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Abstract
The purpose of this paper is to give an affirmative answer at infinitesimal generator level

to the 40 years old Feller’s boundary problem for symmetric Markov processes with general
quasi-closed boundaries. For this, we introduce a new notion of flux functional, which can be
intrinsically defined via the minimal process X0 in the interior. We then use it to characterize
the L2-infinitesimal generator of a symmetric process that extends X0. Special attention is paid
to the case when the boundary consists of countable many points possessing no accumulation
points.
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1 Introduction

Let E be a Lusin space and m a σ-finite measure on it. Throughout this paper, we let X be an
irreducible m-symmetric right process on E, F be a non-m-polar, quasi-closed subset of E and X0

be the subprocess of X killed upon leaving E0 := E \ F . The subprocess X0 is then symmetric
with respect to the measure m0 := m|E0 . We assume that

X admits no jumps from E0 to F. (1.1)

One can view X as a general symmetric extension of X0 from E0 to E = E0∪F . A natural question
then arises:

How can we characterize X through quantities that are intrinsic to X0? (1.2)
∗The research of this author is supported in part by NSF Grant DMS-0600206.
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This question belongs to the boundary problem of Markov processes, dating back to W. Feller [9]
where the problem was raised after his discovery of the most general boundary conditions for the
one-dimensional diffusions [8]. We studied this problem (1.2) in [3] at the infinitesimal generator
level when F is a single point and in [4] at the resolvent level when F is a countable set. In
particular, in Section 4 of [3], we have answered question (1.2) in the special case that F consists of
only one point a by characterizing the L2-generator of X by means of a lateral condition described
in terms of flux of X0 at the point a. We have seen in [3, §4] that the results in [5] enable us to define
the notion of the flux using the reflected Dirichlet space of X0, which is intrinsically determined by
X0 under the condition (1.1).

The aim of the present paper is to give an answer to question (1.2) at the generator level for the
general case where F is a quasi-closed set. In describing the lateral condition on the L2-generator
A of X, we will introduce a new notion of the flux functional defined in terms of the reflected
Dirichlet space of X0.

In §2 and §3 of this paper, notions of reflected and active reflected Dirichlet spaces for X0 will
be reviewed and their relations to the Dirichlet space of X will be investigated by reformulating
and further extending the related results in [5] and [16]. In particular, we shall present an explicit
description of the orthogonal decomposition of the active reflected Dirichlet space with respect to
the α-order form.

In §4, we shall formulate lateral conditions involving the flux functional to characterize the
domain D(A) of the L2-generator of X. They only involve the quantities intrinsic to X0, the
restrictions to F of jumping and killing measures of X and the restriction CF of a core C of (F , E)
to F . We shall show in §5 that, when F is a a countable set so that each point in F can be separated
from the rest of points in F by a quasi-open set, we can take as CF the space of functions on F
with finite support, making the lateral conditions to characterize A completely intrinsic.

Two examples of the multidimensional Brownian motion are given in section 6 to show that the
notion of flux introduced in this paper is a genuine extension of the classical one.

We remark here that in [4] we have given an answer to (1.2) at the resolvent level for a Markov
process X having a weak dual X̂ and for a countable F. Indeed, we have represented in [4, §2]
the resolvent of X explicitly in terms of the Feller measures of X0 (typical intrinsic quantities for
X0) and conversely constructed in [4, §3] a duality preserving extensions of X0 and its dual by a
method of darning countable holes. When X0 is symmetric, the constructed process is symmetric
and we can apply to the latter the present characterization of its L2-generator in terms of the flux.
See [4, §4.1] for such an example of the extension.

In sections 4 and 5 of [3], one point skew extensions of X0 are formulated and examined by chang-
ing the symmetrizing measure m0 by multiplying a different positive constant on each irreducible
component of X0. An the end of section 6 of the present paper, we shall apply our characterization
in terms of the flux functional of section 4 to a skew extension X of a one-dimensional absorbed
Brownian motion X0 on R \ F where F is a countable set possessing an accumulation point. The
countably many point skew extension X will also be constructed from the one-dimensional Brow-
nian motion by repeating the one-point skew darning discussed in [3, §4].
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2 Reflected Dirichlet space of X0

Let (E ,F) be the Dirichlet form on L2(E,m) associated with the symmetric right process X sat-
isfying the conditions stated in §1. Then (E ,F) is irreducible and quasi-regular. In view of the
quasi-homeomorphism method in [6], without loss of generality, we may and do assume that E is
a locally compact separable metric space, m is a positive Radon measure on E with supp[m] = E,
(E ,F) is an irreducible regular symmetric Dirichlet form in L2(E,m), and X = (Xt,Px, ζ) is an
m-symmetric Hunt process associated with (E ,F). We will use (E ,Fe) to denote the extended
Dirichlet space of (E ,F) and E1 := E + (· , ·)L2(E,m). The expectation with respect to the proba-
bility measure Px will be denoted as Ex. Throughout this paper, we use the convention that any
function defined on E is extended to E∂ := E ∪ {∂} by taking value 0 at the cemetery point ∂.

For reader’s convenience, let’s recall the following definitions from [15] and [11].

Definition 2.1 (i)An increasing sequence of closed sets {Fn}n≥1 of E is an E-nest if and only if
∪n≥1FFn is E1-dense in F , where E1 = E + ( , )L2(E,m) and

FFn := {u ∈ F : u = 0 m-a.e. on E \ Fn.

(ii) A subset N ⊂ E is E-polar if and only if there is an E-nest {Fn}n≥1 such that N ⊂ ∩n≥1(E\Fn).

(iii) A function f on E is said E-quasi-continuous if there is an E-nest {Fn}n≥1 such that f |Fn is
continuous on Fn for each n ≥ 1, which is denoted in abbreviation by f ∈ C({Fn}).

(iv) A statement depending on x ∈ A is said to hold E-quasi-everywhere (E-q.e. in abbreviation)
on A if there is an E-polar set N ⊂ A such that the statement is true for every x ∈ A \ N .

(v) A subset A ⊂ E is said to be quasi-open (quasi-closed) if there is an E–nest {Fk}k≥1 such that
Fk ∩ A is relatively open (relatively closed, respectively) in Fk for each k ≥ 1.

It is known (cf. [11] that a set A ⊂ E is E-polar if and only of Cap(A) = 0, where Cap is
the 1-capacity associated with the Dirichlet form (E ,F). It is also known that It is known that
every element u in Fe admits a quasi-continuous version. We assume throughout this section that
functions in Fe are always represented by their quasi-continuous versions. In the sequel, the abbre-
viations CAF, PCAF and MAF stands for “continuous additive functional”, “positive continuous
additive functional” and “martingale additive functional”, respectively, whose definitions can be
found in [11].

Since the quasi-closedness is invariant under the quasi-homeomorphism, we may further assume
that the set F is a quasi-closed subset of E having positive 1-capacity with respect to (E ,F) and
satisfying condition (1.1). Put E0 = E \ F and let X0 = (X0

t ,P0
x, ζ0) be the subprocess of X

killed upon leaving E0, which is known to be an m0-symmetric special standard Markov process
on E0, where m0 := m|E0 . The Dirichlet form of X0 on L2(E0;m0) is denoted by (E0,F0) which
is described as

F0 = {u ∈ F : u = 0 q.e. on F} and E0 = E
∣∣
F0×F0 .

This Dirichlet form (E0,F0) is known to be quasi-regular and transient ([5, Lemma 2.2]). When
restricted on E0, the E0-notions coincide with E-notions. For example, a set A ⊂ E0 is E-polar if
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and only if it is E0-polar. See [5, Lemma 2.2] for details. In the sequel, for simplicity, we will drop
the prefix “E-” or “E0-” from E-q.e. or E0-q.e., etc., when it is clear from the context.

One can view X as a most general symmetric extension of X0. To characterize the L2-generator
of X in terms of the quantities intrinsic to X0, it is useful to consider a universal extension of
(E0,F0) called the reflected Dirichlet space.

The notion of the reflected Dirichlet space of a transient regular Dirichlet space F0 was first
introduced by M. L. Silverstein in [16] and [17] in two different ways, which were later on made
precise and shown to be equivalent in [2] by the first author of the present paper. The first way is
to add to F0 the space of all harmonic functions on E0 having finite Dirichlet integrals by using
the equilibrium measures ([17] and [2]) or the energy functional ([5] and [3]), while the second way
is to consider the space of all functions on E0 with finite Dirichlet integrals by using the energy
measures of u ∈ Floc (see [16] and [2]). Note that the results in [2] and [16]-[17] are applicable here
for our quasi-regular Dirichlet form (E ,F0) due to its quasi-homeomorphism (see [6]) to a transient
regular Dirichlet form on a locally compact metric space.

We now recall the definitions, with some improvements over those in [5] and [3]. In particular,
we will not apply a quasi-homeomorphism to X0 and (E0,F0) rendering them into a Hunt process
and a regular Dirichlet form as we have done in [3].

We first introduce some notions related to the standard process X0 = {X0
t ,P0

x, ζ0} on E0.
We will use the convention that X0

∞ = ∂ and any function f on E0 is extended to E0 ∪ {∂} by
setting f(∂) = 0. Let (Ω, {G0

t }0≤t≤∞) be the filtered sample space of X0 where G0
∞ (resp. G0

t ) is
the σ-algebra generated by {X0

s : 0 ≤ s < ∞} (resp. {X0
s : 0 ≤ s ≤ t}.) For a probability measure

µ on E0 ∪ ∂, we denote by Gµ
∞ (resp. Gµ

t ) the P0
µ-completion of G0

∞ (resp. G0
t in Gµ

∞,)
A nearly Borel set A ⊂ E0 is called X0-invariant if P0

x(ΩA) = 1 for every x ∈ A, where

ΩA =
{
ω ∈ Ω : X0

t (ω) ∈ A and X0
t−(ω) ∈ A for every t ∈ [0, ζ0)

}
.

Then the restriction X0|A defined in a natural way is a standard process on A. The minimum
augmented admissible filtration {GA

t }0≤t≤∞ for this standard process can be described as follows
(cf.[11]):

GA
t =

⋂
µ∈P(A∂)

Gµ
t ∩ ΩA, 0 ≤ t ≤ ∞,

where P(A∂) denotes the family of all probability measures carried by A∂ := A ∪ {∂}. When
A = E0, we write Gt for GE0

t .
We say a random variable Φ on Ω is X0|A-measurable if the restriction Φ|ΩA

is measurable with
respect to GA

∞. The random variable Φ needs not to be defined on Ω \ΩA in this case. Recall that a
nearly Borel set N ⊂ E0 is called X0-properly exceptional if E0 \N is X0-invariant and m(N) = 0.

The following result is needed in our definition of terminal random variable and is known to
the experts. For completeness, we give a proof here by using quasi-homeomorphism [6] between m0

symmetric Markov process (X0,P0
x, ζ0) and symmetric Hunt process on a locally compact separable

metric space.
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Lemma 2.2 Let A := {ζ0 < ∞ and X0
ζ0− exits and takes value in E0}. Define

ζ0
i (ω) :=

{
ζ0(ω) if ω ∈ A

∞ if ω /∈ A
and ζ0

p (ω) :=

{
ζ0(ω) if ω /∈ A

∞ if ω ∈ A
.

Then for q.e x ∈ E0, P0
x-a.s., ζ0

i is a totally inaccessible stopping time with respect to {Gt, t ≥ 0}
and ζp is a predictable stopping time with respect to {Gt, t ≥ 0}. The stopping times ζ0

i and ζ0
p are

called, respectively, the totally inaccessible part and the predictable part of ζ0.

Proof. Since the process (X0,P0
x, ζ0) is m0 symmetric on E0, by [15] its associated Dirichlet

form (E0,F0) is quasi-regular on E0. Thus by [6], (E0,F0) and the process (X0,P0
x, ζ0) is quasi-

homeomorphic to a regular Dirichlet form (Ẽ0, F̃0) on a locally compact separable metric space Ẽ0

and its associated Hunt process (X̃0, P̃0
x, ζ̃0) on Ẽ0. In fact, if we let Ψ be the quasi-homeomorphism

from E0 to Ẽ0 constructed in [6], then X0 can be realized as the pullback image of X̃0 under Ψ,
that is X0

t = Ψ−1(X̃0
t ) for t < ζ̃0 and ζ0 = ζ̃0. Since X̃0 is a Hunt process in Ẽ0, X̃0

eζ0−
∈ Ẽ0 ∪ {∂̃},

where ∂̃ is a one-point compactification of Ẽ0. Define Ã :=
{

ζ̃0 < ∞ and X0
eζ0−

∈ Ẽ0

}
. Clearly

ζ̃0
i := ζ̃0 · 1

eA
+ ∞ · 1

eAc and ζ̃0
p := ζ̃0 · 1

eAc + ∞ · 1
eA

are the totally inaccessible and predictable parts of ζ̃0, respectively. By quasi-homeomorphism Ψ,
it follows that

ζ0
i = ζ0 · 1A + ∞ · 1Ac and ζ0

p = ζ0 · 1Ac + ∞ · 1A

are the totally inaccessible and predictable parts of ζ0, respectively. 2

Definition 2.3 (1) We call a random variable Φ = Φ(ω) on Ω a terminal random variable of X0 if
there exists an X0-properly exceptional set N ⊂ E0 such that

(i) Φ is X0|E0\N -measurable;

(ii) for every ω ∈ ΩE0\N , Φ(θtω) = Φ(ω) for every t < ζ0(ω), where θt is the shift operator on Ω;
and

(iii) {Φ = 0} ⊃ {ζ0
i < ∞}, where ζ0

i is the inaccessible part of the lifetime ζ0.

where θt is the shift operator on Ω and σ0
B denotes the hitting time of X0

t for a set B ⊂ E0.
(2) A function f on E0 is called X0-harmonic if, for any quasi open subset D with compact

closure in E0,

E0
x

[∣∣∣∣f(X0
σ0

E0\D
)
∣∣∣∣] < ∞ and f(x) = E0

x

[
f(X0

σ0
E0\D

)
]

for q.e. x ∈ E0,

where σ0
E0\D := inf{t > 0 : X0

t ∈ E0 \ D} denotes the first time of E0 \ D by X0.
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Note that X0 is the subprocess of the Hunt process X killed upon leaving E0. In view of the
proof of Lemma 2.2, condition (iii) of the definition above for a terminal random variable Φ of X0

implies that for any compact set K ⊂ E0, {Φ ̸= 0} ⊂
{
σ0

E0\K < ∞
}

Px-a.s. on ΩE0\N for any
x ∈ E0 \ N.

Denote by (F0
e , E0) the extended Dirichlet space of (E0,F0).

Lemma 2.4 (i) Let Φ be a terminal random variable with E0
x [|Φ|] < ∞ for q.e. x ∈ E0. Then

h(x) := E0
x [Φ] , x ∈ E0. (2.1)

is X0-harmonic in E0. Moreover, for any E0-nest {Ak} consisting of compact sets,

lim
k→∞

h(X0
σ0

k
) = Φ P0

x-a.s. and in L1(P0
x) for q.e. x ∈ E0,

where σ0
k = σ0

E0\Ak
.

(ii) For any f ∈ F0
e and for stopping times {σ0

k, k ≥ 1} as in (i),

lim
k→∞

f(X0
σ0

k
) = 0 in L1(P0

x) and in probability (P0
x) for q.e. x ∈ E0.

Proof. (i) That h is X0-harmonic in E0 follows immediately from the definition of a terminal
random variable and the assumption (1.1) for X. Suppose {Ak, k ≥ 1} is an E0-nest consisting of
compact sets. Let σ̃0

k = σ0
k ∧ ζ0. By Lemma 2.2 (i) of [5], we know that, for q.e. x ∈ E0,

lim
k→∞

σ̃0
k = ζ0 Px-a.s. (2.2)

Let N ⊂ E0 be a properly exceptional set such that the conditions (i), (ii) and (iii) for the terminal
random variable Φ of X0 and property (2.2) hold on E0 \ N and Φ is Px-integrability for every
x ∈ E0 \ N. By setting A = E0 \ N, we then have, for every x ∈ A and k, P0

x-a.s.

h(Xσ0
k
) = 1{σ0

k<ζ0} E0
X

eσ0
k

[Φ] = E0
x

[
Φ ◦ θ

eσ0
k
· 1{σ0

k<ζ0}

∣∣∣GA
eσ0

k

]
= E0

x

[
1{σ0

k<ζ0} Φ
∣∣ GA

eσ0
k

]
= E0

x

[
Φ

∣∣ GA
eσ0

k

]
,

By letting k → ∞, we get for any x ∈ A

lim
k→∞

h(Xσ0
k
) = E0

x

[
Φ

∣∣GA
∞

]
= Φ P0

x−a.s. and in L1(P0
x)

because σ
(
∪∞

k=1GA
eσ0

k

)
= GA

∞ by virtue of (2.2).

(ii) In view of the definition of E0-nest {Ak}, the proof is the same as that for [3, Lemma 4.2]. 2

We denote by {P 0
t , t ≥ 0} the transition semigroup of X0. For functions u, v on E0, we let

(u, v) :=
∫
E0

u(x)v(x)m0(dx). The X0-energy functional of an X0-excessive measure η and an
X0-excessive function u is defined by

L(0)(η, u) := lim
t↓0

1
t
⟨η − ηP 0

t , u⟩. (2.3)

The next lemma can be shown in the same way as the proof of [3, Lemma 4.3] (see also [2,
Theorem 1.8] and [16]).
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Lemma 2.5 Let Φ be a terminal random variable with E0
x

[
Φ2

]
< ∞ for q.e. x ∈ E0. Let h(x) be

the function defined by (2.1) and define

g(x) = E0
x

[
Φ2

]
− h(x)2, x ∈ E0, (2.4)

Mh(t) = h(X0
t )1{t<ζ0} + Φ1{t≥ζ0} − h(X0

0 ) t ≥ 0.

Then g is X0-excessive, {Mh(t)}t≥0 is a P0
x-square integrable, uniformly integrable martingale

additive functional of X0 and

g(x) = P 0
t g(x) + E0

x

[
(Mh(t))2

]
, t ≥ 0, q.e. x ∈ E0.

In particular
1
2
L(0)(m0, g) = e(Mh),

where L(0) denotes the energy functional of an X0-excessive measure and an X0-excessive function
defined by (2.3) and e(A) denotes the energy of an additive functional A defined in [11, §5.2].

Now let

N = {Φ : terminal random variable with E0
x[Φ2] < ∞ for q.e. x ∈ E0 and L(0)(m0, g) < ∞},

(2.5)
where g is defined by (2.4) for Φ. The reflected Dirichlet space ((F0)ref , Eref) of (F0, E0) are then
defined as follows:

(F0)ref = F0
e + HN, (2.6)

where
HN = {h : h(x) = Ex[Φ] for q.e. x ∈ E0 with Φ ∈ N} . (2.7)

For f = f0 + h ∈ (F0)ref , where f0 ∈ F0
e and h = E·[Φ] with Φ ∈ N, we let

Eref(f, f) = E0(f0, f0) + 1
2L(0)(m0, g), (2.8)

for g defined by (2.4) for Φ.

We note that the space F0
e ∩HN consists only of the zero function because of Lemma 2.4 and

hence the above definition makes sense. (2.8) gives a pre-Hilbertian norm on (F0)ref and, by the
polarization, we get Eref(h, f0) = 0 for functions h, f0 as above. On account of Lemma 2.5 and
[2, Theorem 1.8], it is also clear that the above definition of the reflected Dirichlet space coincides
with the one given in [2] when (E0,F0) is regular and transient.

The quadratic form ((F0)ref , Eref) is called the reflected Dirichlet space of X0. In the rest of this
section, we shall state its basic relationship to the extended regular Dirichlet space (Fe, E) of the m
symmetric Hunt process X = (Xt,Px, ζ) on E by reorganizing the results obtained in [5]. To this
end, we need the following notion of Feller measures. The cemetery for X is designated by ∂ and
any numerical function φ on E is extended to E∂ := E ∪ {∂} by setting φ(∂) = 0 by convention.

Define for φ ∈ B(F )b,

Hφ(x) := Ex [φ(XσF ); σF < ∞] for x ∈ E,
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and q(x) := 1 − H1(x) = Px(σF = ∞). For φ, psi ∈ B(F )+b , define

U(φ ⊗ ψ) := L0((Hφ) · m0,Hψ) and V (φ) := L0((Hφ) · m0, q). (2.9)

Here L0 is the X0-energy functional introduced by (2.3).
By Lemma 2.3(i) of [5], U is a symmetric measure on F × F , which will be called the Feller

measure for F . The measure V on F will be called the supplementary Feller measure for F . Note
that under condition (1.1), these Feller measures are intrinsically defined by X0. Indeed we have
the identity for φ ∈ B(F )+b

Hφ(x) = E0
x

[
φ(X0

ζ0−); X0
ζ0− ∈ F, ζ0 < ∞

]
, x ∈ E0. (2.10)

To see this, let σ′
F = inf{t > 0 : Xt− ∈ F}. Then, in view of [1, p 59], we have Px (σ′

F < σF ) = 0
for any x ∈ E, while (1.1) implies that Px (σF < σ′

F ) = 0 for any x ∈ E0. Hence (2.10) follows.
Clearly (2.10) holds for q.e. x ∈ E0 for any nearly Borel function φ on F with H|φ|(x) < ∞ for
q.e. x ∈ E.

We also need to consider the Lévy system (N(x, dy),H) for the m-symmetric Hunt process X
on E. The Revuz measure of the PCAF H of X will be denoted as µH . We define

J(dx, dy) = N(x, dy)µH(dx) and κ(dx) = N(x, ∂)µH(dx) (2.11)

as the jumping measure and the killing measure of X (or, equivalently, of (E ,F)). We point out
that the jumping measure J defined here is twice the jumping measure J defined in [5].

In the following, we will use d to denote the diagonal of E×E. For u ∈ Fe, µ⟨u⟩ and µc
⟨u⟩ denote

the Revuz measures of the PCAFs ⟨Mu⟩ and ⟨Mu,c⟩ of X, respectively. Here Mu is the MAF of
X in the Fukushima’s decomposition:

u(Xt) − u(X0) = Mu
t + Nu

t , t ≥ 0,

where Nu is the CAF of X having zero energy, and Mu,c is the continuous martingale part of Mu.
Recall that every member u in Fe is represented by its quasi-continuous version. So in particular,
Hu(x) := Ex [u(XσF )] is well defined for q.e. x ∈ E0.

Theorem 2.6 We have the inclusions

{(Hu)|E0
: u ∈ Fe} ⊂ HN and Fe|E0

⊂ (F0)ref . (2.12)

For u, v ∈ Fe, it holds that

E(u, v) = Eref(u|E0 , v|E0) +
1
2
µc
⟨Hu,Hv⟩(F )

+
1
2

∫
F×F\d

(u(ξ) − u(η))(v(ξ) − v(η))J(dξ, dη) +
∫

F
u(ξ)v(ξ)κ(dξ), (2.13)

and

Eref(u|E0 , v|E0) = E0(u0, v0) +
1
2

∫
F×F\d

(u(ξ) − u(η))(v(ξ) − v(η))U(dξ, dη) +
∫

F
u(ξ)v(ξ)V (dξ),

(2.14)
where u0 := u − Hu and v0 := v − Hv.

8



Proof. This theorem follows from Theorem 2.7 and Theorem 3.4 of [5]. Though it is assumed that
X has no killings inside E0 for [5, Theorem 3.4], the present much weaker condition (1.1) suffices.
In fact, we get from (2.10) the expression

Hφ(x) = E0
x[Φ] for Φ = φ(Xζ0−)1{Xζ0−∈F, ζ0<∞} q.e. x ∈ E0, (2.15)

for any nearly Borel function φ on F with H|φ|(x) < ∞ q.e. Clearly Φ is a terminal random
variable of X0. The rest of the proof of Theorem 3.4 in [5] remains valid with no change.

By [5, (3.14)] combined with the proof of [5, Theorem 2.7], we have for u, v ∈ Fe,

E(u, v) − Eref(u|E0 , v|E0)

=
1
2
µ⟨Hu,Hv⟩(F ) +

1
2

∫
F

u(ξ)v(ξ)κ(dξ)

=
1
2
µc
⟨Hu,Hv⟩(F ) +

1
2

∫
F×F\d

(u(ξ) − u(η))(v(ξ) − v(η))J(dξ, dη) +
∫

F
u(ξ)v(ξ)κ(dξ).

This proves (2.13). Note that the jumping measure J introduced in [5] is one half of the one in
(2.11) of this paper. By [5, Theorems 2.7 and 2.11], we have for u, v ∈ Fe,

E(u, v) = E(u0, v0) + E(Hu,Hv)

= E(u0, v0) +
1
2
µc
⟨Hu,Hv⟩(F ) +

1
2

∫
F×F\d

(u(ξ) − u(η))(v(ξ) − v(η))(U + J)(dξ, dη)

+
∫

F
u(ξ)v(ξ)(V + κ)(dξ).

This together with (2.13) yields (2.14). 2

3 Orthogonal decomposition of active reflected Dirichlet space

Recall that (F , E) and (E0,F0) are the Dirichlet forms of X on L2(E; m) and X0 on L2(E0,m0),
respectively, while the reflected Dirichlet space ((F0)ref , Eref) of (E0,F0) is introduced by (2.6) and
(2.8). In [2], the active reflected Dirichlet space (F0)refa of (E0,F0) is defined to be

(F0)refa := (F0)ref ∩ L2(E0,m0), (3.1)

and it is shown in [2, Theorem 3.10] that (Eref , (F0)refa ) is actually a Dirichlet form on L2(E0; m0).
Since F = Fe ∩ L2(E; m), we deduce from Theorem 2.6 that

F
∣∣
E0

⊂ (F0)refa . (3.2)

For α > 0 and a terminal random variable Φ of X0, we put

H0Φ(x) := E0
x[Φ] and H0

αΦ(x) := E0
x

[
e−αζ0

Φ
]
, x ∈ E,

whenever the expectations make sense. We also define for terminal random variables Φ, Ψ of X0,

Uα(Φ,Ψ) := α(H0
αΦ,H0Ψ).

Here and in what follows, we denote by (u, v) the integral
∫
E0

u(x)v(x)m0(dx).

9



Lemma 3.1 If Φ is a non-negative terminal random variable of X0 with H0Φ(x) < ∞, then

H0Φ(x) − H0
αΦ(x) = αG0

0H
0
αΦ(x),

H0
βΦ(x) − H0

αΦ(x) = (α − β)G0
αH0

βΦ(x) for α, β > 0.

If Φ is a non-negative terminal random variable of X0, then Uα(Φ,Φ) is increasing in α > 0 and
1
αUα(Φ,Φ) is decreasing in α > 0.

Proof. We have

H0Φ(x) − H0
αΦ(x) = αE0

x

[∫ ζ0

0
e−α(ζ0−s)ds · Φ

]

= αE0
x

[∫ ∞

0
e−αζ0(θs)Φ(θsω)1{s<ζ0}ds

]
= αE0

x

[∫ ∞

0
EX0

s
(e−αζ0

Φ)1{s<ζ0}ds

]
= αG0

0H
0
αΦ.

The second identity can be obtained similarly. Suppose Uβ(Φ, Φ) < ∞ for β > 0 and a non-negative
terminal random variable Φ. Then it follows from the second identity and the symmetry of G0

α that,
for β > α,

Uβ(Φ,Φ) − Uα(Φ,Φ) = (β − α)
(
(H0

βΦ,H0Φ) − (H0
βΦ,αG0

αH0Φ)
)
,

which is non-negative because αG0
αH0Φ ≤ H0Φ. The decreasing property of 1

αUα(Φ,Φ) is obvious.
2

We introduce a subspace of terminal random variables by

N1 = {Φ ∈ N : U1(|Φ|, |Φ|) < ∞}. (3.3)

Proposition 3.2 A terminal random variable Φ of X0 is in N1 if and only if H0
α|Φ| ∈ (F0)refa

for some (and hence for all) α > 0 and

Φ = 1{ζ0<∞} Φ Px-a.e. for q.e. x ∈ E. (3.4)

In this case

H0
αΦ = H0Φ − αG0

0H
0
αΦ (3.5)

represents the unique decomposition of H0
αΦ as a sum of elements of HN and F0

e . Furthermore

Eref
α (H0

αΦ,H0
αΦ) = Eref(H0Φ,H0Φ) + Uα(Φ.Φ). (3.6)

where Eref
α (u, v) = Eref(u, v) + α(u, v) for u, v ∈ (F0)refa .
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Proof. It suffices to prove this Proposition for non-negative terminal random variable Φ of X0.
By Lemma 3.1,

H0Φ = αG0
0H

0
αΦ + H0

αΦ.

Suppose Φ ∈ N1. The above identity implies not only (3.5) but also

α(H0
αΦ,H0

αΦ) + α2(H0
αΦ, G0

0H
0
αΦ) = Uα(Φ,Φ). (3.7)

Since Uα(Φ, Φ) < ∞, this means first that H0
αΦ ∈ L2(E0;m0) and secondly that H0

αΦ is of finite
energy integral with respect to G0

0 and accordingly G0
0H

0
αΦ ∈ F0

e . Hence HαΦ ∈ (F0)refa by (3.5).
Furthermore, (3.5) and (3.7) yield (3.6).

We next prove (3.4). To this end, consider an E0-nest {Ak} and let σ0
k be the hitting time of

E0 \ Ak for X0. By Lemma 2.4 (i),

lim
k→∞

(H0Φ)(Xσ0
k
) = Φ P0

x−a.s. for q.e. x ∈ E0.

Since the function H0
αΦ is in L2(E0; m0) and is α-excessive relative to X0, it is finite q.e. on E0.

So by an analogous argument to that for Lemma 2.4(i),

lim
k→∞

e−ασ0
k(H0

αΦ)(Xσ0
k
) = e−αζ0

Φ P0
x−a.s. for q.e. x ∈ E0,

and, consequently, in view of (2.2)

lim
k→∞

(H0
αΦ)(Xσ0

k
) = lim

k→∞
e−α(ζ0−σ0

k)Φ1{ζ0<∞ and σ0
k<∞} = Φ1{ζ0<∞} P0

x−a.s. for q.e. x ∈ E0.

Identity (3.5) and Lemma 2.4(ii) then yield (3.4).
Conversely, suppose that a non-negative terminal random variable Φ of X0 satisfies (3.4) and

H0
αΦ ∈ (F0)refa . Then,

H0
αΦ = H0Ψ + f0 (3.8)

for some Ψ ∈ N and f ∈ F0. In the similar manner as in the preceding paragraph where we have
used (3.5), we can draw conclusion from (3.8) that

Ψ = 1{ζ0<∞} Φ Px-a.s. for q.e. x ∈ E0.

Therefore we get Ψ = Φ by our assumption (3.4).
Now the identity (3.8) together with Lemma 3.1 yields f0 = G0

0H
0
αΦ ∈ F0

e . We note that if
G0

0u ∈ F0
e for some non-negative measurable function u on E0, then

E0(G0
0u,G0

0u) = (u,G0
0u) < ∞ and E0(G0

0u,w) = (u,w) for every w ∈ F0
e . (3.9)

The above can be proved by approximate u by functions un = 1{g≥1/n} (u∧n), where g is a reference
function for the transient Dirichlet form (E0,F0) (cf. [11, Theorem 1.5.4].) Therefore we have

(H0
αΦ,G0

0H
0
αΦ) < ∞.

This combined with (3.7) shows that Uα(Φ, Φ) < ∞, namely, Φ ∈ N1. 2
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Theorem 3.3 Define the subspace N1 of N by (3.3). Then for every α > 0,

(F0)refa = H0
αN1 + F0 = {H0

αΦ + f0 : Φ ∈ N1, f0 ∈ F0}. (3.10)

The above decomposition is an Eref
α -orthogonal decomposition. Further we have the following ex-

pression of the α-order form Eref
α of an element f = H0

αΦ + f0, Φ ∈ N1, f0 ∈ F0, of (F0)refa :

Eref
α (f, f) = Eref(H0Φ,H0Φ) + Uα(Φ,Φ) + E0

α(f0, f0). (3.11)

Proof. By the equivalent definition of reflected Dirichlet space as the space of all functions on E0

with finite Dirichlet integrals (see [2, Theorem 3.9]), we see immediately that the active Dirichlet
space (Eref

α , (F0)refa ) is in fact the reflected Dirichlet space of (E0
α,F0). Note that (E0

α,F0) is the
Dirichlet space of the α-subprocess Y of X0, and Yt = X0

t∧T where T is an exponential random
variable with mean 1/α that is independent of X0. Thus for every u ∈ (F0)refa , by the definition
(2.6) for (E0

α,F0) and Lemma 2.4, u has the following Eref
α -orthogonal decomposition

u(x) = f0 + E0
x

[
lim

k→∞
u(YσE0\Ak

)
]

, x ∈ E0, (3.12)

where f0 ∈ F0, {Ak, k ≥ 1} is an E0-nest consisting of compact subsets of E0 and

σE0\Ak
:= inf{t > 0 : Yt ∈ E0 \ Ak}.

On the other hand, as u ∈ (F0)refa ⊂ (F0)ref , by (2.6) and Lemma 2.4,

Φ := lim
k→∞

u(X0
σ0

E0\Ak

)

is a terminal random variable of X0. Therefore, in view of (2.2),

lim
k→∞

u(YσE0\Ak
) = lim

k→∞
u(X0

σ0
E0\Ak

∧T )1{ζ0<T} = Φ1{ζ0<T} = Φ1 1{ζ0<T},

where Φ1 = Φ1{ζ0<∞}. So (3.12) becomes

u(x) = f0(x) + E0
x

[
Φ1 1{ζ0<T}

]
= f0(x) + E0

x

[
e−αζ0

Φ1

]
= f0(x) + H0

αΦ1(x).

Applying the above argument to |u| in place of u, we deduce from Proposition 3.2 that Φ1 ∈ N1.
This proves that (F0)refa ⊂ F0 + HαN1. The other direction H0

αN1 +F0 ⊂ (F0)ref ∩L2(E0,m0) =
(F0)refa is obvious. This proves (3.10).

The Eref
α -orthogonality of the decomposition (3.10) can be also seen by (3.5) and (3.9):

Eref
α (H0

αΦ, f0) = −αE0(G0
0H

0
αΦ, f0) + α(H0

αΦ, f0) = 0, Φ ∈ N1, f0 ∈ F0.

(3.11) then follows from (3.6). 2

Remark 3.4 See [16, Theorem 14.5] for a related result.
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In relation to the given process X on E, we let

Hαφ(x) = Ex

[
e−ασF φ(XσF )

]
, x ∈ E, (3.13)

for α > 0 and for any nearly Borel numerical function on F with Hα|φ|(x) < ∞ for q.e. x ∈ E.
Note that H0+φ coincides with Hφ introduced in the preceding section. Analogously to (2.15), we
then have for x ∈ E0,

Hαφ(x) = H0
αΦ(x) for Φ = φ(Xζ0−)1{Xζ0−∈F, ζ0<∞}. (3.14)

This Φ is obviously a terminal random variable.

For u ∈ F and α > 0, we have the following Eα-orthogonal decomposition

u = Hαu + f0 with f0 ∈ F0.

Since Hαu
∣∣
E0

∈ (F0)refa by (3.2), we conclude from (3.14) that Hαu
∣∣
E0

∈ H0
αN1 and u ∈ (F0)refa .

The following theorem now follows from Theorem 2.6 and (3.11).

Theorem 3.5 Fix α > 0. We have the inclusions

{(Hαu)|E0
: u ∈ F} ⊂ H0

αN1 and F|E0
⊂ (F0)refa . (3.15)

For u, v ∈ F , it holds that

Eα(u, v) = Eref
α (u|E0 , v|E0) +

1
2
µc
⟨Hu,Hv⟩(F )

+
1
2

∫
F×F\d

(u(ξ) − u(η))(v(ξ) − v(η))J(dξ, dη) +
∫

F
u(ξ)v(ξ)κ(dξ), (3.16)

and

Eref
α (u|E0 , v|E0) = E0

α(u0, v0) + Eref(Hαu|E0 ,Hαv|E0)

= E0
α(u0, v0) +

1
2

∫
F×F\d

(u(ξ) − u(η))(v(ξ) − v(η))U(dξ, dη)

+
∫

F
u(ξ)v(ξ)V (dξ) + Uα(u, v) (3.17)

where u0 := u − Hαu and v0 := v − Hαv and Uα(φ,ψ) = α(Hαφ,Hψ) for φ,ψ ∈ B+(F ).

4 Flux and lateral condition

A nearly Borel measurable function f on E0 is said to have an X0-fine limit function on F if there
exists a nearly Borel measurable function ψ on F such that

P0
x

(
lim
t↑ζ0

f(X0
t ) = ψ(X0

ζ0−)
∣∣∣∣ ζ0 < ∞ and X0

ζ0− ∈ F

)
= 1 for q.e. x ∈ E0.

In this case, we write ψ as γf and call γf the X0-fine limit function of f on F.
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Lemma 4.1 (i) If f0 is the restriction to E0 of an X-q.e. finely continuous function f on E,
then f0 admits an X0-fine limit function f |F on F .

(ii) If f ∈ Fe, then f admits an X0-fine limit function f |F on F. If f ∈ F0
e , the f admits zero

X0-fine limit function on F.

Proof. (i) By [11, Theorem 4.2.2],

Px

(
lim
t′↑t

f(Xt′) = f(Xt−) for every t ∈ [0, ζ)
)

= 1 for q.e. x ∈ X.

The assertion (i) follows from our assumption (1.1) and the remark following (2.10).

(ii) The first assertion is immediate from (i). The second follows from the fact that any function
in F0

e is a quasi-continuous function in Fe vanishing q.e. on F. 2

Let us put
HF =

{
ψ ∈ B(F ) : Hα|ψ| ∈ (F0)refa

}
. (4.1)

In view of Proposition 3.2, (3.14) and (3.15), this space is independent of α > 0 and

HαHF ⊂ H0
αN1 ⊂ (F0)refa and γ(F) ⊂ HF . (4.2)

Consider the following two conditions:

If f ∈ (F0)refa admits an X0-fine limit function 0 on F, then f ∈ F0. (4.3)

P0
x

(
Xζ0− ∈ F

∣∣ ζ0 < ∞
)

= 1 for q.e. x ∈ E0. (4.4)

These are assumptions imposed on F in relation to the process X0. For instance, when X0 is
the absorbed Brownian motion on the interval (0, 1), then F0 = H1

0 (0, 1) and (F0)refa = H1(0, 1).
Condition (4.4) is satisfied if F = {0, 1} (in which case X is the reflected Brownian motion on
[0, 1]) but it is not satisfied when F = {0} (in which case X is the Brownian motion on [0, 1)
reflected at 0 and absorbed at 1). On the other hand, when X0 is a diffusion on (0,∞) for which
0 is regular and ∞ is non-regular, then condition (4.3) is fulfilled if F = {0} because it is known
that F0 = {f ∈ (F)refa : f(0+) = 0} in this case.

Lemma 4.2 (i) For ψ ∈ HF , the function Hαψ has X0-fine limit function ψ on F for any α > 0.

(ii) Condition (4.3) is implied by condition (4.4).

Proof. For Φ ∈ N, let h(x) := Ex[Φ] with x ∈ E0. By Lemma 2.5, {Mh(t)}t≥0 is a P0
x-square

integrable martingale for q.e. x ∈ E0. Combining this with Lemma 2.4(i) and (2.2), we have

lim
t↑ζ0

h(X0
t ) = Φ P0

x-a.s. on {ζ0 < ∞} for q.e x ∈ E0. (4.5)
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(i) Let ψ ∈ HF . By (3.5), (3.14) and Lemma 4.1(ii),

lim
t↑ζ0

Hαψ(X0
t ) = (ψ · 1F )(X0

ζ0−) P0
x-a.s. on {ζ0 < ∞} for q.e x ∈ E0,

which implies that Hαψ admits ψ as an X0-fine limit function on F.
(ii) Suppose that a function f ∈ (F0)refa admits an X0-fine limit function 0 on F. By Theorem

3.3 and (3.5), we can decompose f as f(x) = E0
x[Φ] + f0(x) with Φ ∈ N1 and f0 ∈ F0

e . By Lemma
4.1(ii), γf0 = 0 and so Φ · 1{Xζ0−∈F,ζ0<∞} = 0 by (4.5). (3.4) and condition (4.4) yield that Φ = 0
and consequently f = f0 ∈ F0

e ∩ L2(E0; m0) = F0. 2

Let us introduce a linear operator L on L2(E0; m0) specified by the following:

f ∈ D(L) with Lf = g (∈ L2(E0; m0)),

if and only if
f ∈ (F0)refa with Eref(f, v) = −(g, v) for every v ∈ F0. (4.6)

Lemma 4.3 Assume condition (4.3) holds. Suppose u ∈ D(L) having an X-fine limit function
γu ∈ HF on F and

Lu = αu for some α > 0.

Then u = Hα(γu) on E0

Proof. By (4.6), u ∈ (F0)refa and Eref
α (u,w) = 0 for any w ∈ F0. Define ψ := γu and u0 := u−Hαψ.

Then u0 ∈ (F0)refa by (4.2) and γ(u0) = ψ − ψ = 0 by Lemma 4.2. Hence by assumption (4.3),
u0 ∈ F0.

Since by (4.2) Hαψ ∈ H0
αN1, we have by Theorem 3.3 that

Eref
α (Hαψ,w) = 0 for every w ∈ F0.

It follows then
Eref

α (u0, w) = Eref
α (u − Hαψ,w) = 0 for every w ∈ F0.

Taking w = u0 yields Eref
α (u0, u0) = 0 and therefore u = Hαψ = Hα(γu). 2

For f ∈ D(L) and ψ ∈ HF , define

N (f)(ψ) := Eref(f, Hαψ) + (Lf,Hαψ)L2(E0,m0), α > 0. (4.7)

Note that for α and β > 0, Hαψ − Hβψ ∈ F0 by Lemma 3.1 and (3.14). Hence N (f)(ψ) defined
by (4.7) is independent of the choice of α > 0 in view of (4.6). We call N (f) the flux functional of
f being regarded as a linear functional on the space HF .

In the remaining of this paper, we assume that

m(F ) = 0 and µc
⟨Hu⟩(F ) = 0 for every u ∈ F . (4.8)
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Denote by A the L2-infinitesimal generator of X. That is, A is the self adjoint operator on
L2(E; m) (= L2(E0; m0)) such that

f ∈ D(A) with Af = g if and only if f ∈ F with E(f, v) = −(g, v) for every v ∈ F . (4.9)

Recall the operator L is defined by (4.6). We see from Theorem 2.6 that L is an extension of
A in the sense that

D(A) ⊂ D(L) and Af = Lf for f ∈ D(A). (4.10)

We aim at formulating a lateral condition that gives a characterization of a function in D(L) to
be in D(A). To this end, we need to introduce a function space on F on account of Theorem 3.5.

For a Borel function φ on F , we let

EF (φ,φ) :=
1
2

∫
F×F\d

(φ(ξ) − φ(η))2(J + U)(dξ, dη) +
∫

F
φ(ξ)2(κ + V )(dξ). (4.11)

We define a function space GF on F by

GF =
{
Borel function φ on F : EF (φ, φ) + U1(|φ|, |φ|) < ∞

}
. (4.12)

The inner product EF is well defined on the function space GF by polarization. For each α > 0, we
define

E [F,α](φ,ψ) := EF (φ,ψ) + Uα(φ,ψ), φ, ψ ∈ GF . (4.13)

Under the present condition (4.8), Theorem 3.5 implies that

γ(F) ⊂ GF and Eα(Hαφ,Hαψ) = E [F,α](φ,ψ) for φ, ψ ∈ γ(F). (4.14)

Let C be a core of the regular Dirichlet space (E ,F): C is a subset of F ∩Cc(E) which is dense
in (F , E1) and in (Cc(E), ∥ · ∥∞), where Cc(E) denotes the collection of continuous functions on E
with compact support. Denote by CF the space of functions in C restricted to F .

It follows from (3.16)-(3.17) that (H1(γF), E1) is a closed subspace of the Dirichlet space (F , E1)
spanned by H1(CF ). Therefore (4.14) implies that γ(F) is a closed subspace of (GF , E [F,1]) spanned
by CF . In other words, if we define

G′
F := the closure of CF in (GF , E [F,1]), (4.15)

then
γ(F) = G′

F . (4.16)

The identity (4.16) means that the trace space γ(F) is completely described by the Feller measures
U , V , U1, the restrictions to F of the jumping measure J and the killing measure κ of X, and the
function space CF .

Now we are in a position to present our main theorem.

Theorem 4.4 Assume that condition (4.8) holds.
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(i) Suppose f ∈ D(A). Then f ∈ D(L) and f satisfies the lateral conditions that

f admits an X0-fine limit function γf ∈ G′
F , (4.17)

and for every ψ ∈ G′
F ,

N (f)(ψ) + 1
2

∫
F×F\d

((γf)(ξ) − (γf)(η)(ψ(ξ) − ψ(η))J(dξ, dη) +
∫

F
(γf)(ξ)ψ(ξ)κ(dξ) = 0.

(4.18)

(ii) Assume the condition (4.3) holds. If f ∈ D(L) satisfies the lateral conditions (4.17) and (4.18)
for every ψ ∈ CF , then f ∈ D(A).

Proof. (i). Suppose f ∈ D(A). Then for α > 0, f = Gαg with g = (α−A)f ∈ L2(E; m0). Here Gα

denotes the α-resolvent of X. Since f ∈ F , f admits the X0-fine limit function γf = f |F ∈ γ(F)
by Lemma 4.1. For ψ ∈ γ(F), Hαψ ∈ F . Since L is an extension of A, we have from (4.9)

E(f,Hαψ) + (Lf,Hαψ) = 0,

whose left hand side coincides with the left hand side of (4.18) in view of (4.7) and (2.13). We can
then replace γ(F) with G′

F by (4.16).

(ii). Suppose that f ∈ D(L) satisfies (4.17) and (4.18). Let g = (α−L)f and f0 := f −Gαg. Then
by (4.2), (4.10) and (4.15), f0 admits an X0-fine limit function γf0 ∈ γ(F) ⊂ HF and (α−L)f0 = 0.
Consequently, f0 = Hα(γf0) ∈ F by virtue of Lemma 4.3.

As f0 ∈ D(L) and (α − L)f0 = 0,

N (f0)(ψ) = Eref(f0,Hαψ) + (Lf0,Hαψ) = Eref
α (f0,Hαψ)

for every ψ ∈ HF . On the other hand, we have by (i) that Gαg ∈ D(A) satisfies the equation (4.18)
and so does f0. It follows then for every φ ∈ CF ,

Eref
α (Hα(γf0),Hαφ)

+
1
2

∫
F×F\d

(γf0(ξ) − γf0(η))(φ(ξ) − φ(η))J(dξ, dη) +
∫

F
γf0(ξ)φ(ξ)κ(dξ) = 0.

Since f0 ∈ F , we see by (3.16) that the above identity is equivalent to Eα(Hα(γf0),Hαφ) = 0 for
every φ ∈ CF , which extends to every φ ∈ γ(F) since C is a core of (E ,F). Taking φ = γf0, we
obtain Hα(γf0) = 0 and, consequently, f = Gαg ∈ D(A). 2

Remark 4.5 (i) We note that the space G′
F is contained in the L2-space is contained in L2(F ; ν),

where ν is a measure on F defined by∫
F

ψ(η)ν(dη) = U1(1, ψ) for ψ ∈ B+(F ).

In fact, Uα(φ,ψ) is known to increase to U(φ,ψ) as α ↑ ∞ for φ, ψ ∈ B+(F ), and we get
from (4.11) the following inequality

E [F,1](φ,φ) ≥ 1
2

∫
F×F\d

(φ(ξ) − φ(η))2U1(dξ, dη) + U1(φ,φ) ≥
∫

F
φ(ξ)2ν(dξ). (4.19)
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(ii) The descriptions (4.17) and (4.18) are given in terms of the quantities intrinsic to X0, the
restrictions to F of jumping and killing measures of X and the restriction CF of a core C of
(F , E) to F. There are many cases where CF can be chosen in a universal way not depending
on the space (E ,F).

We shall verify in the next section that, when F is a locally finite countable subset of E, we
can choose as CF the space Bc(F ) of functions on F vanishing except on a finite number of
points.

(iii) If the Dirichlet form (E0,F0) satisfies the Poincaré inequality in the sense that there exists a
constant C > 0 with

(u, u) ≤ C E0(u, u) for every u ∈ F0,

then for ψ ∈ HF ,

N (f)(ψ) = Eref(f,Hψ) + (Lf,Hψ) for f ∈ D(L).

The proof is quite analogous to the one for [3, Lemma 4.9] and is omitted. 2

5 When boundary set F is countable

In this section, we assume that the quasi-closed set F is countable, that is, F = {a1, a2, · · · }, and
F is locally finite in the (generalized) sense that for every x ∈ F , there is a quasi-open set Ux

containing x such that Ux ∩ (F \ {x}) = ∅. Note that this (generalized) notion of locally finiteness
is invariant under the quasi-homeomorphism of Dirichlet forms and is an extension of the classical
notion of locally finiteness on locally compact metric spaces.

Recall E0 := E \F . We assume that the irreducible m-symmetric Hunt process X = (Xt, ζ,Px)
on E satisfies the condition (1.1), the Dirichlet form (E ,F) of X is regular, m(F ) = 0 and further
each point ai has positive capacity:

Cap(ai) > 0 for each i ≥ 1,

where Cap denotes the 1-capacity for (E ,F).

Lemma 5.1 Under the above condition, we have µc
⟨Hu⟩(F ) = 0 for every u ∈ F .

Proof. By [5, Lemma 2.8], there is a positive smooth Radon measure µ with quasi-support F . Let
Aµ be the PCAF of X with Revuz measure µ and {τt, t ≥ 0} be the right inverse of Aµ. Then the
time-changed process Y := {Xτt , t ≥ 0} is an µ-symmetric Markov process on F whose Dirichlet
form (Ě , F̌) is quasi-regular on F . It is known (cf. [11, Theorem 6.2.1]) that the extended Dirichlet
space (Ě , F̌e) of (Ě , F̌) is given by F̌e = Fe|F and Ě(f, g) = E(Hf,Hg) for f, g ∈ F̌e. It is proved
in Corollary 2.9 and Theorems 2.10-2.11 of [5] that the strongly local part Ěc in the Beurling-Deny
decomposition of (Ě , F̌e) is given by

Ěc(f, f) =
1
2
µc
⟨Hf⟩(F ) for f ∈ F̌e.
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Note that by the equivalent characterization of E-nest (see [11, Lemma 5.1.6], {Fk ∩ F, k ≥ 1}
is an Ě-nest whenever {Fk, k ≥ 1} is an E-nest. So by the definition of quasi-openness and the
(generalized) locally finiteness condition on F , we see that each point ai ∈ F is (relatively) quasi-
open in F with respect to the Dirichlet form (Ě , F̌). It follows from Lemma 5.3.3 and Theorem
4.6.1 of [11] that Ěc(f, f) = 0 for every f ∈ F̌e. This in particular implies that µc

⟨Hu⟩(F ) = 0 for
every u ∈ F . 2

Lemma 5.1 says that the condition (4.8) is satisfied. For i ̸= j, let

U ij := U({ai}, {aj}) and U ij
α := Uα({ai}, {aj})

and V i := V ({ai}).
Define for x ∈ E and i ≥ 1,

φ(i)(x) := Px(σF < ∞, XσF = ai) and u(i)
α (x) := Ex

[
e−ασF ; XσF = ai

]
, (5.1)

which are positive m0-a.e. by the irreducibility assumption on X. As X admits no jumps from E0

to F , we have as before

φ(i)(x) = P0
x

(
ζ0 < ∞ and X0

ζ0− = ai

)
and u(i)

α (x) = E0
x

[
e−αζ0

; X0
ζ0− = ai

]
. (5.2)

Since φ(i) = H1{ai} and u
(i)
α = Hα1{ai}, we see that

U ij = L0(φ(i) · m0, φ
(j)), V i = L0(φ(i) · m0, 1 − φ(j)) and U ij

α = α(u(i)
α , φ(j))

We notice that φ(i), u
(i)
α admit the expressions

φ(i)(x) =
1

v(ai)
H0+v(x) and u(i)

α (x) =
1

v(ai)
Hαv(x) for x ∈ E,

where

v(x) := Ex

[∫ σF\ai

0
e−tf(Xs)ds

]
, x ∈ E,

for a strictly positive bounded m-integrable function f on E. Since v ∈ F and v(ai) > 0 by the
locally finiteness of F , we have φ(i) ∈ Fe and u

(i)
α ∈ F (cf. [11]).

Let Bc(F ) be the space of functions on F that take value 0 except on a finite many points; in
other words, Bc(F ) is the of the linear space spanned by {u(i)

1 , i ≥ 1}. Note that Bc(F ) ⊂ γ(F)
as 1{ai} = u

(i)
1 |F . Let C = F ∩ Cc(E), which is a core of the regular Dirichlet space (F , E). For

any choice of compact set K ⊂ E, one can find a function in C which is supported by K (cf. [11,
Lemma 1.4.2]). Due to the locally finiteness assumption on F, we therefore have

CF = Bc(F ). (5.3)

Recall the definition of the function space GF in (4.12). Under the current assumption on F in
this section, the inner product E [F,1] on the space GF takes the following specific form:
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E [F,1](ψ,ψ) =
1
2

∑
i,j≥1:i̸=i

(ψ(ai) − ψ(aj))2(U ij + Jij) +
∑
i≥1

ψ(ai)2(V i + κi) +
∑
i,j≥1

ψ(ai)ψ(aj)U
ij
1 .

where Jij := J({ai}, {aj}) and κi := κ({ai}). As (4.19), we also have the bound

E [F,1](ψ,ψ) ≥
∑
i≥1

ψ(ai)2U11(i) with U11(i) =
∑
j≥1

U ij
1 .

Since U11(i) > 0 for every i ≥ 1, we conclude from this that the space GF is a Hilbert space with
inner product E [F,1]. Hence the space G′

F defined by (4.15) is now described as

G′
F = the closed subspace of (GF , E [F,1]) spanned by Bc(F ). (5.4)

We can define for f ∈ D(L), the flux of f at ai by

N (f)(ai) := N (f)(1{ai}) = Eref(f, u(i)
α ) + (Lf, u(i)

α ).

Theorem 4.4 now reads as follows:

Theorem 5.2

(i) If f ∈ D(A), then f ∈ D(L) and f satisfies the lateral conditions that

f admits an X0-fine limit function γf ∈ G′
F , (5.5)

for the space G′
F specified by (5.4) and

N (f)(ai) +
∑

j≥1,j ̸=i

((γf)(ai) − (γf)(aj))Jij + (γf)(ai)κi = 0 for every i ≥ 1. (5.6)

(ii) Assume the condition (4.3) holds. If f ∈ D(L) satisfies the lateral conditions (5.5) and (5.6),
then f ∈ D(A).

Finally let us consider a special case when X admits no jumps from F to F nor killing at F ;
that is,

Jij = 0 for i, j ≥ 1, i ̸= j and κi = 0 for i ≥ 1. (5.7)

The process X is then uniquely determined by its part process X0 on E0 because, in view of [4,
Theorem 2.6], the resolvent Gα of X is described by the resolvent G0

α of X0 and φ(i), u
(i)
α , the

quantities completely determined by X0.

Under the above condition (5.7), it follows immediately from Theorem 2.6 and (5.4) the following
simple description of the Dirichlet form (E ,F) of X in terms of the active reflected Dirichlet space
((F0)refa , Eref) of the Dirichlet form (E0,F0) of X0.

20



Theorem 5.3 Assume condition (5.7) holds.
(i) Fe

∣∣
E0

⊂ (F0)ref and E(u, v) = Eref(u
∣∣
E0

, v
∣∣
E0

) for u, v ∈ Fe.

(ii) For α > 0, let

Hα :=

{ ∞∑
i=1

ci u
(i)
α : ci ∈ R for i ≥ 1

}
,

where the infinity sum is assumed to be convergent in the space ((F0)refa , Eref
α ). Then Hα is a closed

subspace of (F0)refa and moreover the space (F , Eα) is the subspace of ((F0)refa , Eref
α ) expressible as

an Eα-sum
F

∣∣
E0

= F0 ⊕Hα.

6 Examples: flux for absorbed Brownian motions

In the first half of this section, we show that when X0 is an absorbed Brownian motion in a domain
in Rn, the flux appearing in the last sections is a genuine extension of the classical notion. For an
open set U ⊂ Rn, we let

H1(U) =
{

u ∈ L2(U) :
∂u

∂xi
∈ L2(U) for 1 ≤ i ≤ n

}
and define

DU (u, v) =
∫

U
∇u(x) · ∇v(x)dx for u, v ∈ H1(U).

C1
c (U) will denote the space of continuously differentiable functions on U with compact support.

The completion of C1
c (U) in (H1(U) with metric DU (u, u) + (u, u)L2(U) is denoted by H1

0 (U).

Let D be a bounded C2-smooth domain in Rn and K a closed subset of ∂D. Let X = (Xt,Px) be
the (normally) reflected Brownian motion on D killed upon hitting K. Let E = D\K, F = ∂D\K,
and m the Lebesgue measure on E. The subprocess X0 of X killed upon leaving E0 := E \F = D
is just the absorbed Brownian motion in D. Let (E ,F) and (E0,F0) denote the Dirichlet forms of
X and X0, respectively. It is well-known that

(E0, F0) =
(

1
2D

D, H1
0 (D)

)
.

The active reflected Dirichlet space (Eref , (F0)refa ) is(
Eref , (F0)refa

)
=

(
1
2D

D, H1(D)
)
.

The active reflected Dirichlet space (Eref , (F0)refa ) is a regular Dirichlet space on D and its associated
process is the classical (normally) reflected Brownian motion on D. The Dirichlet form (E ,F) of
X is given by

F :=
{

u ∈ H1(D) : u = 0 Eref -q.e. on K
}

and E =
1
2
DD.

Let A denote the L2-infinitesimal generator of X. The linear operator L on L2(D) specified by
(3.5) is

L = 1
2∆ with D(L) =

{
u ∈ H1(D) : ∆u ∈ L2(D)

}
.

The Dirichlet form (E ,F) is a regular Dirichlet form on E. Let C be a core of it and let CF = C|F .
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Lemma 6.1 Under the above condition, the flux functional N (f))(ψ) for f ∈ D(L) and ψ ∈ CF

has the form

N (f)(ψ) =
1
2

∫
F

ψ(x)
∂f

∂n
(x)σ(dx),

where n(x) is the unit inward normal vector of ∂D at x ∈ ∂D and σ(dx) is the Lebesgue surface
measure on ∂D.

Proof. By definition (4.7), for f ∈ D(L) and ψ ∈ Č,

N (f)(ψ) =
1
2

∫
D
∇f(x) · ∇H1ψ(x)dx +

1
2
(∆f,H1ψ)L2(D)

=
1
2

∫
∂D

∂f

∂n
(x)H1ψ(x)σ(dx)

=
1
2

∫
∂D

ψ(x)
∂f

∂n
(x)σ(dx)

=
1
2

∫
F

ψ(x)
∂f

∂n
(x)σ(dx),

where in the second equality, we used Gauss-Green formula on D, and the last identity is due to
the fact that ψ = 0 on ∂D \ F for ψ ∈ CF . 2

Next let X = (Xt,Px) be the Brownian motion on Rn, K be a closed subset of Rn expressible
as a disjoint union of compact subsets Ki, i ≥ 1, which are locally finite, and X0 = (X0

t , ζ0,P0
x)

be the absorbed Brownian motion on E0 = Rn \ K obtained from X by killing upon the hitting
time σK . We assume that each set Ki is not polar. We can then apply Theorem 3.1 of [4] to X and
produce an extension X∗ of X0 to the space E∗ = E0 ∪{a1, a2, · · · } obtained from Rn by regarding
each compact set Ki as a one point ai, i ≥ 1.

Since X is symmetric with respect to the Lebesgue measure, we can use Theorem 5.2 in char-
acterizing the extension X∗. Here we show that the flux N (f)(ai) appearing there is actually an
generalization of the classical notion of the flux of the vector field ∇f through the surface ∂Ki (cf
[12]).

Notice that the Dirichlet form of X0 on L2(E0) equals (1
2D

E0 ,H1
0 (E0)). The active reflected

Dirichlet space of the latter is (1
2D

E0 , W 1,2(E0)) (cf. [2]).
For i ≥ 1, we let

u(i)
α (x) := Ex

[
e−ασK ; XσK ∈ Ki

]
= E0

x

[
e−αζ0

;X0
ζ0− ∈ Ki

]
.

The linear operator L on L2(E0) specified by (3.5) and the flux N (f)(ai) at ai specified by (3.6)
are

L = 1
2∆ with D(L) =

{
f ∈ H1(E0) : ∆f ∈ L2(E0)

}
,

N (f)(ai) = 1
2D(f, u(i)

α ) +
1
2
(∆f, u(i)

α ) for f ∈ D(L) and i ≥ 1.

Lemma 6.2 Suppose that the disjoint compact sets {Ki, i ≥ 1} are locally finite in the sense that
there is only finite many of them intersects with each ball in Rn. Assume that each ∂Ki is a C1-
class hypersurface. Then, for each i ≥ 1 and for any C2-smooth function f on Rn with compact
support,
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N (f)(ai) = −1
2

∫
∂Ki

∂f

∂n
(ξ)σ(dξ),

where n denotes the outward normal for ∂Ki and σ is the surface measure on ∂Ki.

Proof. We prove for the case that i = 1. Let f ∈ C2
c (R2) and let r > 0 large enough so that the

support of f is strictly contained in ball Br := B(0, r). Since u
(1)
α takes value 1 on ∂K1 and 0 on

∂Ki for i ≥ 2, we have by the Gauss-Green formula

Nr(f)(a1) =
1
2

∫
Br\K

∇f(x) · ∇u(1)
α (x)dx +

1
2

∫
Br\K

∆f(x) u(1)
α (x)dx

= −1
2

∫
∂K1

∂f

∂n
(ξ)σ(dξ).

This proves the lemma. 2

In the second half of this section, we investigate the extensions of a specific one dimensional
absorbed Brownian motion and their characterizations.

Let a0 = 0 and {an}n≥1 be a sequence of positive numbers strictly decreasing to 0. Set

F := {an}n≥0, I0 := (−∞, 0), I1 := (a1,∞), In := (an, an−1) for n ≥ 2

and E0 := R \ F = ∪∞
n=0In. The Lebesgue measure on R is denoted by m.

Let X0 be the absorbed Brownian motion on E0, namely the Brownian motion being killed
upon hitting the set F. Since a0 = 0 is an accumulation point in F , we can not use Theorem 5.2
nor Theorem 5.3 in characterizing extensions of X0 to R. Instead we shall utilize Theorem 3.5 and
Theorem 4.4.

Proposition 6.3 Let X be an m-symmetric diffusion process on R extending X0 that has no
killings at F. Assume that the Dirichlet form (E ,F) of X on L2(R;m) has C1

c (R) as its core. Then
X coincides in law with the Brownian motion on R.

Proof. We will use Theorem 3.5 to the characterization of (E ,F). First we verify that condition
(4.8) is fulfilled, namely,

µ⟨Hu⟩({ai}) = 0 for every i ≥ 0 and for any u ∈ F . (6.1)

When i ≥ 1, (6.1) can be shown just as in the proof of Lemma 5.1 (as a special easier case). To
show (6.1) for i = 0, it suffices to prove µ⟨u⟩({0}) = 0 for any u ∈ F , because this is then true for
any u ∈ Fe and in particular for Hu with u ∈ F .

Suppose µ⟨u⟩({0}) > 0 for some u ∈ F . Since (E ,F) is local, for any ψ ∈ C1
c (R), we have

ψ(u) ∈ F and
E(ψ(u), ψ(u)) ≥ ψ′(0)2µ⟨u⟩({0}). (6.2)
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Take ϕ ∈ C1
c (R) so that ϕ(0) = 0 , ϕ′(0) = 1 and ∥ϕ′∥∞ = 1. For n ≥ 1, define ψn(t) = n−1ϕ(nt).

Clearly, ψn ∈ C1
c (R) with ψ′

n(0) = 1, ∥ψ′
n∥∞ = ∥ϕ′∥∞ = 1 and limn→∞ ψn = 0. Since ψn(u) is a

normal contraction of u, we have (cf. (E .4)′ of [11, page 5])

E(ψn(u), ψn(u)) ≤ E(u, u) for every n ≥ 1.

Moreover, by the mean-value theorem |ψn(u)| ≤ ∥ψ′
n∥∞|u| = |u|, we see that ψn(u) converges

in L2(R,m) to 0. Thus by the Banach-Saks theorem (see [15, Lemma I.2.12]), there exists a
subsequence {nk, k ≥ 1} such that wj := j−1

∑j
k=1 ψnk

(u) converges to some w in (F , E1). As

wj → 0 in L2(R,m), w = 0. On the other hand, since wj =
(
j−1

∑j
k=1 ψnk

)
(u), we have by (6.2)

E(wj , wj) ≥ µ⟨u⟩({0}) > 0 for every j ≥ 1.

This is a contradiction, as we just showed that limj→∞ E(wj , wj) = 0. Therefore (6.1) is true.
Denote by (E0,F0) and (Eref , (F0)refa ) the Dirichlet form of X0 on L2(E0; m0) and its active

reflected Dirichlet space, respectively. For a function f on R and n ≥ 0, we let fn := f |In . Then

F0 =
{
f ∈ L2(R; m) : fn ∈ H1

0 (In) for every n ≥ 0
}

,

(F0)refa =
{
f ∈ L2(R; m) : fn ∈ H1(In) for every n ≥ 0

}
,

Eref(f, f) =
∞∑

n=0

1
2

DIn(fn, fn) for f ∈ (F0)refa . (6.3)

By virtue of Theorem 3.5, (6.1) and the assumption, we have

F
∣∣
E0

⊂ (F0)refa and E1(u, u) = Eref
1 (u

∣∣
E0

, u
∣∣
E0

) for u ∈ F .

Since F is the E1-closure of C1
c (R), we get from (6.3) the desired conclusion

F = H1(R) and E(u, u) =
1
2
DR(u, u) for u ∈ F .

This implies that X is a standard Brownian motion on R. 2 .

Next let us take positive numbers {pn}n≥0 such that

α ≤ pn ≤ β, n = 0, 1, 2, · · ·

for some positive constants α, β, and we let

m̃(dx) :=
∞∑

n=0

pn1In(x)dx.

The absorbed Brownian motion X0 is symmetric with respect to the Lebesgue measure m but it
can also be viewed as an m̃-symmetric diffusion on E0 as has been observed in [3] already. Let
(Ẽ0, F̃) and (Ẽref , (F̃0)refa ) be the Dirichlet form of X0 on L2(E0; m̃) and its active reflected Dirichlet
space, respectively. They are given by
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F̃0 =
{
f ∈ L2(R; m̃) : fn ∈ H1

0 (In) for every n ≥ 0
}

,

(F̃0)refa =
{
f ∈ L2(R; m̃) : fn ∈ H1(In) for every n ≥ 0

}
,

Ẽref(f, f) =
∞∑

n=0

pn

2
DIn(fn, fn) for f ∈ (F̃0)refa . (6.4)

Proposition 6.4 Let X̃ be an m̃-symmetric diffusion process on R extending X0 that has no
killings at F. Assume that the Dirichlet form (Ẽ , F̃) of X̃ on L2(R; m̃) has C1

c (R) as its core. We
have then the following:

(i) F̃ = H1(R) and Ẽ(f, f) =
∞∑

n=0

pn

2
DIn(fn, fn) for f ∈ F̃ .

(ii) Let Ã be the L2-infinitesimal generator of X̃ on L2(R; m̃). Then f ∈ D(Ã) if and only if the
following holds:

f ∈ H1(R), f ′ is absolutely continuous on In for every n ≥ 0, f ′′ ∈ L2(R; m̃),
pn+1f

′(an−) = pnf ′(an+) for every n ≥ 1 and lim
n→∞

pnf ′(an+) = p0f
′(0−). (6.5)

Further
Ãf =

1
2
f ′′ for f ∈ D(Ã).

Proof. By making use of (6.4), (i) can be proved exactly in the same way as the proof of the
preceding Proposition. We now apply Theorem 4.4 to the proof of (ii). Condition (4.3) is obviously
satisfied in view of exact description of (F̃0)refa . Descriptions in (6.4) also imply that f ∈ D(L)
if and only if f ∈ L2(R; m̃)(= L2(R;m)), fn ∈ H1(In) and f ′

n is absolutely continuous for every
n ≥ 0, and f ′′ ∈ L2(R;m). In this case, Lf = 1

2f ′′. We further see from (i) that G′
F = H1(R)

∣∣
F
.

The flux functional (4.7) now reads for f ∈ H1(R) and ψ ∈ C1
c (R) as follows:

N (f)(ψ) =
1
2

∞∑
n=0

(
pn

∫
In

f ′ · (Hαψ)′dx + pn

∫
In

f ′′ · Hαψdx

)

= −1
2
p1f

′(a1+)ψ(a1) +
1
2

∞∑
n=2

pn

(
f ′(an−1−)ψ(an−1) − f ′(an+)ψ(an)

)
+

1
2
p0f

′(0−)ψ(0).

The lateral condition (4.18) holding for any ψ ∈ C1
c (R) with J

∣∣
F×F

= 0 and κ
∣∣
F

= 0 is therefore
equivalent to the equation (6.5), completing the proof of (ii) on account of Theorem 4.4. 2

The process X̃ characterized in the above Proposition is nothing but a diffusion process on R
with Feller’s generator Ã =

d

dm̃

d

ds̃
, where

s̃(dx) := 2
∞∑

n=0

p−1
n 1In(x)dx, and m̃(dx) :=

∞∑
n=0

pn1In(x)dx.
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By repeating the one-point skew extensions formulated in [3, Theorem 4.10], X can be con-
structed from the Brownian motion as follows. Let B− and B+ be the absorbed Brownian motions
on R− = (−∞, 0) and R+ = (0,∞), respectively. Let X01 be the subprocess of B+ on R+ \ {a1}
killed upon hitting a1. The process X01 is symmetric with respect to the measure

m1(dx) = p21(0,a1)(x)dx + p11(a1,∞)(x)dx,

and we can apply [3, Theorem 4.10] to construct a unique m1-symmetric diffusion X1 on R+

extending X01 by darning the hole a1 with entrance law µ1
t determined by

∫ ∞

0
µ1

t dt = m1.

We next consider the subprocess X02 of X1 on R+ \ {a2} being killed upon hitting the point
a2. X02 is symmetric with respect to the measure

m2(dx) =
p3

p2
1(0,a2)m1(dx) + 1(a2,∞)m1(dx) = p31(0,a2)dx + p21(a2,1)dx + p11(a1,∞),

and we can construct a unique m2-symmetric diffusion X2 on R+ extending X02 just as above.
Repeating this procedure and taking the limit as in [4, §3], we get a diffusion X+ on R+

satisfying the following: X+ is symmetric with respect to the measure

m+(dx) = 1R+(x)m̃(dx) =
∞∑

n=1

pn1In(x)dx

and it is actually an m+-symmetric extension of the subprocess X0,+ of X0 on E0∩(0,∞) = ∪∞
n=1In.

The process X+ has a finite life time and approaches to 0 almost surely.
We finally piece X+ together with B− at 0 via [3, Theorem 4.10] to get a desired diffusion X

on R which is symmetric with respect to

m̃(dx) = 1R−(x)dx + m+(dx)

and actually an m̃-symmetric extension of X0.

An analogous method works in constructing skew Borwnian motions on a Sierpinski gasket.
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