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Abstract This paper is a continuation of the works by Fukushima–Tanaka (Ann Inst
Henri Poincaré Probab Stat 41: 419–459, 2005) and Chen–Fukushima–Ying (Stochas-
tic Analysis and Application, p.153–196. The Abel Symposium, Springer, Heidelberg)
on the study of one-point extendability of a pair of standard Markov processes in weak
duality. In this paper, general conditions to ensure such an extension are given. In the
symmetric case, characterizations of the one-point extensions are given in terms of
their Dirichlet forms and in terms of their L2-infinitesimal generators. In particular,
a generalized notion of flux is introduced and is used to characterize functions in the
domain of the L2-infinitesimal generator of the extended process. An important role
in our investigation is played by the α-order approaching probability uα.
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1 Introduction

The purpose of this paper is twofold. The first is to present in Sect. 3 general conditions
to ensure the one-point extendability of a pair of standard Markov processes in weak
duality by developing those methods employed in Fukushima–Tanaka [14] and Chen–
Fukushima–Ying [8]. The second is to characterize in Sect. 4 the Dirichlet form and the
L2-infinitesimal generator of the extended process in the symmetric case by making
use the results in Chen–Fukushima–Ying [6]. In both subjects, we shall focus our
attention on the significant roles played by the α-order approaching probability uα.

Let E be a locally compact separable metric space and m a σ -finite measure on E .
Consider a closed subset K of E and put E0 = E \ K . We assume that either K is
compact or E0 is relatively compact in E .We then consider the topological extension
E∗ = E0 ∪ {a} of E0 obtained by regarding K as a single point a.When the open set
E0 is relatively compact in E, E∗ is nothing but the one point compactification of E0.

The restriction of the measure m to E0 will be denoted by m0, which is then extended
to E∗ by setting m0({a}) = 0.

Let X = (Xt ,Px ), ̂X = (̂Xt ,̂Px ) be a pair of standard processes on E which are
in weak duality with respect to m. They are assumed to be of no jumps from E0 to K
but approachable to K from E0 in the sense that

Px (σK < ∞) > 0, ̂Px (σK < ∞) > 0, for q.e. x ∈ E0,

where σK := inf{t > 0 : Xt ∈ K } is the first hitting time of K by X . When there is
no possibility for confusion, the first hitting time of K by ̂X will also be denoted as
σK .

Let X0 = (X0
t ,P0

x , ζ
0) and ̂X0 = (̂X0

t ,
̂P0

x ,
̂ζ 0) be the subprocesses of X and ̂X

on E0, respectively, killed upon leaving E0. They are in weak duality with respect
to m0. We shall call them part processes or absorbed processes occasionally. We are
concerned with extending X0 and ̂X0 on E0 to a pair of standard processes X∗ and ̂X∗
on E∗ that are in weak duality with respect to measure m0. When X is m-symmetric,
X0 is m0-symmetric on E0 and we will look for m0-symmetric extensions X∗ of X0

to E∗.
To get X∗ and ̂X∗ from X0 and ̂X0, there are two different but closely related point

of views. The first one is just what is stated above: we start with a pair of processes
X and ̂X on state space E that are in weak duality with respect to measure m and X0

and ̂X0 are the subprocesses of X and ̂X killed upon leaving E0 := E \ K , where K
is a closed subset of E . The second approach is that the metric space E∗ := E0 ∪ {a}
is prescribed a priori and what we are given is a pair of standard processes X0 and ̂X0
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One-point extensions of Markov processes by darning 63

on E0 that are in weak duality with respect to a measure m0 on E0. In this paper, we
will adopt the first point of view.

For the second approach, in order to construct X∗ and ̂X∗ from X0 and ̂X0, it is
necessary to assume that X0 and ̂X0 approach at finite lifetimes to the point a in the
topology of E∗ with positive probability. In fact, this approach of constructions of X∗
and ̂X∗ from X0 and ̂X0 together with their characterizations has been accomplished by
[14] in the symmetric diffusion case and by [8] in the weak dual standard processes case
under certain additional conditions on X0 and ̂X0. We have made use of Itô’s Poisson
point processes of excursions of X0 and ̂X0 around the point a whose characteristic
measures are governed by the uniquely determined entrance laws {µt , t > 0} of X0

and {µ̂t , t > 0} of ̂X0 from the one point a. The processes X∗ and ̂X∗ on E∗ are
then constructed by stitching up those excursions of X0 and ̂X0 according to the rules
{µt , t > 0} and {µ̂t , t > 0}.

We shall call such a procedure of obtaining X∗ from X (or from X0) darning a hole
K . Kiyosi Itô [20] introduced the notion of the Poisson point process of excursions
around one point a in the state space of a standard Markov process X.He was motivated
by giving systematic constructions of Markovian extensions of the absorbed diffusion
process X0 on the half line (0,∞) subjected to Feller’s general boundary conditions
[22]. Itô had constructed the most general jump-in process from the exit boundary 0
by using the Poisson point process in his unpublished lecture notes [19] that preceded
[20]. In this case, a is just the point 0. However recent papers [14] and [8] show that
Itô’s program works equally well in the construction of X∗ by conceiving a certain set
K as a single point a.

We point out that it is assumed in both [8] and [14] that X0 and ̂X0 admit no
killings inside E0. Furthermore, to ensure the finiteness of µt (E0) for each t > 0, a
crucial condition imposed in Sect. 4 of [14] and in the first part of Sect. 5 of [8] is the
m0-integrability of the α-order approaching probability uα of X0 defined by

uα(x) := E0
x

[

e−αζ 0; Xζ 0− ∈ K
]

(= Ex
[

e−ασK
])

, x ∈ E0, α > 0.

Note that in [8] and [14], the set K is identified with a single point {a}. At the end
of Sect. 5 of [8], the integrability condition on uα is eventually removed by reducing
the situation to the case that m0(E0) < ∞ using a certain time-change of X0. But
for the time-change argument to go through, we need to assume, in addition to the
finiteness of m0 on some neighborhood of K , a property of X0 that is invariant under
time-change

P0
x

(

X0
ζ 0− ∈ K ∪ {�}

)

= 1 for x ∈ E0, (1.1)

which is required to hold regardless the length of the life time ζ 0 finite or infinite. Here
� is the point at infinity of E . Then the integrability of uα becomes a consequence of
the possibility of the darning rather than an assumption for it. So it is very important
to know under what condition on X its part process X0 has the desired property (1.1).
Note that under the assumption that X0 admit no killings inside E0, condition (1.1) is
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equivalent to a more general one

P0
x

(

X0
ζ 0− ∈ E�

)

= 1 for x ∈ E0. (1.2)

We shall start the present paper with an answer to the above question in a general
setting. In Sect. 2, we study a general strong Markov process X on E in relation
to a fixed excessive measure m and establish the dichotomy of recurrence and tran-
sience under the m-irreducibility assumption together with the sample path behaviors
near the end of its life time, following the corresponding arguments in Fukushima–
Oshima–Takeda [13] and Getoor [15]. Under the m-irreducibility of X together with
an additional lower semicontinuity assumption for excessive functions of X when X
is not m-symmetric, we then derive that the property (1.2) for the part process X0 on
E0 holds for quasi-every x ∈ E0 (see Theorem 2.5 below).

In Sect. 3, by combining Theorem 2.5 with the results of Sect. 5 of [8], we formulate
those conditions on X and X0 that will enable us to construct X∗ by darning the hole
K (see Theorem 3.1 below). The m0-integrability of uα is just a consequence of those
conditions. In Theorem 3.1, we shall also see how some basic properties of X and X0

are honestly inherited by X∗, which will be important when darning more than one
hole (see [5]).

As mentioned earlier, in both [14] and [8] an additional strong condition is assumed
that X0 and ̂X0 admit no killings inside E0. This condition in fact can be much relaxed
to only require that X0 and ̂X0 have no killings inside some neighborhood of K , as
is done in this paper. We will explain in the Appendix (Sect. 6) of this paper in some
details how this can be done and that the main results of [8] (especially those in
Sect. 5) are still valid under this weaker condition. Theorem 3.1 of this paper will be
formulated by incorporating this relaxation of the condition. In non-symmetric case,
generally speaking, the darned processes X∗ and ̂X∗ on E∗ will preserve the m0-weak
duality only if we allow some killings at the point a for them. Therefore the relaxation
to allow X and ̂X have killings inside E is important when we apply the darning
procedures repeatedly to non-symmetric Markov processes (see [5]).

In Sect. 4, we shall specialize Theorem 3.1 to the case where X is m-symmetric and
formulate in Theorem 4.1 the unique one-point symmetric extension X∗ of X0 from
E0 to E∗ = E0∪{a} such that X∗ admits neither sojourn nor killing at the point a.But,
as is noted previously, we may instead start with an m0-symmetric standard process
X0 on E0 without referring to X and consider its unique m0-symmetric extension X∗
as above. Denote by (E∗,F∗) and (E0,F0) the Dirichlet spaces of X∗ and X0 on
L2(E∗; m0) = L2(E0; m0), respectively. The second purpose of the present paper is
to characterize (E∗,F∗) in terms of the reflected Dirichlet space of (E0,F0) and to
give a lateral condition that characterizes the domain of the L2-infinitesimal generator
of X∗.

Let (E ref , (F0)ref) be the reflected Dirichlet space of (E0,F0) and let (F0)ref
a :=

(F0)ref ∩ L2(E0; m0) be its active part. The notion of reflected Dirichlet space was
introduced by M. L. Silverstein in [25] and [26], and was further studied by Chen
in [3] (see also [6, Sect. 3]). By making use of Theorem 3.4 of [6], we shall show
in Theorem 4.4 that uα ∈ (F0)ref and furthermore the space (F∗, E∗

α) is just the
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One-point extensions of Markov processes by darning 65

subspace of ((F0)ref
a , E ref

α ) spanned by F0 and uα. We introduce a linear operator L
on L2(E0; m0) by

f ∈ D(L) with L f = g ∈ L2(E0; m0) if and only if

f ∈ (F0)ref such that E ref( f, v) = −(g, v) for every v ∈ F0. (1.3)

We also define the flux N ( f ) of f ∈ D(L) at a by

N ( f ) = E ref( f, uα)+ (L f, uα), (1.4)

which will be shown to be independent of α > 0. Theorem 4.4 implies that L is an
extension of the L2-generator A∗ of X∗.We shall show in Theorem 4.8 that a function
f ∈ D(L) is in D(A∗) if and only if f admits a fine limit at a along the path of X0 and
satisfies the lateral condition N ( f ) = 0. In Sect. 5, explicit expressions for N ( f )
will be derived in concrete examples.

Note that the subprocess X0 of X is symmetric with respect to the measure m0 :=
m|E0 . However since X0 may not be irreducible, the symmetrizing measure for X0

can be non-unique in general. Suppose that E0 is a disjoint union of open subsets
E01, . . . , E0k , each of which is X0-invariant. Then for any choice of k-vector p =
(p1, . . . , pk) with positive entries,

m̃0 :=
k
∑

i=1

pi · mi
0 with mi

0 := m0|E0i
for 1 ≤ i ≤ k,

is again a symmetrizing measure of X0. So we can consider the m̃0-symmetric exten-
sion ˜X∗ of X0 to E∗ and, as will be formulated in Theorem 4.11 at the end of Sect. 4,
our characterization in terms of the reflected Dirichlet space of F0 will be useful to
identify the Dirichlet form (˜E∗, ˜F∗) of ˜X∗ on L2(E∗; m̃0) and the L2-generator ˜A∗
of ˜X∗.

The first four subsections of Sect. 5 will treat some basic examples in symmetric
cases. From Sect. 5.1 to Sect. 5.3, we shall examine how the above mentioned skew
darned processes ˜X∗ of symmetric diffusions X0 look like by exhibiting their Dirichlet
forms and lateral conditions.

In part (ii) of Sect. 5.1, we consider the case that E = R, K = {a} = {0},
E0 = (−∞, 0) ∪ (0,∞), m is the Lebesgue measure and X is the one-dimensional
standard Brownian motion. In this case, E∗ = R.We shall prove in Theorem 5.1 that
the darned diffusion ˜X∗ on R of the absorbed Brownian motion X0 on E0 can be
identified with the well-known skew Brownian motion (cf. [18,24]). Its construction
by darning and its characterization by the reflected Dirichlet space seem to be new.
We shall also derive a Skorohod stochastic equation for ˜X∗

˜X∗
t = ˜X∗

0 + Bt + (p+ − p−)�t ,
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where Bt is a Brownian motion and �t is a positive continuous additive functional
of ˜X∗ with Revuz measure δ0, by using a decomposition theorem of strict additive
functionals for a symmetric diffusion [12].

In Sect. 5.1, we shall also construct the reflecting Brownian motion on [0,∞) and
the Brownian motion on a circle by darning and further present the lateral condition
for a darned Brownian motion obtained by identifying multi-points.

In Sect. 5.2, we shall consider the case where X0 is a collection of absorbed dif-
fusions on half lines merging at one point. Its possible extensions ˜X∗ have been
mentioned already in Example 6.3 of [14], but we shall identify their Dirichlet forms
and lateral conditions in the present framework. The skew Brownian motion on the
real line may be regarded as a special case of this example.

Section 5.3 will treat the case where X is the absorbed Brownian motion on an open
set of R

n , which has appeared in Examples 6.4 and 6.2 of [14]. Applying Theorem 4.4
and Theorem 4.8, we shall characterize the Dirichlet space and the lateral condition
of X∗ in terms of the Sobolev space H

1.

In Sect. 5.4, we shall consider the darning of a censored stable process X0 on an
Euclidian open set, which is a jump-type Markov process and has been discussed in
Sect. 6.1 of [8]. We shall examine how the conditions for Theorem 4.1 are fulfilled
for different type of open sets and identify the Dirichlet forms of the darned processes
X∗ using Theorem 4.4.

Deviating from above subsections, in Sect. 5.5 we will examine the darning of
non-symmetric diffusions in Euclidean domains, giving an example to illustrate the
scope of Theorem 3.1.

In the rest of this section, for illustrating the stated properties of the α-order hitting
probability and the notion of the reflected Dirichlet space and the lateral condition,
we shall consider the absorbed diffusion process X0 = (X0

t , ζ
0,P0

x ) on the open half
line (0,∞) with Feller’s local generator

d

dm

d

ds
. (1.5)

Define for α > 0 the α-order approaching probability to {0} by

uα(x) = E0
x

[

e−αζ 0; X0
ζ 0− = 0

]

, x ∈ (0,∞).

Then

uα(x) > 0 and

∞
∫

0

uα(x)m(dx) < ∞ (1.6)

if and only if the boundary 0 is regular (exit and entrance in the terminology of [23,
Sect. 4.6]), namely,

s(0+) > −∞ and m((0, 1)) < ∞.
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One-point extensions of Markov processes by darning 67

In fact, the first condition of (1.6) is known to be fulfilled if and only if 0 is exit. On
the other hand, uα is a non-negative decreasing solution of

(

α − d

dm

d

ds

)

u = 0

and hence

α

x
∫

0

u(x)m(dx) = du

ds
(x)− du

ds
(0+) ≤ −du

ds
(0+),

which is known to be finite if and only if 0 is entrance (see [21, Sect. 5.18] or [23,
Sect. 4.6]). In particular, the integrability of uα in (1.6) never depends on the behavior
of X0 near ∞ at all.

The process X0 is known to be m-symmetric. Its Dirichlet space (F0, E0) on
L2(0,∞); m) and the reflected Dirichlet space ((F0)ref , E ref) of F0 can be described
as follows:

(F0)ref

=
{

f : f is absolutely continuous with respect to s and E ref( f, f )<∞
}

, (1.7)

where

E ref( f, f ) =
∞
∫

0

(

d f (x)

ds(x)

)2

ds(x), (1.8)

while

F0 =
{

f ∈ (F0)ref
a : f (0+) = 0

}

and E0( f1, f2) = E ref( f1, f2) for f1, f2 ∈ F0, (1.9)

under the condition that 0 is regular but ∞ is non-regular. This condition is assumed
from now on.

In this case, the operator L defined by (1.3) is equal to the expression (1.5) with

D(L) =
{

f ∈ (F0)ref
a : d

d f

ds
is absolutely continuous with respect to m,

L f ∈ L2((0,∞); m)
}

, (1.10)

while we shall see in Lemma 5.3 of Sect. 5.2 that

N ( f ) = −d f

ds
(0+), f ∈ D(L). (1.11)
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Let us denote by F∗ the active reflected Dirichlet space (F0)ref
a . Then (F∗, E ref) is

a local regular Dirichlet space on L2([0,∞); m) and, by a general existence theorem
[13], it has an associated m-symmetric diffusion X∗ = (X∗

t ,P∗
x ) on [0,∞),which is a

unique m-symmetric one-point extension of X0 to [0,∞) with no sojourn nor killing
at {0}. Hence the function uα can be described by the hitting time σ{0} of {0} as

uα(x) = E∗
x

[

e−ασ{0} ; σ{0} < ∞]

for x ∈ (0,∞),

which in turn implies that uα is a member of F∗ and that the space (F∗, E ref
α ) is

spanned by F0 and uα (cf. [13, Sect. 4]). By Theorem 4.8 and (1.11), we see that f
is in the domain of the L2-generator of X∗ if and only if

f ∈ D(L), | f (0+)| < ∞ and
d f

ds
(0+) = 0. (1.12)

The above example corresponds to the simplest case that

E0 = (0,∞), E = E∗ = [0,∞), K = {a} = {0},

X0 is the absorbed diffusion on (0,∞) and X as well as X∗ is the reflected diffusion
on [0,∞).

In Example 5.2, we shall exhibit a family of symmetric skew extensions of a col-
lections of such absorbed diffusions on half lines merging at one point.

2 Recurrence, transience and path behaviors at ζ−

The main goal of this section is to extend the notion of transience and recurrence
in Fukushima–Oshima–Takeda [13] and Getoor[15] to a right process X having
excessive measure m under quasi-every (q.e. in abbreviation) setting and derive the
corresponding global behaviors of the sample paths. We start with formulating tran-
sience, recurrence and m-irreducibility analytically, similar to that in [13] and then
relate them to the notions in [15].

Let X = (Xt , ζ,Px ) be a Borel right processes on a locally compact separable
metric space E and m be a σ -finite excessive measure on E with full support. Let
E� = E ∪ {�} be the one-point compactification of E . Any function f on E will be
extended to E� by setting f (�) = 0 unless otherwise specified.

We call a nearly Borel set A ⊂ E m-polar if Pm(σA < ∞) = 0, where σA :=
inf{t > 0 : Xt ∈ A}. A statement is said to be true q.e. on E if there is a nearly Borel
m-polar set A such that the statement holds for every x ∈ E \ A. The 0-order resolvent
operator G of X is defined by

G f (x) = Ex

⎡

⎣

∞
∫

0

f (Xt )dt

⎤

⎦ , x ∈ E,

for every non-negative nearly Borel function f on E .
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One-point extensions of Markov processes by darning 69

The process X is said to be transient, recurrent and m-irreducible if

G f (x) < ∞ q.e. on E for some strictly positive f ∈ L1(E; m),

G f (x)=∞ q.e. on E for every f ∈ L1+(E; m) with
∫

E

f (x)m(dx)>0, (2.1)

Px (σB < ∞) > 0 for q.e. x ∈ E whenever m(B) > 0,

respectively. Here L1+(E,m) = { f ∈ L1(E,m) : f ≥ 0 m-a.e. on E}.
In view of [17, Sect. 6], any m-negligible nearly Borel finely open set is m-polar and

furthermore A ⊂ E is m-polar if and only if it is contained in a Borel m-inessential
set B in the sense that m(B) = 0 and E \ B is absorbing. So if X is transient, then for
some strictly positive f ∈ L1(E,m), there is a Borel m-inessential set A ⊂ E such
that

G f (x) < ∞ for every x ∈ E \ A.

Thus X |E\A is transient in the sense of Getoor [15, Proposition 2.2].
By [16, Theorem 2.4], X is transient if and only if

G f (x) < ∞ q.e. for every f ∈ L1+(E; m). (2.2)

Note that the above requires no irreducibility assumption on X . The next lemma can
also be deduced from [16, Theorem 2.4]. However we present an alternative proof
here.

Lemma 2.1 Assume the process X is m-irreducible. Then X is either transient or
recurrent.

Proof Let f ≥ 0 and define N f := {x : G f (x) = ∞}, which is a finely closed subset
of E . Note that

G f (x) ≥ Ex

[

G f (XσN f
); σN f < ∞

]

, x ∈ E . (2.3)

It follows that under the m-irreducibility condition (2.1), if m(N f ) > 0, then
Px (σN f < ∞) > 0 for q.e. x ∈ E and consequently, by (2.3), G f = ∞ q.e. on
E . This proves that for every f ≥ 0 on E ,

either G f < ∞ m-a.e. on E, or G f ≡ ∞ q.e. on E . (2.4)

If X is not transient, then there is some g ∈ L1+(E; m) with m{x : Gg(x) =
∞} > 0. So by (2.4), Gg = ∞ q.e. on E . Now by [13, Lemma 1.6.3], for every
f ∈ L1+(E; m), we have

m{x : G f (x) = ∞} ≥ m{x : f (x) > 0}.
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70 Z.-Q. Chen, M. Fukushima

Therefore, for every f ∈ L1+(E; m) with m{ f > 0} > 0, we have by (2.4) again that
G f = ∞ q.e. on E , proving the recurrence of X . 
�

We have defined the transience and recurrence of X analytically in terms of the
convergence and divergence of the 0-order resolvent of X , respectively. In order to
relate them to the sample path behaviors of X , we prepare two theorems. We denote
by {Pt , t ≥ 0} the transition semigroup of X ; that is, for any measurable f ≥ 0,

Pt f (x) := Ex [ f (Xt )] for x ∈ E and t ≥ 0.

Lemma 2.2 (i) If X is m-irreducible, then any non-m-polar Borel set B satisfies

Px (σB < ∞) > 0 for q.e. x ∈ E .

(ii) If X is recurrent, then X is conservative in the sense that Px (ζ = ∞) = 1 for
q.e. x ∈ E. Moreover, any bounded excessive function u of X is constant q.e.

Proof (i). Let D = {x ∈ E : Px (σB < ∞) > 0}. Then m(D) > 0 and Px (σD <

∞) > 0 for q.e. x ∈ E . On the other hand, we see as in the proof of [13, Lemma
4.6.4] that Px (σD < ∞) = 0 for x ∈ E \ D. Hence E \ D must be m-polar.
(ii). We first show that any bounded excessive function u satisfies

Pt u(x) = u(x) for every t > 0, q.e. x ∈ E . (2.5)

Its proof is similar to that in the first part of the proof of [15, Lemma 3.2]. However
for reader’s convenience, we spell out the details. Define

ψ(x) :=↓ lim
t→∞ Pt u ≤ u.

Note that Psψ = limt→∞ Ps(Pt u) = ψ for every s > 0. Let f = u − ψ ≥ 0. Then

Pt f = Pt u − Ptψ = Pt u − ψ

increases to f = u − ψ as t ↓ 0 and so f is excessive. Clearly ↓ limt→∞ Pt f = 0
and f ≤ ‖u‖∞. For n ≥ 1, define fn = n( f − P1/n f ), which is finely continuous

with G fn = n
∫ 1/n

0 Pt f dt increasing to f as n → ∞ (see [15, Lemma (3.1)]). If the
finely open set An := {x : fn(x) > 0} has positive m-measure, then by the recurrence
of X we have f ≥ G fn = ∞ q.e. on E , which contradicts to the fact that f is
bounded. Thus m(An) = 0 and thus fn = 0 m-a.e. for every n ≥ 1. This implies that
f = 0 m-a.e.. As u is excessive, it follows that u = ψ q.e. and thus (2.5) holds. As
constant function 1 is excessive, it follows immediately from (2.5) that for q.e. x ∈ E ,
Pt 1(x) = 1 for every t > 0; that is, for q.e. x ∈ E , Px (ζ = ∞) = 1.

We now show that every bounded excessive function u has to be constant m-a.e..
If not, there are constants 0 < a < b such that the finely open sets A := {x ∈ E :
u(x) > b} and B := {x ∈ E : u(x) < a} both have positive m-measure. As u ∧ b is
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excessive, we have by (2.5) that q.e., u ∧ b = Pt (u ∧ b) for every t > 0. So for q.e.
x ∈ A,

b = u(x) ∧ b = Ex [u(Xt ) ∧ b] .

It follows that for q.e. x ∈ A, Px (Xt ∈ B) = 0 for every t > 0 and so G1B(x) = 0.
This is impossible since X is recurrent, m(B) > 0 and we must have G1B = ∞ q.e.
This proves that u is constant m-a.e. Since u is finely continuous, u has to be constant
q.e. 
�
Theorem 2.3 Assume that X is recurrent. If B ⊂ E is a nearly Borel set such that B
is not m-polar, then

Px (σB ◦ θn < ∞ for every n ≥ 1) = 1 for q.e. x ∈ E .

Proof Let ϕB(x) = Px (σB < ∞), which is a bounded excessive function of X . Since
B is not m-polar, it follows from Lemma 2.2 that ϕB = c q.e. for some constant c > 0.
For each t > 0 and q.e. x ∈ E,

c = Px (σB ≤ t)+ Px (t < σB, σB < ∞)

= Px (σB ≤ t)+ Ex [PXt (σB < ∞); t < σB]
= Px (σB ≤ t)+ cPx (t < σB).

By letting t → ∞ along a sequence, we get c(1 − c) = 0 and hence c = 1. So we
have ϕB = 1 q.e. on E . Since X is conservative, we have PnϕB = 1 for every integer
n ≥ 1 q.e. on E , from which the conclusion of the theorem follows. 
�

We consider the condition of the existence of the left limit of Xt at finite life time:
(LLL): Px

(

ζ < ∞ and Xζ− exists with value in E�
) = Px (ζ < ∞) for x ∈ E .

We also consider the condition that
(LSC): G f is lower semi-continuous on E for every Borel f ≥ 0.

Theorem 2.4 Assume that X is a Borel right process on E satisfying condition (LLL)
and that X is transient. Suppose that one of the following conditions (a) and (b) holds:

(a) X satisfies the condition (LSC),
(b) X is m-symmetric and its associated Dirichlet form (E,F) on L2(E; m) is

regular.

Then
Px (Xζ− ∈ E�) = 1 for q.e. x ∈ E, (2.6)

and more specifically, the path wanders out to infinity whenever its life time is infinite:

Px (ζ = ∞ and Xζ− = �) = Px (ζ = ∞) for q.e. x ∈ E . (2.7)

Proof Assume first that the condition (a) holds. Take a strictly positive continuous
function f ∈ L1(E; m) and define
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N = {x : G f (x) = ∞}.

Since X is transient, N is m-polar. Taking a Borel m-inessential set N1 ⊃ N and
applying [15, Corollary 2.3] (where the condition (LSC) is used) to the restriction
X
∣

∣

E\N1
of X to E \ N1, we have for every compact subset K ⊂ E ,

L K := sup{t > 0 : Xt ∈ K } < ∞ Px -a.s. for every x ∈ E \ N1, (2.8)

As � is a one-point compactification for the locally compact separable metric space
E , we conclude from above that (2.7) holds.

Now assume that the condition (b) holds. Let f > 0 with f ∈ L1(E; m). By the
transience assumption on X , there is a Borel m-inessential set N0 such that

G f (x) > 0 for x ∈ E and G f (x) < ∞ for x ∈ E \ N0,

For a Borel set B, define pB(x) := Px (σB < ∞). Since G1/k( f ∧ k) is quasi
continuous and increases to G f as k → ∞, G f is quasi lower semicontinuous:
there exists a decreasing sequence of open sets {An, n ≥ 1} such that An ⊃ N0,
Cap(0)(An) → 0 as n → ∞, and the restriction of G f to each E \ An is lower
semicontinuous.

pAn is a quasi continuous version of the 0-order equilibrium potential of An (cf.
[13, Theorem 4.3.3]) and Cap(0)(An) = E(pAn , pAn ) → 0. It follows that

lim
n→∞ pAn (x) = 0, q.e.

Thus there is a Borel m-inessential set N1 containing N0 such that

Px

( ∞
⋃

n=1

{σAn = ∞}
)

= 1 for every x ∈ E \ N1. (2.9)

Take an increasing sequence of compact sets {Kn, n ≥ 1} that increases to E , and let
Fn = Kn \ An = Kn ∩(E \ An). Since Fn is compact and G f is lower semicontinuous
on Fn , cn := infx∈Fn G f (x) > 0 and so

cn pFn (x) ≤ Ex
[

(G f )(XσFn )
] ≤ G f (x) < ∞ for x ∈ E \ N1.

Therefore for x ∈ E \ N1,

Pt pFn (x) ≤ c−1
n Pt G f (x) ↓ 0 as t ↑ ∞

and consequently,

Px

(

∩∞
j=1
�

)

= lim
j→∞ Px

(


 j
) = 0,
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where 
 j := {σFn ◦ θ j < ∞} ∩ { j < ζ }. Since
⋂∞

j=1
 j = ⋂∞
j=1{σFn ◦ θ j <

∞} ∩ {ζ = ∞}, we get

Px

(

∪∞
j=1{σFn ◦ θ j = ∞} ∩ {ζ = ∞}

)

= Px (ζ = ∞) for x ∈ E \ N1.

This holds for every n ≥ 1 and so for x ∈ E \ N1,

Px
(

ζ = ∞ and for every n ≥ 1 there exists j ≥ 1

so that X ( j,∞) ⊂ E \ Fn
) = Px (ζ = ∞).

By (2.9), we can replace Fn with Kn in the above to get the desired identity (2.7).

�

The next theorem will be utilized in Sect. 3.

Theorem 2.5 Let X be an m-irreducible Borel right process on E satisfying condition
(LLL) of this section. Assume that one of the conditions (a) and (b) in Theorem 2.4
holds when X is transient.

Let K be a closed subset of E such that K is not m-polar and X admits no jump
from E0 = E \ K to K in the sense that

Px (Xt− ∈ E0 and Xt ∈ K for some t > 0) = 0 for q.e. x ∈ E . (2.10)

Assume further that there exists a neighborhood U0 of K such that X admits no
killing inside U0 \ K in the sense that

Px
(

Xζ− ∈ U0 \ K , ζ < ∞) = 0 for q.e. x ∈ E . (2.11)

Consider the part process X0 = {X0
t , ζ

0, P0
x } of X killed upon leaving E0. Then

P0
x

(

X0
ζ 0− ∈ K ∪ (E� \ U0)

)

= 1, q.e. x ∈ E0. (2.12)

Proof By the assumption (2.10),

Px
(

XσK − ∈ K and σK < ∞) = Px (σK < ∞) for q.e x ∈ E0. (2.13)

By Lemma 2.1, X is either recurrent or transient. When X is transient, (2.12) follows
from Theorem 2.4, (2.11) and (2.13). When X is recurrent, by Theorem 2.3 and (2.13)
above, we have

P0
x

(

X0
ζ 0− ∈ K and ζ 0 < ∞

)

= 1 for q.e. x ∈ E0,

which is a stronger version than (2.12). 
�
Any Hunt process is known to satisfy the condition (LLL) of this section. Next

lemma gives a sufficient condition for a more general process to satisfy (LLL).
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Lemma 2.6 Suppose X is a special standard process on E satisfying condition (LSC)
of this section. Then X satisfies (LLL) and accordingly, (2.6) and (2.7) as well.

Proof [7, Lemma 2.11] and its proof tell us that the special standard process X is a
Hunt process under the Ray topology and

{

ζ < ∞ and Xζ− does not exist in E
} ⊂

{

ζ < ∞ and Xr
ζ− = �

}

almost surely, where Xr
ζ− denotes the left hand side limit of X under the Ray topology.

Furthermore there exist a sequence of stopping times {Tn} such that Tn < ζp, Tn ↑ ζp,

where

ζp :=
{

ζ if ζ < ∞ and Xr
ζ− = �,

∞ otherwise.

For every compact set K ⊂ E, cK := inf x∈K G f (x) is positive by the condition
(LSC) and so

cK Px (σK < ∞) ≤ G f (x) < ∞, x ∈ E \ N1,

which in turn implies for x ∈ E \ N1 that

cK Px
(

σK ◦ θTn < ∞) = cK Ex
[

PXTn
(σK < ∞)

]

≤ Ex

⎡

⎢

⎣

∞
∫

Tn

f (Xt )dt

⎤

⎥

⎦ ↓ 0 as n → ∞.

In other words, we have for x ∈ E \ N1,

Px
(

σK ◦ θTn = ∞ for some n
) = 1.

We consider an increasing sequence of relative compact open sets {Dk, k ≥ 1} such
that Dk ⊂ Dk+1 and

⋃

k≥1 Dk = E . Taking K = Dk , we see that for every x ∈ E\N1,

Px

( ∞
⋂

k=1

{

σDk ◦ θTn = ∞ for some n
}

)

= 1.

It follows then for x ∈ E \ N1, Px -a.s.,

{

ζ < ∞, Xr
ζ− = �

}

⊂ {

ζ < ∞, Xζ− = �
}

and consequently X enjoys the property (LLL). 
�
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3 One-point extensions of X0 and ̂X0 by darning a hole K

Let E , E� be as in the previous section and m be a σ -finite Borel measure on
E . Throughout this section, we shall fix a pair of Borel standard processes X =
(Xt , ζ,Px ) and ̂X = (̂Xt ,̂ζ ,̂Px ) on E which are in weak duality with respect to m:

∫

E

̂Gα f (x)g(x)m(dx) =
∫

E

f (x)Gαg(x)m(dx), α > 0, f, g ∈ B+(E),

where {Gα, α > 0} and {̂Gα, α > 0} denote the resolvent of X and ̂X , respectively.
The notion of m-polarity for process X is the same as that for ̂X and there will be no
ambiguity in using the term q.e.

Let K be a closed subset of E and define E0 = E \ K . We shall assume that either
K is compact or E0 is compact. Denote by m0 the restriction of m to E0.

We shall assume once and for all that X satisfies the following conditions
(B.1), (B.2), (B.3) and that ̂X satisfies the corresponding conditions (̂B.1), (̂B.2), (̂B.3).

(B.1) X is m-irreducible, X satisfies condition (LLL) of Sect. 2 and X admits no
killings inside U0 \ K for some open neighborhood U0 of K in E .

(B.2) m0(U ∩ E0) is finite for some neighborhood U of K , and the set K is non-m-
polar with respect to X .

(B.3) X admits no jumps from E0 to K .

We shall be also concerned with the next two conditions (B.4) and (B.5) on X and
the corresponding ones (̂B.4), (̂B.5) on ̂X .

(B.4) Every semipolar set is m-polar for X.
(B.5) X satisfies one of the conditions (a), (b) in Theorem 2.4 whenever X is transient.

We consider the subprocesses X0 = (X0
t , ζ

0,Px ) and ̂X0 = (̂X0
t ,
̂ζ 0,̂Px ) of X

and ̂X killed upon leaving E0, respectively. The subprocesses X0 and ̂X0 are in weak
duality with respect to m0 (cf. [7]). The resolvents of X0 and ̂X0 are denoted by
{G0

α, α > 0} and {̂G0
α, α > 0}, respectively.

For α > 0, define the functions ϕ, uα on E by

ϕ(x) = Px (σK < ∞) and uα(x) = Ex
[

e−ασK
]

for x ∈ E .

The corresponding functions for ̂X will be denoted by ϕ̂, ûα. By (B.1), (B.2), (̂B.1),
(̂B.2) and Lemma 2.2(i), we get

ϕ(x) > 0 and ϕ̂(x) > 0 for q.e. x ∈ E0. (3.1)

Moreover, by (B.3), (̂B.3) and [1, p. 59], we have for x ∈ E0,

ϕ(x) = P0
x

(

ζ 0 < ∞ and X0
ζ 0− ∈ K

)

and

ϕ̂(x) = ̂P0
x

(

̂ζ 0 < ∞ and ̂X0
̂ζ 0− ∈ K

)

, (3.2)

uα(x) = E0
x

[

e−αζ 0; X0
ζ 0− ∈ K

]

and ûα(x)=̂E0
x

[

e−α̂ζ 0; ̂X0
̂ζ 0− ∈ K

]

. (3.3)
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and also, by (B.1), (̂B.1).

P0
x

(

ζ 0 < ∞, X0
ζ 0− ∈ K ∪ (E� \ U0)

)

= P0
x (ζ

0 < ∞)

̂P0
x

(

̂ζ 0 < ∞, ̂X0
̂ζ 0− ∈ K ∪ (E� \ U0)

)

= P0
x (
̂ζ 0 < ∞).

(3.4)

Here for a Borel set B ⊂ E�, the notation “X0
ζ 0− ∈ B” means that the left limit of

t �→ X0
t at t = ζ 0 exists under the topology of E� and takes values in B.

We consider several conditions on X0 corresponding to (A.3), (A.4), (A.6) and
(A.5) in [8, Sect. 5]:

(C.1) uα is m0-integrable on E0 for every α > 0.
(C.2) G0

0+ f is lower semicontinuous on E0 for any non-negative Borel function f
on E0.

ϕ(x) > 0 for any x ∈ U ∩ E0 for some neighborhood U of K .
(C.3) Either E \ U is compact for any open neighborhood U of K in E, or

for any open neighborhood U1 of K in E , there exists an open neighborhood
U2 of K in E such that

U 2 ⊂ U1 and J0(U2 \ K , E0 \ U1) < ∞.

Here J0 denotes the jumping measures of X0.

(C.4) limx→K uα(x) = 1 for every α > 0.

Corresponding conditions on ̂X0 are designated by (̂C.1), (̂C.2), (̂C.3), (̂C.4).
Let us extend the topological space E0 to E∗ = E0 ∪{a} by adding an extra point a

to E0 whose topology is prescribed as follows: a subset U of E∗ containing the point
a is an open neighborhood of a if there is an open set U1 ⊂ E containing K such that
U1 ∩ E0 = U \ {a}. In other words, E∗ is obtained from E0 by identifying K into the
one point {a}. Notice that, in the special case that E0 is compact in E , E∗ = E ∪ {a}
is nothing but the one-point compactification of E0.

The measure m0 is extended from E0 to E∗ by setting m0({a}) = 0. For functions
f, g on E0, we denote by ( f, g) the integral of f · g over E0 against m0. For an
X0-excessive measure µ and an X0-excessive function f on E0, L(0)(µ, f ) will
denote the X0-energy functional defined by using the transition function p0

t of X0 as

L(0)(µ, f ) = lim
t↓0

1

t
〈µ− µP0

t , f 〉.

An analogous quantity ̂L(0) can be defined for ̂X0.

A strong Markov process X∗ on E∗ is said to be a q.e. extension of X0 if the
subprocess of X∗ killed upon leaving E0 coincides with X0 for q.e. starting points
x ∈ E0.

We now state a theorem consisting of three items (i), (ii), (iii) which can be regarded
as generalized versions (in the darning context) of Theorems 5.15, 5.16 and 5.17 of
[8], respectively.
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Theorem 3.1 Let us assume the conditions (B.1), (B.2), (B.3) on X and the cor-
responding conditions on ̂X . We further assume for X0 condition (C.2) as well as
condition (C.3) when X0 is not a diffusion and condition (C.4) when X0 is not sym-
metric. Corresponding conditions on ̂X0 are also imposed.

Then the following are true:

(i) Suppose that the integrability conditions (C.1) and (̂C.1) are fulfilled. Then
there exist right processes X∗ and ̂X∗ on E∗ possessing the next properties:

(i.1) X∗ and ̂X∗ are q.e. extensions of X0 and ̂X0 respectively.
(i.2) X∗ and ̂X∗ are in weak duality with respect to m0. The resolvents G∗

α

and ̂G∗
α of X∗ and ̂X∗ admit the expressions

G∗
α f (a) = (̂uα, f )

α(̂uα, ϕ)+ L(0)(ϕ̂ · m0, 1 − ϕ)+ δ0
,

(3.5)

G∗
α f (x) = G0

α f (x)+ uα(x)G
∗
α f (a), q.e. x ∈ E0,

̂G∗
α f (a) = (uα, f )

α(uα, ϕ̂)+ ̂L(0)(ϕ · m0, 1 − ϕ̂)+̂δ0
,

(3.6)
̂G∗
α f (x) = ̂G0

α f (x)+ ûα(x)̂G
∗
α f (a), q.e. x ∈ E0,

respectively, where δ0, ̂δ0 are any preassigned non-negative numbers
satisfying

L(0)(ϕ̂ · m0, 1 − ϕ)+ δ0 = ̂L(0)(ϕ · m0, 1 − ϕ̂)+̂δ0.

(i.3) The sample path of X∗ is cadlag and enjoys the property (LLL) of
Sect. 2. X∗ is m0-irreducible.

(i.4) X∗ = (X∗
t , ζ

∗,P∗
x ) admits no sojourn at a, namely,

P∗
x

⎛

⎝

∞
∫

0

1{a}(X∗
s )ds = 0

⎞

⎠ = 1 q.e. x ∈ E∗.

(i.5) The point a is regular for itself with respect to X∗ and {a} is not
m0-polar for X∗.

(i.6) X∗ admits no jumps from E0 to a nor from a to E0, namely,

P∗
x

(

X∗
t− ∈ E0 and X∗

t = a for some t > 0
) = 0 q.e. x ∈ E∗

and

P∗
x

(

X∗
t− = a and X∗

t ∈ E0 for some t > 0
) = 0 q.e. x ∈ E∗.

(i.7) A subset of E0 is m0-polar with respect to X∗ if and only if it is so with
respect to X0.
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(i.8) δ0 = 0 if and only if X∗ admits no killings at a in the sense that

P∗
x

(

ζ ∗ < ∞, X∗
ζ ∗− = a

)

= 0 q.e. x ∈ E∗.

(i.9) If X0 is a diffusion, then so is X∗ for q.e. starting points x ∈ E∗.
The process ̂X∗ also enjoy the properties corresponding to (i.3)–(i.9).

(ii) In addition to the conditions (C.1) and (̂C.1), we suppose the condition (B.4)
on X holds. Then the processes X∗ and ̂X∗ in (i) are quasi-left continuous for
q.e. starting points. Every semipolar set is m0-polar for X∗. Furthermore, for
a subset of E0, its m0-polarity with respect to X∗ and m-polarity with respect
to X are equivalent.

(iii) Suppose X and ̂X satisfy the conditions (B.5) and (̂B.5). Then the integrability
conditions (C.1) and (̂C.1) are fulfilled.

Proof (i). Note that, in view of the definition of E∗ = E0 ∪ {a}, the set K can be
replaced by the one-point set {a} in the identities (3.2), (3.3) and (3.4) and also in the
conditions (C.1) (C.2), (C.3). The set E� appearing in (3.4) can also be replaced by
E∗
� the one-point compactification of E∗.
Therefore, under the stated assumptions, X0 and ̂X0 satisfy conditions (A.1), (A.3),

(A.4) as well as (A.5) (in non diffusion case) and (A.6) (in non-symmetric case) of
[8, Theorem 5.15]. They also satisfy condition (A.2a) of Sect. 6 the Appendix of the
present paper—a weakened version of (A.2) of [8, Sect. 5] allowing X0 and ̂X0 to
have killings inside E0, except that the property (3.1) corresponding to the first half
of condition (A.2a) in Sect. 6 is valid only for q.e. starting point x ∈ E0 rather than
for every x ∈ E0.

Suppose that (3.1) hold for every starting point x ∈ E0. Then we can produce from
the generalized version of [8, Theorem 5.15] (see the Appendix Sect. 6 below) those
extensions X∗ and ̂X∗ of X0 and ̂X0, respectively, on E∗, by constructing absorbed
Poisson point processes taking values of excursions around the point a and by piecing
together those excursions and the paths of X0 and ̂X0. The resolvents of X∗ and ̂X∗
satisfy (3.5) and (3.7), respectively, with ‘q.e. x ∈ E0’ being replaced by ‘for every
x ∈ E0’.

Particularly, the entrance law {µt , t > 0} from a governing the characteristic
measure n of the absorbed Poisson point process taking part in the construction of
X∗ is uniquely specified by the equation

ϕ̂ · m0 =
∞
∫

0

µt dt. (3.7)

In view of [8, Theorem 5.15], the process X∗ thus constructed satisfies the first
properties in (i.3) and (i.5) as well as the first one in (i.6), the equivalence statements
(i.8) and statement (i.9) with ‘q.e. x ∈ E∗’ being replaced by ‘every x ∈ E∗’. The
second property in (i.5) and the second one in (i.6) for X∗ follow from (iv) and (iii)
of Proposition 4.1 in [8], respectively. Property (i.4) for X∗ can be shown in a similar
manner to the proof of Proposition 4.1(i) of [8].
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The second property of (i.3), the m0-irreducibility of X∗, follows from the assump-
tion (3.1) holding for every x ∈ E0 and (3.5) because, for any Borel set B ⊂ E∗ with
a positive m0-measure, we see that G∗

α1B(a) > 0 and

G∗
α1B(x) ≥ uα(x)G

∗
α1B(a) > 0, x ∈ E0.

To prove (i.7) for X∗, it suffices to show its ‘if’ part. Let B be an m0-polar nearly
Borel subset of E0 with respect to X0. By virtue of (i.6), we have the inclusion

{0 < σB < ∞} ⊂
⋃

r∈Q+

r , where 
r = {r < σB, σB ◦ θr < σa ◦ θr }

holding P∗
x -a.s. for q.e. x ∈ E0. By the Markov property of X∗, we get

P∗
m0
(
r ) = E∗

m0

[

P0
X∗

r
(σB < ∞); X∗

r ∈ E0

]

≤ P0
m0
(σB < ∞) = 0,

and consequently, P∗
m0
(σB < ∞) = 0. So B is m0-polar with respect to X∗.

In general, (3.1) holds only for every x ∈ E0\N for some m0-polar set N ⊂ E0
under the present assumptions. But we can then find a Borel set B ⊂ E0 containing
N that is properly exceptional for both X0 and ̂X0 as in the proof of [13, Theorem
4.1.1]. Let us remark that B can be contained in E0\U for a neighborhood U of K
appearing in the conditions (C.2), (̂C.2). Let E ′

0 = E0\B. Then the restrictions of X0

and ̂X0 to E ′
0 are standard again and m(B) = 0. (3.1) holds true for every x ∈ E ′

0.

Accordingly, we can apply the same arguments as above to E ′
0 and E ′

0 ∪ {a} instead
of E0 and E∗ in obtaining all conclusions desired. Especially, due to (C.2), (̂C.2) and
the above remark, the validity of the key lemma [8, Lemma 5.4] is not violated by
these restrictions of the state space.
(ii). The first conclusion follows from [8, Theorem 5.16 (ii)]. The second one is shown
as follows. The one point set {a} is not semipolar with respect to X∗ by (i.5). Suppose
a set N ⊂ E0 is semipolar with respect to X∗. Then so it is semipolar with respect to
X0.Hence N is m0-polar with respect to X0 by assumption (B.4). Thus N is m0-polar
with respect to X∗ by (i.7).

Finally let us show for a set N ⊂ E0

N is m-polar for X ⇐⇒ N is m0-polar for X0, (3.8)

which combined with (i.7) implies the third assertion of (ii). Notice that, under the
assumption of (B.4), K\K r is Pm-polar for X.On the other hand, both X and ̂X admit
no jumps from E0 to K Pm-a.s. and̂Pm-a.s. on account of (B.3) and (̂B.3), respectively.
Hence the same argument as in the proof of [8, Proposition 4.1] works in proving that
X admits no jumps from K to E0 Pm-a.s. We can therefore repeat a similar argument
as in the proof of (i.7) to obtain (3.8).
(iii) Under the stated condition, we can invoke Theorem 2.5 to conclude that X0 has
the property (2.12) and ̂X0 also has the corresponding one. In other words, X0 and ̂X0

satisfy the condition (A.2a)′ of Sect. 6 below in the topology of E∗ but holding only
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for q.e. x ∈ E0 rather than every x ∈ E0. (A.2a)′ is a weakened version of (A.2)′ of
[8, Theorem 5.17] allowing for X0 and ̂X0 to have killings inside E0.

Moreover, condition (B.2) implies that m0(U ∩ E0) is finite for some neighborhood
U of {a} in E∗. If (A.2a)′ were true for every x ∈ E0, then all conditions for the
generalized version of [8, Theorem 5.17] (see Sect. 6) are fulfilled and we can deduce
from it the integrability (C.1). In general, we use the same reasoning as in the last part
of the proof of (i) to get (C.1). 
�
Remark 3.2 (i) The non-negative numbers δ0 and̂δ0 in Theorem 3.1 are killing

rates of X∗ and ̂X∗ at {a}, respectively, in the sense of [8, (3.6)].
(ii) Condition (C.2) can be replaced by

(C.2)′ ϕ(x) > 0 for any x ∈ U ∩ E0 for some neighborhood U of K and inf x∈C G0
1

ϕ(x) > 0 for any compact set C ⊂ U ∩ E0.

In fact, (C.2) implies (C.2)′ and the latter is what we really need in the proof of [8,
Lemma 5.4].

4 Symmetric one-point extensions of X0 and their characterizations

In this section, we continue to work under the same assumption as in the preceding
section for

E, K , E0 = E \ K , m, m0 = m|E0 ,

but with an additional assumption that X = ̂X . Let us first restate Theorem 3.1 under
this assumption.

Assume that we are given an m-symmetric Borel standard process X on E satisfying
the conditions (B.1), (B.2), (B.3). We note that every semipolar set is m-polar by the
symmetry of X . Let X0 = (X0

t , ζ
0,P0

x ) be the subprocess of X killed upon leaving
E0. The process X0 is m0-symmetric.

We shall also assume once and for all that X0 satisfies (C.2) as well as (C.3) of
Sect. 3 in non-diffusion case.

For x ∈ E0 and α > 0, define

ϕ(x) = P0
x

(

ζ 0 < ∞ and X0
ζ 0− ∈ K

)

and uα(x) = E0
x

[

e−αζ 0; X0
ζ 0− ∈ K

]

.

It follows from (B.1)–(B.3), [1, p59] and Lemma 2.2(i) that

ϕ(x) > 0 for q.e. x ∈ E0. (4.1)

Let E∗ = E0 ∪ {a} be the one-point extension of E0, by regarding the set K as
a one point {a} as was done in the preceding section. We extend measure m0 to E∗
by defining m0({a}) = 0. We now restate Theorem 3.1 in the case that X = ̂X and
δ0 = ̂δ0 = 0. The δ0 = ̂δ0 > 0 case can be dealt with similarly and we leave the
details to the interested readers.

Theorem 4.1 Under the above stated conditions, the following are true.
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(i) Suppose that the condition (C.1) is fulfilled. Then there exists a unique
m0-symmetric right process X∗ on E∗ possessing the next properties:
(i.1) X∗ is a q.e. extension of X0.
(i.2) The resolvent G∗

α of X∗ admits the expression

G∗
α f (a) = (uα, f )

α(uα, ϕ)+ L(0)(ϕ · m0, 1 − ϕ)
,

G∗
α f (x) = G0

α f (x)+ uα(x)G
∗
α f (a) for q.e. x ∈ E0, (4.2)

where G0
α is the resolvent of X0 and ( f, g) denotes the integral

∫

E0
f gdm0.

(i.3) The sample path of X∗ is cadlag and enjoys the property (LLL) of
Sect. 2. X∗ is m0-irreducible.

(i.4) X∗ = (X∗
t , ζ

∗,P∗
x ) admits no sojourn at a, namely,

P∗
x

⎛

⎝

∞
∫

0

1{a}(X∗
s )ds = 0

⎞

⎠ = 1 for q.e. x ∈ E∗.

(i.5) The point a is regular for itself with respect to X∗ and {a} is not
m0-polar for X∗.

(i.6) X∗ admits jumps neither from E0 to a nor from a to E0, namely,

P∗
x

(

X∗
t− ∈ E0, X∗

t = a, for some t > 0
) = 0 for q.e. x ∈ E∗.

and

P∗
x

(

X∗
t− = a, X∗

t ∈ E0, for some t > 0
) = 0 for q.e. x ∈ E∗.

(i.7) X∗ admits no killings at a in the sense that

P∗
x

(

ζ ∗ < ∞, X∗
ζ ∗− = a

)

= 0 for q.e. x ∈ E∗.

(i.8) X∗ is quasi-left continuous for q.e. starting point x ∈ E∗.
(i.9) If X0 is a diffusion, then so is X∗ for q.e. starting points x ∈ E∗.

(i.10) The entrance law {µt , t > 0} from a governing the characteristic mea-
sure of the absorbed Poisson point process taking part in the construc-
tion of X∗ is uniquely specified by the equation

ϕ · m0 =
∞
∫

0

µt dt. (4.3)

(ii) Suppose X satisfies the condition (B.5). Then the integrability condition (C.1)
is fulfilled.
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In what follows, we shall assume (B.1), (B.2), (B.3), (B.5) of Sect. 2 for X and (C.2)
of Sect. 3 for X0 as well as (C.3) in non-diffusion case so that uα is m0-integrable and
X0 admits a unique extension X∗ to E∗ as is described in (i).

For later convenience, we call {µt , t > 0} specified by the equation (4.3) the
entrance law from a for X∗.We also note the following: by the quasi-homeomorphism
method due to [4] and by [13, Sect. 4.4], we may and do assume that the Dirichlet
form of X (resp. X0) on L2(E; m) (resp. L2(E0; m0)) is regular with X (resp. X0)
being an associated Hunt process on E (resp. E0).

Let (E0,F0) and (E∗,F∗) be the Dirichlet forms on L2(E0; m0) of the
m0-symmetric standard processes X0 and X∗, respectively. The Dirichlet form (E0,F0)

is transient in view of (4.1) and [13, Lemma 1.6.4]. We aim at characterizing (E∗,F∗)
in terms of the active reflected Dirichlet space ((F0)ref

a , E ref) of (F0, E0). The notion
of the reflected Dirichlet space of a transient regular Dirichlet space F0 was first intro-
duced by M.L. Silverstein in [25,26] in two different ways, which were later on made
precise and shown to be equivalent in [3] by the first author of the present paper. The
first way is to add to F0 the space of all harmonic functions on E0 with finite Dirichlet
integrals by using the equilibrium measures ([26] and [3]) or the energy functional
([6]), while the second way is to consider the space of all functions on E0 with finite
Dirichlet integrals by using the energy measures of u ∈ Floc ([3,25]).

Here we adopt the definition in [6, Sect. 3] where X0 was assumed to be of no
killing inside E0. We shall remove this condition and show that the current definition
coincides with the one given in [3].

For convenience, we introduce the following notions related to the standard process
X0 on E0. A nearly Borel set A ⊂ E0 is called X0-invariant if Px (�A) = 1 for every
x ∈ A, where

�A =
{

ω ∈ � : X0
t (ω) ∈ A and X0

t−(ω) ∈ A for every t ∈ [0, ζ 0)
}

. (4.4)

Then the restriction X0|A defined in a natural way is a standard process on A.We say
a random variable Φ on � is X0|A-measurable if the restriction Φ|�A is measurable
with respect to the σ -field M0 ∩ A, where M0 denotes the natural σ -field generated
by {X0

t , t ≥ 0}. The random variableΦ needs not to be defined on�\�A in this case.
Recall that a nearly Borel set N ⊂ E0 is called X0-properly exceptional if E0 \ N is
X0-invariant and m(N ) = 0.

We call a random variable Φ = Φ(ω) on � a terminal variable if there exists an
X0-properly exceptional set N ⊂ E0 such that

(i) Φ is X0|E0\N -measurable,
(ii) Φ(θt (ω)) = Φ(ω) for every ω ∈ �E0\N and for every t < ζ 0(ω), and

(iii) {Φ �= 0} ⊂ {ζ 0 < ∞ and X0
ζ 0− = ∂}, where θt is the shift operator on � and

∂ is the point at infinity of E0.

By convention, we let X0∞ = ∂ and a function f on E0 is extended to E0 ∪ {∂}
by setting f (∂) = 0. A function f on E0 is called X0-harmonic if, for any relatively
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compact open subset D of E0,

E0
x

[∣

∣

∣ f
(

X0
σE0\D

)∣

∣

∣

]

< ∞ and f (x) = E0
x

[

f
(

X0
σE0\D

)]

for q.e. x ∈ E0.

Denote by (F0
e , E0) the extended Dirichlet space of (E0,F0).

Lemma 4.2 (i) Let Φ be a terminal variable with E0
x [|Φ|] < ∞ for q.e. x ∈ E0.

Put
h(x) = E0

x [Φ] , x ∈ E0. (4.5)

Then h is X0-harmonic. Furthermore, for any relatively compact open subsets
Dk of E0 increasing to E0,

lim
k→∞ h(X0

σk
) = Φ P0

x -a.s. and in L1(P0
x ) for q.e. x ∈ E0,

where σk denotes the hitting time of E0 \ Dk for X0.

(ii) For any f ∈ F0
e ,

lim
k→∞ f (X0

σk
) = 0 in L1(P0

x ) and in probability (P0
x ) for q.e. x ∈ E0,

where {σk, k ≥ 1} is as in (i).

Proof (i) is contained in [3, Lemma 1.5]. To prove (ii), we may assume that f ∈ F0
e

is non-negative. Put

Hk f (x) = E0
x

[

f (Xσk )
] = E0

x

[

f (Xσk ); σk < ∞]

, x ∈ E0,

which is an E0-quasi-continuous function in F0
e and E0-orthogonal to the space

F0
e,k = {g ∈ F0

e : g = 0 q.e. on E0 \ Dk},

and accordingly, E0(H j f, Hk f ) = E0(H j f, H j f ), k < j (cf. [13, Sect. 4.3]).
Hence

E0(Hk f − H j f, Hk f − H j f ) = E0(Hk f, Hk f )− E0(H j f, H j f ), k < j,

which implies that {Hk f } is E0-convergent to a function u ∈ F0
e .Since u is orthogonal

to F0
e,k for all k,we conclude that u = 0 from the regularity of (F0, E0). In particular,

we get lim
k→∞ Hk f (x) = 0, q.e. on E0 the desired conclusion. 
�

We denote by p0
t the transition function of X0.
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Lemma 4.3 Let Φ be a terminal variable with E0
x

[

Φ2
]

< ∞ for q.e. x ∈ E0. Let
h(x) be the function defined by (4.5) and define

g(x) = E0
x

[

Φ2
]

− h(x)2, x ∈ E0, (4.6)

Mh(t) = h(X0
t )1{t<ζ 0} +Φ1{t≥ζ 0} − h(X0

0) t ≥ 0. (4.7)

Then g is X0-excessive, {Mh(t)}t≥0 is a P0
x -square integrable, uniformly integrable

martingale additive functional of X0 and

g(x) = p0
t g(x)+ E0

x

[

(Mh(t))2
]

, t ≥ 0, q.e. x ∈ E0. (4.8)

In particular
1

2
L(0)(m0, g) = e(Mh)(≤ ∞), (4.9)

where L(0) denotes the energy functional of an X0-excessive measure and an
X0-excessive function defined before the statement of Theorem 3.1 and e denotes
the energy of an additive functional defined in [13, Sect. 5.2].

Proof Since E0
x

[

Φ2
]

is X0-excessive and finite q.e., we see from h(x)2 ≤ E0
x [Φ2]

that for q.e. x ∈ E0, |p0
t h(x)|2 ≤ p0

t h2(x) < ∞, E0
x (Mh(t)) = 0, and

E0
x

[

(Mh(t))2
]

= p0
t h2(x)+ E0

x

[

Φ2 I{t≥ζ 0}
]

+ h(x)2

−2h(x)p0
t h(x)− 2h(x)E0

x

[

Φ I{t≥ζ 0}
]

= g(x)− p0
t g(x).


�

Let

N = {Φ : Φ is a terminal variable with E0
x (Φ

2)<∞ q.e. x ∈ E0, L(0)(m0, g)<∞},
(4.10)

where g is defined by (4.6) forΦ. The reflected Dirichlet space ((F0)ref , E ref) and the
active reflected Dirichlet space (F0)ref

a of (F0, E0) are then defined as follows:

(F0)ref = F0
e + HN, (F0)ref

a = (F0)ref ∩ L2(E0; m0), (4.11)

where

HN = {h : h(x) = Ex [Φ] for q.e. x ∈ E0 with Φ ∈ N} . (4.12)
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For f = f0 + h ∈ (F0)ref , where f0 ∈ F0
e and h = E· [Φ] with Φ ∈ N, we let

E ref( f, f ) = E( f0, f0)+ 1
2 L(0)(m0, g), (4.13)

for g defined by (4.6) for Φ.
On account of Lemma 4.3 and [3, Theorem 1.8], it is clear that the above definition

of the reflected Dirichlet space coincides with the one given in [3]. We also notice that
the space F0

e ∩ HN consists only of zero function because of Lemma 4.2.
The following is one of the main theorems of this section.

Theorem 4.4 Under the conditions of this section, we have

(i) F∗
e

∣

∣

E0
⊂ (F0)ref , F∗∣

∣

E0
⊂ (F0)ref

a and E∗(u, v) = E ref(u|E0 , v|E0) for
u, v ∈ F∗

e .

(ii) ϕ ∈ (F0)ref and uα ∈ (F0)ref
a for every α > 0.

(iii) For α > 0, consider the one-dimensional subspace

Hα = {c uα : c ∈ R}

of (F0)ref
a . The space

(F∗, E∗
α

)

can be decomposed in the Hilbert space
(

(F0)ref
a , E ref

α

)

as the direction sum:

F∗∣
∣

E0
= F0 ⊕ Hα.

(iv) It holds that

F∗
e

∣

∣

E0
=
{

f = f0 + cϕ : f0 ∈ F0
e , c ∈ R

}

,

E∗( f, f ) = E ref( f, f )=E0( f0, f0)+ c2 V for f = f0 + cϕ with f0 ∈ F0
e ,

(4.14)

where
V = L(0)(ϕ · m0, 1 − ϕ). (4.15)

Proof Let {Dk, k ≥ 1} be an increasing sequence of relatively compact open subset
of E0. On account of (5) of Theorem 4.1, we then have

lim
k→∞ XσE\Dk

= XσK on {σK < ∞}.

Now the same proof for [6, Theorem 3.4 (i)] establishes the first half of the assertion
(i).

To prove the second half of (i), let (N (x, dy), H) be a Lévy system of X∗ and µH

be the Revuz measure of the positive continuous additive functional H with respect
to m0. We can then deduce from (i.5) to (i.7) of in Theorem 4.1 for X∗ that

µH ({a})N (a, E0 ∪ {a}) = 0.
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On the other hand, if we denote by µ〈u〉 = µc〈u〉 + µ
j
〈u〉 + µk〈u〉 the energy measure of

u ∈ F∗
e , then

µ
j
〈u〉({a}) = µH ({a})

∫

E0

((u(a)− u(y))2 N (a, dy) and

µk〈u〉({a}) = µH ({a})u(a)2 N (a, {�}).
Since {a} is just a one point set, it follows from [6, Theorem 2.10] by taking F = {a}
as the trace space that µc〈u〉({a}) = 0. Therefore we have µ〈u〉({a}) = 0 for every
u ∈ F∗

e . The second half of (i) now follows from [6, Theorem 3.4 (iii)].
Let σa be the hitting time of the point a by the process X∗. Since X∗ is an extension

of X0 from E0 to E∗ = E0 ∪ {a}, we can conclude from (i.6) of Theorem 4.1 and [1,
p. 59] that

ϕ(x) = P∗
x (σa < ∞) and uα(x) = E∗

x

[

e−ασa
]

for q.e x ∈ E0. (4.16)

Moreover, in view of (i.5) of Theorem 4.1, the above identities hold for x = a if we
extend the functions ϕ and uα to E∗ by setting

ϕ(a) = 1 = uα(a). (4.17)

Note that the functions ϕ and uα are members of F∗
e and F∗, respectively. In fact,

by the quasi-homeomorphism method (see [4]), we may and do assume without loss
of generality that (E∗,F∗) is a regular Dirichlet form and X∗ is an associated Hunt
process, and so [13, Theorem 4.6.5, Theorem 4.3.1] applies. Moreover, for f ∈ F∗,
letting f0 := f − f (a) uα ,

f = f0 + f (a) uα

gives the decomposition of f into F0 and its E∗
α -orthogonal complement. These com-

bined with (i) yield (ii) and (iii).
Similarly,

f = f0 + f (a) ϕ with f0 = f − f (a) ϕ,

represents a decomposition of f ∈ F∗
e into an element of F0 and a constant multiple

of ϕ which are mutually E∗-orthogonal. This combined with (i) implies (iv) except for
the identity

E∗(cϕ, cϕ) = c2 V, (4.18)

where V is given by (4.15). But (4.18) is just a special case of the much more general
formula (3.19) in [6] which is established for a general non-m-polar quasi-closed set
rather than a one point set. 
�

We remark that Theorem 4.4(iv) generalizes Theorem 5.1(ii) of [14] where X0 and
X∗ were assumed to be symmetric diffusions.

The next lemma is a variant of [25, Theorem 14.5].

123



One-point extensions of Markov processes by darning 87

Lemma 4.5 We assume for Φ ∈ N that the function h defined by (4.5) belongs to the
active reflected Dirichlet space (F0)ref

a . Then

{Φ �= 0} ⊂ {ζ 0 < ∞} Px -a.e. for q.e. x ∈ E0.

Proof We may assume that Φ ≥ 0. We let hα(x) = E0
x

[

e−αζ 0
Φ
]

. Since

h ∈ L2(E0; m0), the function h − hα = αG0
αh is in F0 and

E0(h − hα, h − hα) = α2E0
α(G

0
αh,G0

αh)− α3(G0
αh,G0

αh)

= α2(G0
αh, h − αG0

αh)

≤ α2‖G0
αh‖2 ‖h‖2 ≤ α‖h‖2

2.

Since (E0,F0) is transient, it follows that there is a subsequence {αk, k ≥ 1}decreasing
to zero as k → ∞ so that limk→∞(h(x)− hαk (x)) = 0 for E0-q.e. x ∈ E0. Note that
E0-q.e is the same as E-q.e. on E0 (see [13]). Hence for q.e. x ∈ E0,

E0
x

[

Φ 1{ζ 0=∞}
] = lim

k→∞(h(x)− hαk (x)) = 0.


�
A Borel function f on E0 will be said to have an X0-fine limit at a if there exists

a constant c such that

P0
x

(

lim
t↑ζ 0

f (X0
t ) = c

∣

∣

∣

∣

ζ 0 < ∞ and X0
ζ 0− ∈ K

)

= 1 for q.e. x ∈ E0.

In this case, we write as γ f (a) = c.
We shall consider the condition that

(D.1) If a function f ∈ (F0)ref
a admits the X0-fine limit 0 at a, then f ∈ F0.

This is a condition imposed on the process X0 and on the set K . In view of Lemma
4.2 and Lemma 4.5, a sufficient condition for (D.1) to be fulfilled is

P0
x

(

lim
k→∞ X0

σE0\Dk
∈ K

∣

∣

∣

∣

lim
k→∞ σE0\Dk < ∞

)

= 1 for q.e. x ∈ E0,

for some relatively compact open sets Dk increasing to E0, where the left limit of the
path is taken in the topology of E . For instance, when X0 is the absorbed Brownian
motion on the interval (0, 1), then (D.1) is fulfilled if K = {0}∪{1} but not if K = {0}.
On the other hand, when X0 is a diffusion on (0,∞) with generator (1.5) for which 0
is regular and ∞ is non-regular, then (D.1) is fulfilled if K = {0} (see Sect. 5.2).

Lemma 4.6 If f is the restriction to E0 of an X∗-q.e. finely continuous function f ∗
on E∗, then f admits an X0-fine limit at a and γ f (a) = f ∗(a). In particular, uα and
ϕ both admit the X0-fine limit 1 at a.
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Proof We may assume without loss of generality that (E∗,F∗) is regular and X∗
is an associated Hunt process. By [13, Theorem 4.2.2], for every an X∗-q.e. finely
continuous function f ∗ on E∗,

P∗
x

(

lim
t ′↑t

f (X∗
t ′) = f (X∗

t−) for every t ∈ [0, ζ )
)

= 1 for q.e. x ∈ X∗.

Since X∗ admits no jump from E0 to a by Theorem 4.1(i.6), it follows then γ f (a) =
f ∗(a). 
�

Let us consider a linear operator (L,D(L)) on L2(E0; m0) specified by the follow-
ing condition:

f ∈ D(L) with L f = g (∈ L2(E0; m0)),

if and only if

f ∈ (F0)ref
a such that E ref( f, v) = −(g, v) for every v ∈ F0. (4.19)

Lemma 4.7 Assume condition (D.1) holds. Suppose that f ∈ D(L) such that f
admits an X0-fine limit c at a and

L f = α f for some α > 0.

Then f = c uα.

Proof By (4.19), f ∈ (F0)ref
a and E ref

α ( f, v) = 0 for any v ∈ F0. By Theorem 4.4.
uα ∈ (F0)ref

a and uα satisfies the same equation. Put f0 = f −c uα.Then f0 ∈ (F0)ref

and E ref
α ( f0, v) = 0 for any v ∈ (F0)ref . Since f0 admits an X0-fine limit 0 at a, we

have by (D.1) that f0 ∈ F0 and so E ref
α ( f0, f0) = 0. This implies f0 = 0. 
�

For f ∈ D(L)(⊂ F ref
a ), we let

N ( f ) = E ref( f, uα)+ (L f, uα). (4.20)

For α, β > 0, we can easily verify the identity uα − uβ = (α − β)G0
αuβ , which

is a member of F0 because uβ ∈ L2(E0; m0). Hence N ( f ) defined by (4.20) is
independent of the choice of α > 0 in view of (4.19). We call N ( f ) the flux of f at a.

Denote by A∗ the L2 infinitesimal generator of X∗: A∗ is a self adjoint operator on
L2(E∗; m0) (= L2(E0; m0)) such that

f ∈ D(A∗) with A∗ f = g if and only if f ∈ F∗

with E∗( f, v) = −(g, v) for every v ∈ F∗. (4.21)

We see from Theorem 4.4 that L is an extension of A∗:

D(A∗) ⊂ D(L) and A∗ f = L f for f ∈ D(A∗). (4.22)

123



One-point extensions of Markov processes by darning 89

We are now in a position to present a lateral condition in terms of N ( f ) to
characterize for a function f ∈ D(L) to be a member of D(A∗).

Theorem 4.8 (i) If f ∈ D(A∗), then

f ∈ D(L), f admits an X0-fine limit at a, (4.23)

and
N ( f ) = 0. (4.24)

(ii) Assume condition (D.1) holds. If a function f satisfies the conditions (4.23),
(4.24), then f ∈ D(A∗).

Proof If f ∈ D(A∗), then (4.21), (4.22) and Theorem 4.4 imply that f ∈ D(L) and

E ref( f, uα) = −(L f, uα)

which reads as N ( f ) = 0. By Lemma 4.6, f also admits an X0-fine limit at a.
Conversely, suppose a function f satisfies conditions (4.23) and (4.24). Put, for α > 0,

g := (α − L) f, f1 := G∗
αg and v = f − f1.

Then v ∈ D(L) with (α − L)v = 0, and v admits an X0-fine limit, say c, at a. Then
by Lemma 4.7, v = c uα . Since N (v) = 0,

c
(

E ref(uα, uα)+ α(uα, uα)
)

= 0,

which together with (4.1) implies c = 0 and thus v = 0. Consequently, f = G∗
αg ∈

D(A∗). 
�
In Sect. 5, explicit formulae for the flux N ( f ) will be given in some concrete

examples. The next Lemma gives other ways to evaluate N ( f ).

Lemma 4.9 Assume condition (D.1). If f ∈ D(L) admits an X0-fine limit at a, then

N ( f ) = E ref( f, ϕ)+ lim
α↓0
(L f, uα). (4.25)

If the Dirichlet form (E0,F0) is further assumed to satisfy the Poincaré inequality in
the sense that there exists a constant C > 0 with

(u, u) ≤ C E0(u, u) for every u ∈ F0, (4.26)

then
N ( f ) = E ref( f, ϕ)+ (L f, ϕ) for f ∈ D(L). (4.27)
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Proof (i) From the equation ϕ = uα + αG0
0+uα, we get

(uα, uα)+ α(uα,G0
0+uα) = (uα, ϕ) < ∞,

which particularly means

G0
0+uα ∈ F0 and so E(G0

0+uα, v) = (uα, v) for any v ∈ F0. (4.28)

We further get from the equation (4.3) the representation

α(uα, ϕ) =
∞
∫

0

(1 − e−αu)�(du),

as in [14, Lemma 2.3] where �(du) is a positive measure on (0,∞) defined by
�((s, t]) = µt (ϕ)− µs(ϕ) for 0 < s < t . In particular,

lim
α↓0

α(uα, ϕ) = 0. (4.29)

Suppose that f ∈ D(L) has an X0-fine limit c at a. Then f − c ϕ ∈ F0 by Lemma
4.6 and condition (D.1), and we get by (4.28)

E ref( f, uα) = E ref( f, ϕ)− αE ref( f,G0
0+uα)

= E ref( f, ϕ)− αE ref( f − cϕ,G0
0+uα)

= E ref( f, ϕ)− α( f, uα)+ cα(uα, ϕ).

Therefore we have

N ( f ) = E ref( f, ϕ)+ (L f, uα)+ dα

with

dα = −α( f, uα)+ cα(uα, ϕ).

Since α2( f, uα)2 ≤ α( f, f ) · α(uα, ϕ), we obtain limα↓0 dα = 0 by (4.29). This
establishes (4.25).
(ii). (4.26) implies that the 0-order resolvent G0

0+ of X0 is a bounded operator on
L2(E0,m0). Hence

ϕ = uα + αG0
0+uα ∈ L2(E0,m0).

This together with dominated convergence theorem yields (4.27). 
�
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So far we have considered the unique m0-symmetric one-point extension X∗ to
E∗ of X0 on E0, where m0 is defined to be the restriction to E0 = E \ K of the
symmetrizing measure m of X on E and extended to E∗ by setting m0({a}) = 0. The
subprocess X0 is symmetric with respect to the measure m0. But X0 may admit other
choices of symmetrizing measures on E0 rather than m0; and thus X0 may admit other
possible extensions.

Let us consider the assumption that

(D.2) E0 = E01 ∪ · · · ∪ E0k for some disjoint open sets E0i , 1 ≤ i ≤ k, and each
E0i is X0-invariant.

Assumption (D.2) means that

Px (�E0i ) = 1 for every x ∈ E0i and every i = 1, . . . , k,

where �E0i is defined by (4.4). Condition (D.2) is equivalent to say that X0 does not
travel between two different sets E0i and E0 j , i �= j, 1 ≤ i, j ≤ k. If X0 is a diffusion,
then (D.2) is automatically satisfied. The restrictions of functions and measures on E0
to E0i will be designated by the superscript i , 1 ≤ i ≤ k.

Choosing any k-vector p with positive entries:

p = (p1, . . . , pk) with p1, . . . , pk > 0,

we define a new measure m̃0 on E0 by

m̃i
0 = pi · mi

0, 1 ≤ i ≤ k. (4.30)

The measure m̃0 will be also designated by mp
0 to indicate its dependence on p.

Clearly X0 is m̃0-symmetric and we extend m̃0 to E∗ by setting m̃0({a}) = 0.

Theorem 4.10 Assume the condition (D.2).
(i) There exists a unique m̃0-symmetric standard process ˜X∗ on E∗ whose resol-

vent is given by (4.2) with m̃0 in place of m0.

(ii) The process ˜X∗ enjoys the properties (i.1) and (i.3)–(i.9) in Theorem 4.1.
(iii) The entrance laws {µ̃t , t > 0} for ˜X∗ and {µt , t > 0} for X∗ are related by

µ̃i
t = pi · µi

t for 1 ≤ i ≤ k.

(iv) The extensions ˜X∗ and ˜X ′∗ corresponding to two different k-vectors p and q
are equivalent in law if and only if

p = λq for some λ > 0.

Proof Parts (i) and (ii) follow from Theorem 4.1 with m̃0 in place of m0 there. Part
(iii) is immediate from a comparison of (4.3) with

ϕ · m̃0 =
∞
∫

0

µ̃t dt.
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By substituting mp
0 and mq

0 in (4.2), the corresponding extensions can be seen to have
the same resolvents if and only if (4.25) holds, proving (iv). 
�

Under the assumption (D.2), the Dirichlet form (E0,F0) of X0 on L2(E0,m0) and
its reflected Dirichlet space ((F0)ref , (E0)ref) can be described as follows. For each
1 ≤ i ≤ k, define the restriction (E0i ,F0i ) of (E0,F0) to E0i by

F0i = F0
∣

∣

∣

E0i
and E0i (u|E0i , v|E0i ) = E0(u1E0i , v1E0i ) for u, v ∈ F0.

This is a transient Dirichlet form on L2(E0i ; mi
0),whose reflected Dirichlet space will

be denoted by (F0i )ref , E ref,i ). It holds then that

F0 = {u : u|E0i ∈ F0i for 1 ≤ i ≤ k}

E0(u, v) =
k
∑

i=1

E0i (u|E0i , v|E0i ) for u, v ∈ F0,

(F0)ref = {u : u|E0i ∈ (F0i )ref for 1 ≤ i ≤ k}, and

E ref(u, v) =
k
∑

i=1

E ref,i (u|E0i , u|E0i ) for u, v ∈ (F0)ref . (4.31)

By virtue of Theorem 4.4(iii), the Dirichlet form (E∗,F∗) of X∗ on L2(E∗; m0)

can be described as

F∗ =
{

f = f0 + c uα : f0 ∈ F0, c ∈ R

}

, (4.32)

E∗(u, v) = E ref(u, v) for u, v ∈ F∗,

where E ref is given by (4.31). Note that F∗ ⊂ (F0)ref .
Now, for measure m̃0 defined by (4.30), we denote by (˜E0, ˜F0) the Dirichlet form

of X0 on L2(E0, m̃0) and by ((˜F0)ref , (˜E0)ref) its reflected Dirichlet space. We then
readily see that

˜F0 = F0 and ˜E0(u, v) =
k
∑

i=1

pi E0i (ui , vi ) for u, v ∈ F0, (4.33)

(˜F0)ref = (F0)ref and ˜E ref(u, v) =
k
∑

i=1

pi E ref,i (ui , vi ) for u, v ∈ (F0)ref .

(4.34)

Let ˜X∗ be the m̃0-symmetric extension of X0 described in Theorem 4.10 and
(˜E∗, ˜F∗) be its Dirichlet form on L2(E∗; m̃0). By virtue of Theorem 4.4(iii) again,
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we get analogously to (4.32)

˜F∗ =
{

f = f0 + c uα : f0 ∈ ˜F0, c ∈ R

}

, (4.35)

˜E∗(u, v) = ˜E ref(u, v) for u, v ∈ ˜F∗,

where ˜E ref is given by (4.34). Note that ˜F∗ ⊂ (˜F0)ref .

Theorem 4.11 Assume that (D.2) holds and that the measure m̃0 is given by (4.30).
(i) The Dirichlet form (˜E∗, ˜F∗) of ˜X∗ on L2(E∗; m̃0) and its extended Dirichlet space
F∗

e admit the expressions

˜F∗ = F∗ =
{

f = f0 + c uα : f0 ∈ F0, c ∈ R

}

, (4.36)

˜F∗
e = F∗

e =
{

f = f0 + c ϕ : f0 ∈ F0
e , c ∈ R

}

, (4.37)

˜E∗(u, v) =
k
∑

i=1

pi E ref,i (u|E0i , u|E0i ) for u, v ∈ ˜F∗. (4.38)

Moreover, f0 ∈ F0 and uα are ˜E∗
α -orthogonal for each α > 0, and f0 ∈ F0

e and ϕ
are ˜E∗-orthogonal.
(ii) Assume further that condition (D.1) is satisfied. Let ˜A∗ be the L2(E∗; m̃0)-
infinitesimal generator of ˜X∗. Then, f ∈ D(˜A∗) if and only if

f |E0i ∈ D(Li ) for 1 ≤ i ≤ k, f admits an X0-fine limit at a, and
k
∑

i=1

pi N i ( f |E0i ) = 0,

where, for 1 ≤ i ≤ k, Li is defined by (4.19) with L2(E0,m0), F0, ((F0)ref and E ref)

being replaced by L2(E0i ,mi
0), F0i and ((F0i )ref , E ref,i ), respectively, and N i is

defined by (4.20) with L, E ref and uα being replaced by Li , E ref,i and ui
α , respectively.

Proof From (4.32), (4.33), (4.34) and (4.35), we obtain (4.36) and (4.38). Analogously,
we get (4.37) from Theorem 4.4(iv). Taking (4.30) and (4.38) into account, we are led
to (ii) from Theorem 4.8. 
�

5 Examples

5.1 Darning holes in the one-dimensional Brownian motion

Let R be the real line, I be its open subset and m be the Lebesgue measure on it. The
restriction of m to I is denoted by m0. We introduce function spaces by
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G(I ) :=
⎧

⎨

⎩

u : absolutely continuous on I with
∫

I

(u′)2dx < ∞
⎫

⎬

⎭

,

H
1
0e(I ) := {u ∈ G(I ) : u = 0 at the finite boundary points of I } ,

H
1(I ) := G(I ) ∩ L2(I ; m0) and H

1
0(I ) := H

1
0e(I ) ∩ L2(I ; m0),

DI (u, v) :=
∫

I

u′(x)v′(x)m0(dx) and (u, v) :=
∫

I

u(x)v(x)m0(dx).

Let X0(I ) be the absorbed Brownian motion on I and (E0,F0) be its Dirichlet
form on L2(I ; m0). It holds then that

(E0,F0) = ( 1
2D I ,H1

0(I )), F0
e = H

1
0e(I ) and (F0)ref = G(I ). (5.1)

The linear operator LI on L2(I ; m0) introduced by (4.19) reads as follows:

D(LI ) =
{

f ∈ H
1(I ) : f ′ has an absolutely continuous

version with f ′′ ∈ L2(I ; m0)
}

,

LI f = 1

2
f ′′. (5.2)

Moreover, an integration by parts gives the next description of the linear functional
NI ( f ) introduced by (4.20): for f ∈ D(LI ),

NI ( f ) =

⎧

⎪

⎨

⎪

⎩

f ′(b−)− f ′(a+), when I = (a, b);
f ′(a−), when I = (−∞, a);
− f ′(a+), when I = (a,∞).

(5.3)

In fact, the existence of the limit of f ′ at finite end points of I is clear from (5.1).
When I = (a,∞),

NI ( f ) = lim
b→∞ f ′(b)uα(b)− f ′(a+)

and, if the first term of the right hand side does not vanish, then f /∈ G(I ).
We shall examine the one point extension of X0(I ) by the darning in several cases

of I .

(i) Reflected and circular Brownian motions
Let

I = (0,∞), E0 = I, E∗ = [0,∞) = I ∪ {0}

and X∗ be the extension of X0(I ) to E∗ of Theorem 4.1. Denote by (E∗,F∗) the Dirich-
let form of X∗ on L2(E∗; m0)(= L2(E0; m0)). Note that the point 0 is
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approachable by X0(I ) with probability 1 and so ϕ = 1. Hence we conclude from
Theorem 4.4 and (5.1) that

F∗ = H
1(I ) and E∗ = 1

2
DI (5.4)

namely, X∗ is the reflected Brownian motion of E∗ = [0,∞). By Theorem 4.8 and
(5.3), the L2-generator A∗ of X∗ can be described as

D(A∗) = { f ∈ D(LI ) : f ′(0+) = 0} and A∗ f (x) = 1

2
f ′′(x), x ∈ I, (5.5)

where D(L) is defined by (5.2). We can also get the Skorohod equation for X∗ =
(X∗

t ,Px ):

X∗
t = X∗

0 + Bt + �t , t > 0, Px−a.s., x ∈ [0,∞),

where Bt is a Brownian motion with B0 = 0 and �t is the positive continuous additive
functional of X∗ with Revuz measure δ{0}. See Theorem 5.2 below for a proof.

Next let I = (0, 1), E0 = I , E∗ = (0, 1)∪ {0∗}, the one point compactification of
I , and X∗ be the extension of X0(I ) to E∗ as in Theorem 4.1. Let (E∗,F∗) and A∗
be the Dirichlet form and the L2-generator of X∗. In the same way as above, we can
conclude that

F∗ = H
1
0(I ) ∪ {constant functions} and E∗ = 1

2
DI , (5.6)

D(A∗) = { f ∈ D(LI ) : f (0+) = f (1−), f ′(0+) = f ′(1−)}, and

A∗ f (x) = 1

2
f ′′(x) for f ∈ D(A)∗ and x ∈ I. (5.7)

Consequently X∗ is the Brownian motion on the circle E∗, which can be also obtained
by wrapping the Brownian motion on R to [0, 1) (more precisely, by modulo 1).

(ii) Skew Brownian motion
Let

E0 = (−∞, 0) ∪ (0,∞), E∗ = R,

and X0 be the absorbed Brownian motion on E0, namely X0 is the subprocess on
Brownian motion on R killed upon hitting Denote by (E0,F0) the Dirichlet form of
X0 on L2(E0; m0).

Note that R
+ = (0,∞) and R

− = (−∞, 0) are two invariant sets for X0. The
restrictions of functions and measures on R to R

+, R
− will be denoted by putting

superscript + and −, respectively. We can then rewrite the expression (5.1) as

F0
e =

{

u : u± ∈ H
1
0e(R

±)
}

,

E0(u, v) = 1

2
DR+

(u+, v+)+ 1

2
DR−

(u−, v−) for u, v ∈ F0
e , (5.8)
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and we get

(F0)ref = {

u : u± ∈ G(R±)
}

,

E ref(u, v) = 1

2
DR+

(u+, v+)+ 1

2
DR−

(u−, v−) for u, v ∈ (F0)ref . (5.9)

Note that the functions in (F0)ref may not be continuous at 0.
For any p+ > 0, p− > 0, let m̃0 be the measure on R defined by

m̃0(dx) = p+dx on (0, ∞), m̃0(dx) = p−dx on (−∞, 0), and m̃0({0}) = 0.

Then X0 can be regarded as an m̃0-symmetric diffusion on R0 whose Dirichlet form
(˜E0, ˜F0) on L2(R0, m̃0) is described as

˜F0
e = F0

e ,
˜E0(u, v) = p+

2
DR+

(u+, v+)+ p−

2
DR−

(u−, v−), u, v ∈ ˜F0
e ,

and accordingly,

(˜F0)ref = (F0)ref , and

˜E ref(u, v) = p+

2
DR+

(u+, v+)+ p−

2
DR−

(u−, v−) for u, v ∈ (˜F0)ref .

Let X∗ be the m0-symmetric extension of X0 to E∗ = R by Theorem 4.1, namely,
X∗ is constructed based on the entrance law {µt , t > 0} of X0 from 0 specified by

∞
∫

0

µt dt = m0. (5.10)

By Theorem 4.4, the Dirichlet form (E∗,F∗) of X∗ on L2(R; m0)(= L2(E0; m0)) is
given by

F∗
e = { f = f0 + c : f0 ∈ F0 c ∈ R} and E∗(u, v) = E ref(u, v) for u, v ∈ F∗

e .

(5.11)
In particular, we see from (5.11) that

every u ∈ F∗ is continuous at 0. (5.12)

We can conclude from (5.8), (5.9), (5.11) and (5.12) that

(F∗
e , E∗) = (G(R), 1

2 D).

Hence X∗ is nothing but the Brownian motion on R.

123



One-point extensions of Markov processes by darning 97

On the other hand, let ˜X∗ be the m̃-symmetric extension of X0 in Theorem 4.10:
namely, ˜X∗ is constructed based on the entrance law µ̃t from 0 specified by

∞
∫

0

µ̃t dt = m̃0.

From (5.10) and the above, we have the relation

µ̃+
t = p+µ+

t and µ̃−
t = p−µ−

t .

By Theorem 4.11(i), the Dirichlet form (˜E∗, ˜F∗) of ˜X∗ on L2(R; m̃0) is given by

˜F∗ = F∗ = H
1(R), and

˜E∗(u, v) = ˜E ref(u, v)= 1

2
p+DR+

(u+, v+)+ 1

2
p−DR−

(u−, v−) for u, v ∈ H
1(R).

(5.13)

Let A∗ be the infinitesimal generator of ˜X∗ on L2(R; m̃0). We then see from
Theorem 4.11(ii) and (5.3) that f ∈ D(˜A∗) if and only if

f ± ∈ D(LR±) with f (0−) = f (0+) and p− f ′(0−) = p+ f ′(0+) (5.14)

and A∗ f (x) = 1
2 f ′′(x), x ∈ E0. Here D(LR±) is defined by (5.2).

Recall that a real-valued process Y is called a skew Brownian motion on R with
parameter β ∈ (−1, 1) if

Yt = Y0 + Bt + βLt , t ≥ 0, (5.15)

where B is Brownian motion on R and L is the symmetric local time of Y at 0, i.e.,

Lt = lim
ε→0

1

2ε

t
∫

0

1{|Ys |≤ε}ds.

Theorem 5.1 The process ˜X∗ is a skew Brownian motion with parameter p+−p−
p++p− .

Proof Suppose Y is a skew Brownian motion on R with parameter β ∈ (−1, 1). Let
γ := 1

2 log 1+β
1−β and define

s(x) :=
{

e−γ x for x < 0,

eγ x for x ≥ 0.
and σ(y) :=

{

e−γ for y < 0,

eγ for y > 0.

It is proved in Harrison and Shepp [18] that Y is a skew Brownian motion of (5.15) if
and only if Z = s−1(Y ) is a continuous martingale with 〈Z〉t = ∫ t

0
1

σ(Zs )2
ds. Here s−1
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stands for the inverse function of s. Thus Z is the Brownian motion on R time-changed
by Revuz measure σ(x)2dx ; or equivalently, the Dirichlet form for Z is (DR,F) in
L2(R, σ (x)2dx). As Y = s(Z), we conclude that Y is σ(x)dx-symmetric on R and
its Dirichlet form (EY ,FY ) in L2(R, σ (x)dx) is given by

FY = F

EY (u, v) = 1

2
DR(u ◦ s, v ◦ s) = eγ

2
DR+

(u, v)+ e−γ

2
DR−

(u, v) for u, v ∈ F .

If we take e2γ = p+/p−, that is, take γ = 1
2 log p+

p− , then (p+, p−) = c (eγ , e−γ )
for some constant c > 0 and thus ˜X∗ has the same distribution as Y . Solve log 1+β

1−β =
2γ = log p+

p− for β, we have β = p+−p−
p++p− . This proves that ˜X∗ is skew Brownian

motion on R with parameter p+−p−
p++p− . 
�

Theorem 5.2 The local time L in (5.15) is the positive continuous additive functional
of X having Revuz measure (p+ + p−)δ0.

Proof In fact, one can derive another version of the Skorohod type equation (5.15)
for ˜X∗ readily from the expression (5.13) of its Dirichlet form (˜E∗, ˜F∗) by using a
decomposition theorem of strict additive functionals of ˜X∗ formulated in [12]. It is
clear that this Dirichlet form on L2(R; m̃) is a strongly local, recurrent and regular
one for which each one point of R has a positive capacity. Therefore the associated
m̃-symmetric diffusion ˜X∗ = (˜X∗

t ,
˜P∗

x ) on R is conservative and its transition proba-
bility is absolutely continuous with respect to m̃, so that general theorems in [12] are
applicable.

Consider the coordinate function η(x) = x on R. Then η ∈ ˜F∗
loc = H

1
loc(R) and

its energy measure µ〈η〉 admits the expression

µ〈η〉(dx) = p− IR−(x)dx + p+ IR+(x)dx,

which is exactly the same as the underlying measure m̃. Furthermore, we have

˜E∗(η, v) = p−
0
∫

−∞
v′(x)dx + p+

∞
∫

0

v′(x)dx = −(p+ − p−)v(0) for v ∈ C∞
0 (R).

Theorems 2.2 and 3.3 of [12] then lead us to the equation

˜X∗
t = ˜X∗

0 + Bt + (p+ − p−)�t , P∗
x − a.s., x ∈ R, (5.16)

where Bt is a Brownian motion with B0 = 0 and �t is the positive continuous addi-
tive functional of ˜X∗ with Revuz measure δ0. By the preceding theorem, we get the
relationship L = (p+ + p−)�. 
�
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(iii) One point skew extensions of X0 obtained by identifying multi-points
Choose any k − 1 points

−∞ < a1 < a2 < · · · < ak−1 < ∞

and let

I = R \ {a1, a2, . . . , ak−1} =
k
⋃

i=1

Ii ,

where

I1 = (−∞, a1), I j = (a j , a j+1), 1 ≤ j ≤ k − 1 Ik = (ak−1,∞).

We consider the case that

E0 = I, E∗ = I ∪ {a},

where E∗ is obtained from I by identifying the compact set K = ⋃k−1
i=1 {ai } as one

point a in the way described in Sect. 3. Measure m0 is the restriction of the Lebesgue
measure to I. The restrictions of functions and measures on I to the interval Ii will
be designated by using the superscript i .

Let X0 be the absorbed Brownian motion on I and p = (p1, p2, . . . , pk) be a
k-vector with positive entries. X0 is then symmetric with respect to the measure

m̃0 =
k
∑

i=1

pi mi
0,

so that we can construct its m̃0-symmetric extension ˜X∗ to E∗ according to Theorem
4.10. The Dirichlet form (˜E∗, ˜F∗) on L2(E∗; m̃0) of ˜X∗ then admits the description

˜F∗ = { f ∈ H
1(R) : f (a1) = f (a2) = · · · = f (ak−1)}, and

˜E∗( f, g) =
k
∑

i=1

1

2
pi DIi ( f i , gi ) for f, g ∈ ˜F∗. (5.17)

Let A∗ be the L2-infinitesimal generator of ˜X∗ on L2(R; m̃0). Then f ∈ D(˜A∗) if
and only if

f |Ii ∈ D(LIi ) for 1 ≤ i ≤ k with f (a1±) = f (a2±) = · · · = f (ak−1±),

and p1 f ′(a1+)+
k−1
∑

j=2

p j
(

f ′(a j−)− f ′(a j−1+)
)− pk f ′(ak−1−) = 0.

(5.18)
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Both (5.17) and (5.18) can be shown in the same way as in the previous cases by using
Theorem 4.11 and (5.3).

5.2 Diffusions on half lines merging at one point

First of all, we recall the absorbed diffusion X0 on the open half line I = (0,∞) with
generator (1.5) considered at the end of Sect. 1. Let (E0,F0) and (F0)ref , E ref) be the
Dirichlet form of X0 on L2(I ; m) and its reflected Dirichlet space, respectively. Note
that the latter is given by (1.7) and (1.8). We assume that the boundary 0 is regular but
∞ is non-regular. Then the former is given by (1.9), namely, f ∈ F0 if and only if
f ∈ (F0)ref

a and f (0+) = 0. Therefore, the condition (D.1) in Sect. 4 is satisfied for
K = {0}. The linear operator L is equal to (1.5) with the domain D(L) being given
by (1.10). Let us compute the flux N ( f ) for f ∈ D(L) defined by (4.22).

Lemma 5.3 We have

N ( f ) = −d f

ds
(0+) for f ∈ D(L).

Proof For f ∈ D(L), the integration by parts gives

x
∫

0

d f

ds

duα
ds

ds +
x
∫

0

d
d f

ds
uα = d f

ds
(x)uα(x)− d f

ds
(0+).

Since the left hand side converges to N ( f ) as x → ∞, the finite limit

c = lim
x→∞ uα(x) · d f

ds
(x)

exists and hence it suffices to prove c = 0.
Since ∞ is assumed to be non-regular, either m or s diverges near ∞. Suppose

m diverges near ∞. Then limx→∞ uα(x) = 0 because uα is non-increasing in x and
m-integrable. If c were not 0, then d f

ds diverges near ∞ violating the property that
f ∈ (F0)ref . Next suppose s diverges near ∞. Then the same property of f implies

lim
x→∞

d f

ds
(x) = 0 and we get c = 0. 
�

Keeping the above observation in mind, we now consider a finite number of disjoint
rays �i , i = 1, . . . , k, on R

2 merging at a point a ∈ R
2. Each ray �i is homeomorphic

to the open half line (0,∞) and the point a is the boundary of each ray at 0-side. We
put

E0 =
k
∑

i=1

�i , E = E0 ∪ {a}.

E is endowed with the induced topology as a subset of R
2.
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Let m be a positive Radon measure on E such that Supp[m] = E and m({a}) = 0.
The restriction of m to �i is denoted by mi . For any function g on E0, its restriction
to �i will be denoted by gi . We consider a diffusion process X0 = {X0

t , ζ
0, P0

x } on
E0 such that its restriction X0,i to each open half line �i ∼ (0,∞) is the absorbing
diffusion governed by the speed measure mi and a canonical scale, say si , which is
assumed to satisfy

si (0+) > −∞, 1 ≤ i ≤ k.

Since mi ((0, 1)) < ∞, 1 ≤ i ≤ k, 0 is a regular boundary for each X0,i , 1 ≤ i ≤ k.
As was explained in the last part of Sect. 1, each X0,i then satisfies condition (1.5).
We shall also assume that ∞ is non-regular for each X0,i , 1 ≤ i ≤ k.

Therefore X0 meets all conditions A.1, A.2, A.3 and A.4 imposed in [14, Theorem
4.1], which guarantees the construction by a darning of a unique m-symmetric diffusion
X on E with no sojourn nor killing at a extending X0 (here we are not a priori given a
process on E whose part on E0 is X0, so that Theorem 3.1 of Sect. 3 is not applicable
to X0).

Denote by (E0,i .F0,i ) the Dirichlet form of X0,i on L2(�i ; mi ) and by ((F0,i )ref ,

E ref,i ) the reflected Dirichlet space of F0,i , 1 ≤ i ≤ k. From (1.6) and (1.7), we then
have

(F0,i )ref = {v : v is absolutely continuous with respect to si and E ref,i (u, u) < ∞},

where

E ref,i (v, v) =
∞
∫

0

(

dv(x)

dsi (x)

)2

dsi (x), (5.19)

F0,i =
{

v ∈ (F0,i )ref ∩ L2((0,∞); mi ) : v(0+) = 0
}

(5.20)

and

E0,i (v1, v2) = E ref,i (v1, v2) for v1, v2 ∈ F0,i .

Now let (E,F) be the Dirichlet form on L2(E : m) of the extended diffusion X.
Since X0 has the properties (D.1), (D.2) of Sect. 4 with E0i = �i , 1 ≤ i ≤ k, we
have from (4.31) and (4.32)

F = { f = f0 + c uα : f i
0 ∈ F0,i , 1 ≤ i ≤ k, c ∈ R}(⊂ F ref)

E(u, v) =
k
∑

i=1

E ref,i (ui , vi ) for u, v ∈ F ,

where E ref,i and F0,i are specified by (5.19) and (5.20), respectively.
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The entrance law {µt , t > 0} from a for X is the sum of its restriction µi
t to �i

which is describable as

µi
t ( f )dt = P0,i

f · mi

(

X0,i
ζ 0,i − = 0 and ζ 0,i ∈ dt

)

. (5.21)

We next choose any k-vector p = (p1, . . . , pk) with positive entries and define a
new measure m̃ on E0 by

m̃i = pi m
i 1 ≤ i ≤ k,

which is extended to E by setting m̃({a}) = 0. Since X0 is also m̃-symmetric, we
can construct a unique m̃-symmetric diffusion ˜X on E with no sojourn nor killing
at a which extends X0. By virtue of Theorem 4.11(i), the Dirichlet form (˜E, ˜F) on
L2(E; m̃) of ˜X can be described as follows:

˜F = F =
{

f = f0 + c uα : f i
0 ∈ F0,i for 1 ≤ i ≤ k, and c ∈ R

}

,

˜Fe = Fe =
{

f = f0 + c ϕ : f i
0 ∈ F0,i

e for 1 ≤ i ≤ k, and c ∈ R

}

,

˜E(u, v) =
k
∑

i=1

pi E ref,i (ui , vi ) for u, v ∈ ˜Fe.

Observe that f0 and uα are ˜Eα-orthogonal for each α > 0, and f0 and ϕ are
˜E-orthogonal.

Let ˜A be the L2(E; m̃0)-infinitesimal generator of ˜X .Combining Theorem 4.11(ii)
with (1.10), (1.12) and Lemma 5.3, we can see that f ∈ D(˜A) if and only if the
following conditions are satisfied:

f i ∈ (F0,i )ref
a ,

d f i

dsi
is absolutely continuous with respect to mi ,

Li f i = d

dmi

d

dsi
f i ∈ L2(�i ; mi ), 1 ≤ i ≤ k, (5.22)

−∞ < f 1(0+) = · · · = f k(0+) < ∞,

k
∑

i=1

pi
d f i

dsi
(0+) = 0. (5.23)

We have in this case

˜A f (x) = Li f i (x), if x ∈ �i , 1 ≤ i ≤ k.

The entrance law {µ̃t , t > 0} from a for ˜X is given by

µ̃i
t = piµ

i
t , 1 ≤ i ≤ k,

where {µi
t , t > 0} is given by (5.21).

123



One-point extensions of Markov processes by darning 103

Clearly the example in Sect. 5.1 may be considered as a special case of the present
one with k = 2 and E = R.

5.3 Multidimensional Brownian motions

Let E be an open subset of the Euclidean n-space R
n and K be a compact subset of

E . We let E0 = E \ K . We consider the absorbed Brownian motions X and X0 on E
and E0, respectively. They are symmetric with respect to the Lebesgue measure and
X0 is the part process of X on E0.

We assume that K is non-polar. Then clearly X and X0 satisfy all conditions in
Theorem 4.1 and hence a unique m0-symmetric diffusion X∗ extending X0 to E∗ =
E0 ∪{a} can be constructed by darning the hole K .Here E∗ is the one-point extension
of E0 by regarding the set K as a one point a and m0 is the Lebesgue measure on E0
extended to E by setting m0({a}) = 0.

We consider the space

G(E0) =
{

u ∈ L1
loc(E0) : ∂u

∂xi
∈ L2(E0), 1 ≤ i ≤ n

}

and define

D(u, v) =
∫

E0

∇u(x) · ∇v(x)dx, u, v ∈ G(E0).

The completion of C∞
0 (E0) in (G(E0),D) is denoted by H

1
0,e(E0). We further let

H
1(E0) = G ∩ L2(E0), H

1
0 = H

1
0,e(E0) ∩ L2(E0).

Then the Dirichlet form of X0 on L2(E0) equals ( 1
2 D,H1

0(E0)). The extended and
reflected Dirichlet spaces of the latter are (H1

0,e(E0),
1
2 D) and (G(E0),

1
2 D), respec-

tively (cf. [3]).
We denote by ϕ and uα the hitting probability and α-order hitting probability of the

set K for X, respectively. In terms of the Brownian motion on R
n, they are the hitting

and α-order hitting probabilities of K before leaving the set E . The linear operator L
on L2(E0) specified by (4.19) and the flux N ( f ) specified by (4.20) are

L = 1
2� with D(L) =

{

f ∈ H
1(E0) : � f ∈ L2(E0)

}

,

N ( f ) = 1
2 D( f, uα)+ 1

2
(� f, uα) for f ∈ D(L).
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By Theorem 4.4, the Dirichlet form (E∗,F∗) of X∗ on L2(E∗; m0) and its extended
Dirichlet space F∗

e can be expressed as follows:

F∗ = { f = f0 + cuα : f0 ∈ H
1
0(E0), c ∈ R} (⊂ H

1(E0)),

F∗
e = { f = f0 + cϕ : f0 ∈ H

1
0,e(E0), c ∈ R} (⊂ G(E0)),

E∗(u, v) = 1

2
D(u, v) for u, v ∈ F∗

e .

We know that uα (resp. ϕ) is E∗
α (resp. E∗)-orthogonal to the space H

1
0(E0)( resp.

H
1
0,e(E0)). By Theorem 4.8, the generator A∗ of X∗ on L2(E∗; m0) can be character-

ized as

f ∈ D(A∗) ⇐⇒ f ∈ D(L), f admits X0-fine limit at a and N ( f ) = 0.

A∗ f = 1

2
�, f ∈ D(A∗).

Note that (E∗,F∗) is a quasi-regular Dirichlet form on L2(E∗; m0) but not a regular
Dirichlet form unless every point of ∂K is a regular boundary point of E0 with respect
to the Dirichlet problem for (α − 1

2�) on E0. Therefore we can not construct X∗ by
using the theory of the regular Dirichlet form in general.

We next consider the case where the closed set K is the complement of a bounded
open set E0 ⊂ R

n . In this case, E∗ = E0 ∪ {a} is just the one-point compactification
of E0. The symmetric diffusion X∗ extending the absorbed Brownian motion X0 =
(X0

t , ζ
0,P0

x ) on E0 to E∗ has the Dirichlet form (E∗,F∗) on L2(E∗; m0) expressible
as

F∗ = H
1
0(E0)+ {

constant functions on E∗} ,

E∗(w1, w2) = 1

2
D( f1, f2) for wi = fi + ci with fi ∈ H

1
0(E0) and ci ∈R, i =1, 2,

which is a regular, strongly local and irreducible recurrent Dirichlet form as has been
studied in [14, Sect. 3]. Hence we can construct the symmetric diffusion X∗ on E∗ by
a direct use of the Dirichlet form theory in this case. The L2-generator of X∗ can be
characterized exactly in the same way as the preceding case. However, on account of
Lemma 4.9, the flux N ( f ) taking part in the lateral condition now has the expression

N ( f ) = 1

2

∫

E0

� f (x)dx, f ∈ D(L),

which can be rewritten by the Green–Gauss formula as

− lim
j→∞

1

2

∫

∂D j

∇ f (ξ) · nj(ξ)σ j (dξ)
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provided that f ∈ C1
b(E0),where {D j , j ≥ 1} is a sequence of open sets with smooth

boundaries that increases to E0, nj, and σ j denote the inward normal vector and the
surface element for the surface ∂D j of D j . In this sense, N ( f )may be interpreted as
the flux of the vector field ∇ f at a or into K .

Suppose E0 is the union of a finite number of disjoint bounded open sets
E01, . . . , E0k .We choose any k-vector p = (p1, . . . , pk) and define a measure m̃0 on
E0 by

m̃0 =
k
∑

i=1

pi · m0i ,

where m0i denotes the restriction of the Lebesgue measure to E0i . We extend m̃0 to
E∗ by setting m̃0({a}) = 0. Then X0 is still symmetric with respect to m̃0 and we can
construct a unique m̃0-symmetric diffusion ˜X∗ extending X0 to E∗ either by darning
the hole K or by using the corresponding Dirichlet form. The entrance law µ̃t taking
part of the darning admits the expression

µ̃t (B)dt =
k
∑

i=1

pi

∫

B∩E0i

P0
x (ζ

0 ∈ dt)dx, B ∈ B(E0)

in view of (4.3) and (4.20).

5.4 Multidimensional censored stable processes

In this section, we consider a case where X0 is of pure jump type and admits no
killings inside E0. A typical example of such a process is a censored stable process
on an Euclidean open set studied in [2].

Let D be an open n-set in R
n , that is, there exists a constant C1 > 0 such that

m(B(x, r)) ≥ C1 rn for all x ∈ D and 0 < r ≤ 1.

Here m is the Lebesgue measure on R
n , B(x, r) := {y ∈ R

n : |x − y| < r} and | · |
is the Euclidean metric in R

n . Note that bounded Lipschitz domains in R
n are open

n-set and any open n-set with a closed subset having zero Lebesgue measure removed
is still an n-set. Fix 0 < α < 2 and an n-set D (which can be disconnected) in R

n .
Define

Wα/2, 2(D) :=
⎧

⎨

⎩

u ∈ L2(D; dx) :
∫

D×D

(u(x)− u(y))2

|x − y|n+α dxdy < ∞
⎫

⎬

⎭

,

E(u, v) := An,α

∫

D×D

(u(x)− u(y))(v(x)− v(y))

|x − y|n+α dxdy for u, v ∈ F ,
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with An,α = α2α−1�( α+n
2 )

πn/2�(1− α
2 )
.When D = R

n, (E,Wα/2, 2(Rn)) is just the Dirichlet form

on L2(Rn, dx) of the symmetric α-stable process on R
n .

We refer the reader to [2] for the following facts. The bilinear form (E,Wα/2, 2(D))
is a regular irreducible Dirichlet form on L2(D; 1D(x)dx) and the associated Hunt
process X on D may be called a reflected α-stable process. It is shown in [9] that X has
Hölder continuous transition density functions with respect to the Lebesgue measure
dx on D and therefore X can be refined to start from every point in D. X admits no
killing inside D. Further, X admits no jump from D to ∂D nor from ∂D to ∂D.

The subprocess X0 = (X0
t ,P0

x , ζ
0) of X killed upon hitting ∂D is called the

censored α-stable process in D, which has been studied in details in [2]. The process
X0 is symmetric with respect to the Lebesgue measure and its Dirichlet form on
L2(D, dx) is given by (E,Wα/2, 2

0 (D)), where Wα/2, 2
0 (D) is the closure of C∞

c (D) in
F with respect to E1 := E+(·, ·)L2(D,dx). Note that the censored stable process X0 has

no killings inside D. The extended Dirichlet form of X0 is given by (E,Wα/2, 2
0,e (D)),

where Wα/2, 2
0,e (D) is the E-closure of C∞

c (R
n).

Let τD := inf{t > 0 : Xt /∈ D}. Note that for β > 0, uβ(x) := Ex
[

e−βτD
]

is a β-harmonic function of X0 and so it is continuous on D (see [2, (3.8)]). Any
bounded measurable function f on D is extended to D by defining f (x) = 0 on ∂D.
By [9], Gα f (x) := Ex

[∫∞
0 e−βt f (Xt )dt

]

is a continuous function on D. Applying
strong Markov property of X at its first exit time τD from D, we have for G0

β f (x) :=
Ex
[∫ τD

0 e−βt f (Xt )dt
]

,

G0
β f (x) = Gβ f (x)− Ex

[

e−βτD Gβ f (XτD )
]

for x ∈ D.

Since x �→ Ex
[

e−βτD Gβ f (XτD )
]

is a β-harmonic function of X0 and thus it is
continuous on D, we conclude that G0

β f is continuous on D. Hence the condition

(C.2) in Sect. 3 is always satisfied for censored α-stable process X0 in any open n-set
D. In view of [13, Sect. 5.3], a Lévy system of X0 is given by (N (x, dy), dt) with

N (x, dy) = 2An,α |x − y|−(n+α)dy

and the condition (C.3) of Sect. 3 is clearly satisfied.
Note that if D1 is an open subset of D, then X and its subprocess killed upon leaving

D1 have the same class of m-polar sets in D1. If a closed set � ⊂ ∂D Hausdorff
measure when n ≥ 2 and is non-empty when n = 1, then by [2, Theorem 2.5 and
Remark 2.2(i)]

ϕ�(x) := Px (σ� < σ∂D\�) > 0, for every x ∈ D (5.24)

if and only if α > n − d when n ≥ 2 and α > 1 when n = 1.
In the following D ⊂ R

n is a proper open n-set, � is a closed subset of ∂D that
satisfies the Hausdorff dimensional condition preceding (5.24) with α > n − d when
n ≥ 2 and α > 1 when n = 1. Let D∗ = D ∪ {a} be the topological space obtained
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from D ∪ � by regarding � as the one point {a} in the way prescribed in Sect. 3. We
consider the extensions of the censored stable process X0 to D∗ in the following three
cases separately.

(i) D is an open n-set, � = ∂D, ∂D is compact, and α ∈ (n − d, n). When
D is bounded, D∗ is just the one point compactification of D. We now apply
Theorem 4.1 to the case that E = D, K = ∂D. By the above mentioned
properties of the reflected stable process X on D, it clearly satisfies conditions
(B.1), (B.3) and (B.5) of Sect. 3. Since ∂D is compact, the first half of (B.2)
is also clear. Note that ϕ(x) := ϕ∂D(x) = 1 on D with D is bounded, and
0 < p∂D < 1 on D when D is unbounded with compact boundary. Hence
the second half of (B.2) is also satisfied. By Theorem 4.1, we can construct
a unique symmetric extension X∗ on D∗ of X0 by darning the hole ∂D. Let
u1 := Ex

[

e−τD
]

. It follows from Theorem 4.4 that the Dirichlet form (˜E, ˜F)
and its extended Dirichlet form (˜E, ˜Fe) is given by

˜F =
{

f = f0 + cu1 : f0 ∈ Wα/2, 2
0 (D) and c ∈ R

}

,

˜Fe =
{

f = f0 + c : f0 ∈ Wα/2, 2
0,e (D) and c ∈ R

}

,

˜E( f, g) = An,α

∫

D×D

( f (x)− f (y))(g(x)− g(y))

|x − y|n+α dxdy for f, g ∈ ˜Fe,

(ii) D is an n-open set having disconnected boundary ∂D. A prototype is a bounded
domain D with one or several holes in its interior. Suppose that ∂D = � ∪�2,
where � and �2 are non-trivial disjoint open subsets of ∂D, with � being
compact and satisfying the Hausdorff dimensional condition preceding (5.24)
and α ∈ (n −d, n). In this case, 0 < ϕ�(x) ≤ 1 for x ∈ D. We apply Theorem
4.1 to the case that E = D ∪�, K = �. Let X (1) be the subprocess of X killed
upon hitting �2. X (1) lives on the state space D ∪ � and X0 can be regarded
as its part process on D. Since the Dirichlet form of X (1) is regular as the part
of the regular Dirichlet form of X on the open set D \ �2 (cf. [13, Sect. 4.4]),
X (1) satisfies condition (B.5) of Sect. 3. In fact, the Dirichlet form of X (1) is
given by (E,Wα/2, 2

�2
(D)), where

Wα/2, 2
�2

(D) :=
{

u ∈ Wα/2, 2(D) : u = 0 E-q.e. on �2

}

= C∞
c (D \ �2).

Other conditions of Theorem 4.1 are also readily verifiable for X (1) as in
the case of (i). Hence we can obtain the unique symmetric extension X∗ on
D∗ of X0 by darning the hole �. Let ϕ(x) := ϕ� = Px

(

σ� < σ�2

)

and
u1(x) := Ex

[

e−σ� ; σ� < σ�2

]

. It follows from Theorem 4.4 that the Dirichlet
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form (˜E, ˜F) and its extended Dirichlet form (˜E, ˜Fe) is given by

˜F =
{

f = f0 + cu1 : f0 ∈ Wα/2, 2
0 (D) and c ∈ R

}

,

˜Fe =
{

f = f0 + cϕ : f0 ∈ Wα/2, 2
0,e (D) and c ∈ R

}

,

˜E( f, g) = An,α

∫

D×D

( f (x)− f (y))(g(x)− g(y))

|x − y|n+α dxdy for f, g ∈ ˜Fe,

(iii) α > 1 = n, D = (0,∞) and � = {0}. In this case ϕ(x) = ϕ�(x) = 1.
D∗ = [0,∞). Just as in (i), X∗ can be constructed from X0 by darning the
hole {0} and X∗ coincides with the reflected stable process X on [0,∞) we
started with. This can be seen as follows. Let u1(x) = Ex

[

e−σ0
]

. It follows
from Theorem 4.4 that the Dirichlet form (˜E, ˜F) and its extended Dirichlet
form (˜E, ˜Fe) is given by

˜F =
{

f = f0 + cu1 : f0 ∈ Wα/2, 2
0 (D) and c ∈ R

}

= Wα/2, 2(D),

˜Fe =
{

f = f0 + c : f0 ∈ Wα/2, 2
0,e (D) and c ∈ R

}

=

⎧

⎪

⎨

⎪

⎩

f ∈ L1
loc(R) :

∫

R+×R+

( f (x)− f (y))2

|x − y|1+α dxdy < ∞

⎫

⎪

⎬

⎪

⎭

˜E( f, g) = An,α

∫

R+×R+

( f (x)− f (y))(g(x)−g(y))

|x − y|n+α dxdy for f, g ∈ ˜Fe,

Note that given an open n-set with disconnected boundary, extensions in case (i)
and (ii) can be different. For example for D = {x ∈ R

n : 1 < |x | < 2} with
� := {x ∈ R

n : |x | = 1}, the extension process X∗ in case (ii) is transient and
gets “birth” only when X0 approaches �, while in case (i), the extension process is
conservative and gets “birth” when X0 approaches ∂D.

5.5 Multidimensional non-symmetric diffusions

In this subsection, we apply Theorem 3.1 to give an example of one-point extensions
of non-symmetric diffusions in Euclidean domains. This example is mentioned in
Sect. 6.2 of [8], where it is promised that details will be given somewhere else.

Let D be a proper domain in R
n and m be the Lebesgue measure on D. Assume

that ∂D is bounded and regular for Brownian motion, or, equivalently, for 1
2�. Let

L = 1

2
∇ · (a∇)+ b · ∇ + q

= 1

2

n
∑

i, j=1

∂

∂xi

(

ai j
∂

∂x j

)

+
n
∑

i=1

bi
∂

∂xi
+ q,
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where a : R
n → R

d ⊗R
n is a measurable, symmetric (n ×n)-matrix-valued function

which satisfies the uniform elliptic condition

λ−1 In×n ≤ a(·) ≤ λIn×n

for some λ ≥ 1, b = (b1, . . . , bn) : R
n → R

n are measurable functions which
could be singular such that |b|2 ∈ K(Rn) and q is a non-positive measurable function
in K(Rn) vanishing in a neighborhood of ∂D. Here K(Rn) denotes the Kato class
functions on R

n . We refer the reader to [10] for its definition. We only mention here
that L p(Rn, dx) ⊂ K(Rn) for p > n/2.

Let q̂ =: q +∑n
i=1

∂bi
∂xi

. We assume that q̂ satisfies the condition that

q̂ ∈ K(Rn), q̂ ≤ 0 on R
n and q̂ = 0 in a neighborhood of ∂D.

Under the above condition, the Dirichlet form (E,F) generated by (C∞
c (R

n),L) is
regular on R

n and satisfies the (generalized) sector condition. Let X be the diffusion
in R

n associated with (E,F), which can start from every point in R
n (see [10]). It is

clear that X has a weak dual diffusion ̂X in R
n with respect to the Lebesgue measure

m on R
n whose generator is

̂L = 1

2

n
∑

i, j=1

∂

∂xi

(

ai j
∂

∂x j

)

−
n
∑

i=1

bi
∂

∂xi
+ q̂,

the dual operator of L on R
n . As (F , E) satisfies the sector condition, it follows from

[27] that every semi-polar is m-polar for X ; that is, the condition (B.4) of Sect. 3 is
satisfied.

Let X0 and ˜X0 be the subprocess of X and ̂X , respectively, killed upon leaving D.
Let � be a closed subset of ∂D that is non-polar with respect to X and ̂X . Let

D∗ = D ∪ {a} be the topological space obtained from D ∪ � by identifying � as the
one-point {a} in a way described in §3. See §5.4 for three possible scenario for �.

Observe that conditions (B.1), (B.2), (B.3) and (B.5) as well as their dual conditions
of Sect. 3 are trivially satisfied. The conditions (C.2), (C.4) and their dual ones of Sect. 3
are satisfied by [10, Lemma 5.7 and Theorem 5.11]. Thus we can apply Theorem 3.1
to get a weak duality preserving diffusion extension X∗ of X0 to D∗ := D ∪ {a}.
Acknowledgments We thank the anonymous referee for helpful comments on this paper.

6 Appendix: inside killings allowed

Let E be a locally compact separable metric space and E� be its one point compacti-
fication. When E is compact,� is added as an isolated point. Fix a non-isolated point
a ∈ E and put E0 = E \{a}.Let m0 be a σ -finite measure on E0 with Supp[m0] = E0.

The measure m0 is extended to a measure m on E by setting m({a}) = 0.
When studying the one-point extension of a pair of Markov processes X0 and ̂X0 on

E0 in weak duality, it is assumed in Sects. 4 and 5 of Chen–Fukushima–Ying [8] that
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110 Z.-Q. Chen, M. Fukushima

X0 and ̂X0 admit no killings inside E0. In fact this condition can be much weakened.
In this Appendix, we indicate how the results in [8] can be extended to allow killings of
X0 and ̂X0 inside E0 and what modifications should be made to allow this extension,
which broadens the applicability of [8] considerably.

First, we note that results Sects. 2 and 3 of [8] hold for a pair of processes in weak
duality, which may have killings inside E0. We also note that results in [7] hold without
no killings assumption.

In Sect. 4 of [8], it is assumed that X0 and ̂X0 admits no killings inside E0. But this
assumption can be dropped as follows. Replace the condition (A.2) in [8, Sect. 4] by
(A.2)′ X0 and ̂X0 are approachable to {a}:

P0
x

(

ζ 0<∞, X0
ζ 0− =a

)

> 0 and ̂P0
x

(

̂ζ 0<∞, ̂X0
̂ζ 0− =a

)

> 0 for every x ∈ E0,

(6.1)
Here for a Borel set B ⊂ E , the notation “X0

ζ 0− ∈ B” means that the left limit of X0
t

at t = ζ 0 exists under the topology of E and takes values in B ⊂ E .We use the same
convention for ̂X .

However we need to add the following condition (5) to the list of conditions (1)–(4)
for extension process X and ̂X appeared before Proposition 4.1 in [8].
(5) X and ̂X admit no jumps from E0 to a.

When X0 and ̂X0 have no killings inside E0, condition (5) is a consequence of the
assumptions, as is proved in Proposition 4.1(ii) of [8]. When we allow X0 and ̂X0

to have killings inside E0, we have to impose (5). In this case, we remove (ii) from
Proposition 4.2 of [8].

We can also weaken the assumption that “X0 and ̂X0 admit no killings inside
E0” in Sect. 5 of [8]. Below are the change of the condition we can make and the
corresponding modifications of the definition and statement we need to make.

Replace condition (A.2) of [8, Sect. 5] by
(A.2a)] X0 and ̂X0 satisfy, for every x ∈ E0,

P0
x

(

ζ 0 < ∞, X0
ζ 0− = a

)

> 0,

P0
x

(

ζ 0 < ∞, X0
ζ 0− ∈ {a} ∪ (E� \ U0)

)

= P0
x (ζ

0 < ∞), (6.2)

̂P0
x

(

̂ζ 0 < ∞, ̂X0
̂ζ 0− = a

)

> 0,

̂P0
x

(

̂ζ 0 < ∞, ̂X0
̂ζ 0− ∈ {a} ∪ (E� \ U0)

)

=̂P0
x (
̂ζ 0 < ∞), (6.3)

for some neighborhood U0 of a in E .
Here, as in Sect. 4 of [8], for a Borel set B ⊂ E�, the notation “X0

ζ 0− ∈ B” means that

the left limit of t �→ X0
t at t = ζ 0 exists under the topology of E� and takes values in B.

Accordingly we need to replace the definition of the spaces W in (5.11) and Wa in
(5.23) of [8] by
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W =
{

w ∈ W ′ : if ζ(w) < ∞ then w(ζ(w)−) := lim
t↑ζ(ω) w(t) ∈ {a} ∪ (E� \ U0)

}

,

(6.4)
and

Wa = {w : a cadlag function from [0, ζ(w)) to E for some ζ(w) ∈ (0,∞]
with w(0) = a, w(t) ∈ E0 for t ∈ (0, ζ(w)) and w(ζ(w)−)
∈ {a} ∪ (E� \ U0) if ζ(w) < ∞}, (6.5)

respectively.
We also need to replace Theorem 5.15(i) of [8] by the following statement:

(i) X is a right process on E . Its sample path {Xt , 0 ≤ t < ζ } is cadlag on [0,∞),
continuous when Xt = a and satisfies

Xζ− ∈ {a} ∪ (E� \ U0) when ζ < ∞

and it admits no jumps from E0 into a.

According to the above change of the condition, we replace the inclusion (5.22) of
[8] by

{

ζ < ∞, w(ζ−) ∈ E� \ U0
} ⊂ {τU < ζ }

holding for a neighborhood U of a with U ⊂ U0, and then the proof of Lemma 5.5
of [8] goes through. The same modification of the proof works for Lemma 5.11 of
[8]. All other arguments in Sect. 5 of [8] leading to Theorem 5.15 remain true with no
change.

The condition (A.2)′ preceding Theorem 5.17 of [8] can be also replaced by the
following weaker condition:
(A.2a)′ For every x ∈ E0,

P0
x

(

ζ 0 < ∞, X0
ζ 0− = a

)

> 0, P0
x

(

X0
ζ 0− ∈ {a} ∪ (E� \ U0)

)

= 1, (6.6)

̂P0
x

(

̂ζ 0 < ∞, ̂X0
̂ζ 0− = a

)

> 0, ̂P0
x

(

̂X0
̂ζ 0− ∈ {a} ∪ (E� \ U0)

)

= 1. (6.7)
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19. Itô, K.: Poisson point processes and their application to Markov processes, Lecture note of Mathematics

Department, Kyoto University (unpublished), September 1969
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