies

Qx

(
lim

t→∞
u(Z t ) = 0

)
= 1 for q.e. x ∈ D. (6.4)

It is proved in [5, Theorem 3.1] that the reflected Dirichlet space of the Dirichlet form (6.2) is
identical with the space ( 1

2 D,BL(D)) of BL functions. The extended Sobolev space W 1,2
e (D) is a

subspace of BL(D), and indeed a proper subspace because the former does not contain non-zero
constant function due to the transience assumption while the latter does.

Let H∗(D) be the space of functions in BL(D) which are D-orthogonal to W 1,2
e (D). Then

H∗(D) ⊂ H(D), where H(D) denotes the space of harmonic functions on D with finite Dirichlet
integral. Moreover, by virtue of [3] (see also [4, Section 6.7]), any u ∈ H∗(D) is harmonic with
respect to the reflecting Brownian motion Z on D in the sense that, for any relatively compact
open subset D1 of D,

u(x) = EQx
[
u(ZτD1

)
]

for q.e. x ∈ D1, (6.5)

where τD1 denotes the first exit time from D1.
We will be concerned with the condition that

H∗(D) consists of constant functions on D. (6.6)

It is known that (6.6) holds true when D = Rd , d ≥ 3, (cf. [12]). This property remains
valid for an unbounded uniform domain. A domain D is called a uniform domain if there exists
C > 1 such that for every x, y ∈ D, there is a rectifiable curve γ in D connecting x and y with
length (γ ) ≤ C |x − y| and moreover

min {|x − z|, |z − y|} ≤ Cdist(z, Dc) for every z ∈ γ.

An infinite cone is a special unbounded uniform domain. It is shown in [5] that a domain con-
taining an unbounded uniform domain is transient. Furthermore Proposition 3.6 of [5] states that

D \ Br (0) is an unbounded uniform domain for some r > 0 H⇒ (6.6) holds. (6.7)

Here Br (0) denotes the ball with center 0 and radius r .
Since the reflected Dirichlet space of (6.2) equals BL(D), its active reflected Dirichlet space

coincides with BL(D) ∩ L2(D) = W 1,2(D) so that condition (5.4) fails and the reflecting
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Brownian motion Z does not admit a reflecting extension. But, if we make a time change of
Z , then the situation may change radically.

Now let m be a positive Radon measure on D charging no polar set possessing full quasi-
support with respect to the Dirichlet form (6.2). For instance, m(dx) = f (x)dx for a strictly
positive f ∈ L1

loc(D) has these properties. Let X = (X t ,Px , ζ ) be the time changed process of
the reflecting Brownian motion Z on D by means of its PCAF A with Revuz measure m:

X t = Zτt , τt = A−1
t , Px = Qx , ζ = A∞.

X is then m-symmetric, and the Dirichlet form of X on L2(D;m) and its active reflected Dirichlet
space are given by(

1
2

D,W 1,2
e (D) ∩ L2(D;m)

) (
1
2

D,BL(D) ∩ L2(D;m)

)
, (6.8)

respectively, because not only the extended Dirichlet space but also the reflected Dirichlet space
are invariant under the time change [4, Section 6.4].

We see that X admits a reflecting extension if m(D) < ∞, because then the two Dirichlet
forms in (6.8) differ; the former does not contain a non-zero constant function while the latter
does. Furthermore

Proposition 6.1. Assume that a domain satisfies condition (6.6). Then X admits a reflecting
extension if and only if m(D) <∞.

Proof. If m(D) = ∞, then 1 6∈ L2(D;m) and the two Dirichlet forms in (6.8) coincide under
(6.6). �

(6.7) gives a sufficient condition for the validity of (6.6). If an unbounded domain D is not a
uniform domain, the dimension of the space H∗(D)may exceed 2 as we shall see in the following
example. Let

D = B1(0) ∪

{
x = (x1, x2, . . . , xd) : x

2
d >

d−1∑
k=1

x2
k

}
. (6.9)

D contains the upper cone C+ and lower cone C− where

C+ = B1(0)c ∩

xd >

(
d−1∑
k=1

x2
k

)1/2
 C− = B1(0)c ∩

xd < −

(
d−1∑
k=1

x2
k

)1/2
 .

so that D is transient as it contains an infinite cone C+ but D cannot be a uniform domain because
it has a bottle neck B1(0).

The point at infinity of D at the upper end (lower end) is denoted by ∂+ (∂−). Let

ϕ+(x) = Qx

(
lim

t→∞
Z t = ∂+

)
ϕ−(x) = Qx

(
lim

t→∞
Z t = ∂−

)
.

We then see from (6.3) that

ϕ+(x)+ ϕ−(x) = 1, x ∈ D. (6.10)

Furthermore

ϕ+(x) > 0, ϕ−(x) > 0, for q.e. x ∈ D, (6.11)
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because ϕ+(x) is either strictly positive q.e. or identically zero q.e. due to the irreducibility so
that the above follows from the symmetry of the domain D.

Theorem 6.2. (i) H∗(D) = {c+ϕ+ + c−ϕ− : c+, c− ∈ R}.
(ii) The time changed reflecting Brownian motion X on D admits a reflecting extension if and
only if either m(C+) or m(C−) is finite.
(iii) Suppose m(D) < ∞. Then Px (ζ < ∞) = 1 for q.e. x ∈ D and X admits four different
kinds of symmetric extensions analogously to the case of the one dimensional diffusion with two
regular boundaries as is stated in Section 5. In particular, the two points extension of X from D to
D∪{∂+}∪{∂−} associated with the active reflected Dirichlet form ( 1

2 D,BL(D)∩L2(D;m)) can
be constructed by repeating the one point extensions using Poisson point processes of excursions
as in [6,14].

Proof. (i) We first show that, for any u ∈ BL(D), there exist constants c+, c− such thatQx

(
Z∞− = ∂+, lim

t→∞
u(Z t ) = c+

)
= Qx (Z∞− = ∂+)

Qx

(
Z∞− = ∂−, lim

t→∞
u(Z t ) = c−

)
= Qx (Z∞− = ∂−).

(6.12)

To this end, define, for n ≥ 1,

Dn = B1(0) ∪ C+ ∪ (C− ∩ Bn(0)), Γn = C− ∩ {|x | = n}.

Then Dn \ Bn(0) is a uniform domain and Dn increases to D as n → ∞. For any
u ∈ BL(D), u|Dn ∈ BL(Dn) which is a sum of a function in W 1,2

e (Dn) and some constant
c+ in view of (6.7). Let Zn

= (Zn
t ,Qn

x ) be the reflecting Brownian motion on Dn , namely, a
diffusion associated with the Dirichlet form ( 1

2 D,W 1,2(Dn)) on L2(Dn). On account of (6.3)
and (6.4), we have

Qn
x

(
lim

t→∞
u(Zn

t ) = c+, Z∞− = ∂+
)
= 1, x ∈ Dn,

and we see that c+ is independent of n.
Since the part processes of Z and Zn on Dn \ Γn are identical in law, we further obtain

Qx

(
Z∞− = ∂+, lim

t→∞
u(Z t ) = c+

)
= lim

n→∞
Qx

(
σΓn = ∞, Z∞− = ∂+, lim

t→∞
u(Z t ) = c+

)
= lim

n→∞
Qn

x

(
σΓn = ∞, Zn

∞− = ∂+, lim
t→∞

u(Zn
t ) = c+

)
= lim

n→∞
Qn

x (σΓn = ∞) = lim
n→∞

Qx (σΓn = ∞) = Qx (Z∞− = ∂+),

completing the proof of the first identity of (6.12). The second one can be shown similarly.
Now take any u ∈ H∗(D). We may assume that u is bounded. Let τn be the first exit time of Z

from the set D ∩ Bn(0). By virtue of (6.5), ({u(Zτn )}, Qx ) is an uniformly integrable martingale
so that the limit Φ = limn→∞ u(Zτn ) exists Qx -a.s. and u(x) = EQx [Φ], x ∈ D. Let c± be
constants corresponding to u by (6.10). Then

Φ = Φ1{Z∞−=∂+} + Φ1{Z∞−=∂−} = c+1{Z∞−=∂+} + c−1Z{∞−=∂−} ,

and we arrive at the inclusion ⊂ in (i) by taking Qx -expectation.
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Conversely, for any c+, c− ∈ R, there exists u ∈ BL(D) with limx→∂± u(x) = c±. Then
v = u − PW 1,2

e (D)u is a function in H∗(D) with v = c+ϕ+ + c−ϕ−.
(ii) This is obvious from (i) and (6.8).
(iii) We only give a proof of the first assertion. Since the time changed process X is transient
together with Z and 1 ∈ L1(D;m) when m is finite, we get Ex [ζ ] = R1(x) <∞ for q.e. x ∈ D
where R denotes the 0-order resolvent of X . �
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[16] K. Itô, Poisson point processes attached to Markov processes, in: Proc. Sixth Berkeley Symp. Math. Stat. Probab.,
vol. III, 1970, pp. 225–239.
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[18] K. Itô, H.P. McKean Jr., Diffusion Processes and their Sample Paths, Springer-Verlag, 1965; Classics in

Mathematics, Springer-Verlag, 1996.
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