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Abstract

The purpose of this paper is to give an affirmative answer at infinitesimal generator level
to the 40 years old Feller’s boundary problem for symmetric Markov processes with general
quasi-closed boundaries. For this, we introduce a new notion of flux functional, which can be
intrinsically defined via the minimal process X in the interior. We then use it to characterize
the L2-infinitesimal generator of a symmetric process that extends X°. Special attention is paid
to the case when the boundary consists of countable many points possessing no accumulation
points.
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1 Introduction

Let E be a Lusin space and m a o-finite measure on it. Throughout this paper, we let X be an
irreducible m-symmetric right process on E, F be a non-m-polar, quasi-closed subset of £ and X°
be the subprocess of X killed upon leaving Ey := E \ F. The subprocess X° is then symmetric
with respect to the measure mg := m|g,. We assume that

X admits no jumps from Ej to F. (1.1)

One can view X as a general symmetric extension of X° from Ey to E = EgUF. A natural question
then arises:

How can we characterize X through quantities that are intrinsic to X°? (1.2)

*The research of this author is supported in part by NSF Grant DMS-0600206.



This question belongs to the boundary problem of Markov processes, dating back to W. Feller [9]
where the problem was raised after his discovery of the most general boundary conditions for the
one-dimensional diffusions [8]. We studied this problem (1.2) in [3] at the infinitesimal generator
level when F' is a single point and in [4] at the resolvent level when F' is a countable set. In
particular, in Section 4 of [3], we have answered question (1.2) in the special case that F' consists of
only one point a by characterizing the L?-generator of X by means of a lateral condition described
in terms of fluz of X at the point a. We have seen in [3, §4] that the results in [5] enable us to define
the notion of the flux using the reflected Dirichlet space of X, which is intrinsically determined by
X0 under the condition (1.1).

The aim of the present paper is to give an answer to question (1.2) at the generator level for the
general case where F is a quasi-closed set. In describing the lateral condition on the L2-generator
A of X, we will introduce a new notion of the flur functional defined in terms of the reflected
Dirichlet space of XV.

In §2 and §3 of this paper, notions of reflected and active reflected Dirichlet spaces for X will
be reviewed and their relations to the Dirichlet space of X will be investigated by reformulating
and further extending the related results in [5] and [16]. In particular, we shall present an explicit
description of the orthogonal decomposition of the active reflected Dirichlet space with respect to
the a-order form.

In §4, we shall formulate lateral conditions involving the flux functional to characterize the
domain D(A) of the L2-generator of X. They only involve the quantities intrinsic to X°, the
restrictions to F' of jumping and killing measures of X and the restriction Cr of a core C of (F, &)
to F'. We shall show in §5 that, when F'is a a countable set so that each point in F' can be separated
from the rest of points in F' by a quasi-open set, we can take as Cr the space of functions on F
with finite support, making the lateral conditions to characterize A completely intrinsic.

Two examples of the multidimensional Brownian motion are given in section 6 to show that the
notion of flux introduced in this paper is a genuine extension of the classical one.

We remark here that in [4] we have given an answer to (1.2) at the resolvent level for a Markov
process X having a weak dual X and for a countable F. Indeed, we have represented in [4, §2]
the resolvent of X explicitly in terms of the Feller measures of X" (typical intrinsic quantities for
X0 and conversely constructed in [4, §3] a duality preserving extensions of X and its dual by a
method of darning countable holes. When X° is symmetric, the constructed process is symmetric
and we can apply to the latter the present characterization of its L?-generator in terms of the flux.
See [4, §4.1] for such an example of the extension.

In sections 4 and 5 of [3], one point skew extensions of X" are formulated and examined by chang-
ing the symmetrizing measure mg by multiplying a different positive constant on each irreducible
component of X°. An the end of section 6 of the present paper, we shall apply our characterization
in terms of the flux functional of section 4 to a skew extension X of a one-dimensional absorbed
Brownian motion X? on R\ F where F is a countable set possessing an accumulation point. The
countably many point skew extension X will also be constructed from the one-dimensional Brow-
nian motion by repeating the one-point skew darning discussed in [3, §4].



2 Reflected Dirichlet space of X"

Let (€,F) be the Dirichlet form on L?(E,m) associated with the symmetric right process X sat-
isfying the conditions stated in §1. Then (&, F) is irreducible and quasi-regular. In view of the
quasi-homeomorphism method in [6], without loss of generality, we may and do assume that F is
a locally compact separable metric space, m is a positive Radon measure on E with supp[m] = F,
(€,F) is an irreducible regular symmetric Dirichlet form in L?(E,m), and X = (X;,P,,() is an
m-symmetric Hunt process associated with (£, F). We will use (£,F.) to denote the extended
Dirichlet space of (£,F) and & := &€ + (-, *)r2(g,m). The expectation with respect to the proba-
bility measure P, will be denoted as E,. Throughout this paper, we use the convention that any
function defined on F is extended to Ey := E U {9} by taking value 0 at the cemetery point 0.
For reader’s convenience, let’s recall the following definitions from [15] and [11].

Definition 2.1 (i)An increasing sequence of closed sets {F}, },>1 of E is an E-nest if and only if
Un>1FF, is E1-dense in F, where & = & + ( )L2(E,m) and

Fr, ={ueF: u=0m-ae on E\ F,.

(ii) A subset N C E'is E-polar if and only if there is an E-nest {F}, },>1 such that N C Nyp>1(E\Fy).

(iii) A function f on E is said £-quasi-continuous if there is an E-nest {F}, },>1 such that f|p, is
continuous on F), for each n > 1, which is denoted in abbreviation by f € C({F,}).

(iv) A statement depending on = € A is said to hold &-quasi-everywhere (E-q.e. in abbreviation)
on A if there is an E-polar set N C A such that the statement is true for every z € A\ N.

(v) A subset A C E is said to be quasi-open (quasi-closed) if there is an E-nest {F}},>1 such that
Fj, N A is relatively open (relatively closed, respectively) in Fj, for each k > 1.

It is known (cf. [11] that a set A C E is E-polar if and only of Cap(A) = 0, where Cap is
the 1-capacity associated with the Dirichlet form (£,F). It is also known that It is known that
every element v in F. admits a quasi-continuous version. We assume throughout this section that
functions in F, are always represented by their quasi-continuous versions. In the sequel, the abbre-
viations CAF, PCAF and MAF stands for “continuous additive functional”, “positive continuous
additive functional” and “martingale additive functional”, respectively, whose definitions can be
found in [11].

Since the quasi-closedness is invariant under the quasi-homeomorphism, we may further assume
that the set F' is a quasi-closed subset of E having positive 1-capacity with respect to (£, F) and
satisfying condition (1.1). Put By = E\ F and let X° = (X, PY (%) be the subprocess of X
killed upon leaving FEy, which is known to be an mg-symmetric special standard Markov process
on Ey, where mgo := m|g,. The Dirichlet form of X" on L?(Ep;mg) is denoted by (€%, F9) which
is described as

Fo={ueF: u=0 qe onF} and Sozg‘foxfo.
This Dirichlet form (£°, FY) is known to be quasi-regular and transient ([5, Lemma 2.2]). When
restricted on Ejy, the £%-notions coincide with £-notions. For example, a set A C Ej is E-polar if



and only if it is £%polar. See [5, Lemma 2.2] for details. In the sequel, for simplicity, we will drop
the prefix “€-” or “€°-” from &-q.e. or £%-q.e., etc., when it is clear from the context.

One can view X as a most general symmetric extension of X°. To characterize the L?-generator
of X in terms of the quantities intrinsic to X0, it is useful to consider a universal extension of
(€9, F9) called the reflected Dirichlet space.

The notion of the reflected Dirichlet space of a transient regular Dirichlet space F* was first
introduced by M. L. Silverstein in [16] and [17] in two different ways, which were later on made
precise and shown to be equivalent in [2] by the first author of the present paper. The first way is
to add to F° the space of all harmonic functions on Ey having finite Dirichlet integrals by using
the equilibrium measures ([17] and [2]) or the energy functional ([5] and [3]), while the second way
is to consider the space of all functions on Ey with finite Dirichlet integrals by using the energy
measures of u € Fio. (see [16] and [2]). Note that the results in [2] and [16]-[17] are applicable here
for our quasi-regular Dirichlet form (€, F°) due to its quasi-homeomorphism (see [6]) to a transient
regular Dirichlet form on a locally compact metric space.

We now recall the definitions, with some improvements over those in [5] and [3]. In particular,
we will not apply a quasi-homeomorphism to X° and (€%, F°) rendering them into a Hunt process
and a regular Dirichlet form as we have done in [3].

We first introduce some notions related to the standard process X = {X? P9 ¢} on Ey.
We will use the convention that X, = 9 and any function f on Ej is extended to Ep U {9} by
setting f(9) = 0. Let (€, {G?}o<t<co) be the filtered sample space of X where G2 (resp. GY) is
the o-algebra generated by {X!:0 < s < oo} (resp. {X?:0 < s <t}.) For a probability measure
pon Ey U8, we denote by Gh, (resp. Gf') the PY-completion of G, (resp. Gf in G&,)

A nearly Borel set A C Ej is called X% invariant if P%(Q24) = 1 for every = € A, where

Qa={weQ: X(w) € Aand X2 (w) € A for every t € [O,(O)}.

Then the restriction XY|4 defined in a natural way is a standard process on A. The minimum
augmented admissible filtration {G{'}o<¢<oo for this standard process can be described as follows
(cf.[11]):

= (] G'nQ  0<t<oo,
uEP(As)

where P(Ap) denotes the family of all probability measures carried by Ap := AU {9}. When
A = Ey, we write G, for GF°.

We say a random variable @ on ) is X°| 4-measurable if the restriction ®|q,, is measurable with
respect to gé. The random variable @ needs not to be defined on 2\ Q4 in this case. Recall that a
nearly Borel set N C Ej is called X%-properly exceptional if Ey\ N is X -invariant and m(N) = 0.

The following result is needed in our definition of terminal random variable and is known to
the experts. For completeness, we give a proof here by using quasi-homeomorphism [6] between my
symmetric Markov process (X?, P?, ¢%) and symmetric Hunt process on a locally compact separable
metric space.



Lemma 2.2 Let A:= {¢° < 0o and Xgo_ exits and takes value in Ey}. Define

o, v, JW) fweA o+ JWw) fwgA
G (W) = {oo if wg A and CP(w> o {oo if weA’

Then for q.e x € Ey, P2-a.s., C? is a totally inaccessible stopping time with respect to {Gy, t > 0}
and ¢, is a predictable stopping time with respect to {G,t > 0}. The stopping times C,? and (2 are
called, respectively, the totally inaccessible part and the predictable part of ¢°.

Proof. Since the process (X% PY, ¢°) is mg symmetric on Ey, by [15] its associated Dirichlet
form (£°, F°) is quasi-regular on Ey. Thus by [6], (£, F°) and the process (X, P9, (") is quasi-
homeomorphic to a regular Dirichlet ~for@ (50 ]_;0 ) on a locally compact separable metric space Eg
and its associated Hunt process (X 0 PY (Y% on Ey. In fact, if we let ¥ be the quasi- homeomorphism
from Ey to Ey constructed in [6], then X 0 can be realized as the pullback i image of X X0 under ¥,

that is X0 = U—1(X?) for t < ¢° and ¢° = ¢°. Since X0 is a Hunt process in Eq, X~ € EyU{d},

where 0 is a one-point compactification of EQ. Define A := {CO < o0 and Xgo_ € Eo}. Clearly
éQ::EO-lg+m~lgc and ES::ZO']-EC—’_OO':[Z

are the totally inaccessible and predictable parts of 50, respectively. By quasi-homeomorphism W,
it follows that
P =¢" 14400 14 and CSzCO-lAc—i-oo-lA

are the totally inaccessible and predictable parts of (¥, respectively. O

Definition 2.3 (1) We call a random variable ® = ®(w) on € a terminal random variable of X° if
there exists an X -properly exceptional set N C Ey such that

(i) @ is XO| g\ y-measurable;

(i) for every w € Qp\ N, P(biw) = D(w) for every ¢ < (Y(w), where 6; is the shift operator on
and

(iii) {® = 0} D {¢? < oo}, where (? is the inaccessible part of the lifetime ¢°.

where 6, is the shift operator on 2 and U% denotes the hitting time of X} for a set B C Ey.
(2) A function f on Ej is called X'-harmonic if, for any quasi open subset D with compact
closure in Fj,

Hf(XO )

] <oo and f(z)=E? [f(Xgo )] for q.e. x € Ey,
Eg\D

9Eo\D

where O'%O\D :=inf{t > 0: X € Ey\ D} denotes the first time of Ey\ D by X°.



Note that XV is the subprocess of the Hunt process X killed upon leaving Ey. In view of the
proof of Lemma 2.2, condition (iii) of the definition above for a terminal random variable @ of X°
implies that for any compact set K C Ey, {¢ # 0} C {U%O\K < oo} P,-as. on Qg \y for any
x € Fy \ N.

Denote by (F2, &%) the extended Dirichlet space of (€9, F0).
Lemma 2.4 (i) Let @ be a terminal random variable with EY [|®]] < co for q.e. © € Ey. Then
h(z) := EY [#], z € Ey. (2.1)
is XY-harmonic in Eg. Moreover, for any E°-nest { A} consisting of compact sets,

lim h(X%) = P-a.s. and in L'(PY) for q.e. x € Ey,

k—oo k

0_ 0
where o}, = T B\ Ay

(ii) For any f € FO and for stopping times {9,k > 1} as in (i),

e

khlgo f(XO )=0 in LY(P2) and in probability (PY) for q.e. x € Ey.
Proof. (i) That h is X°-harmonic in Ey follows immediately from the definition of a terminal
random variable and the assumption (1.1) for X. Suppose {Ag, k > 1} is an £%nest consisting of
compact sets. Let 59 = o9 A ¢°. By Lemma 2.2 (i) of [5], we know that, for q.e. = € Ej,
lim &y = ¢° P,-a.s. (2.2)
k—o00
Let N C Ej be a properly exceptional set such that the conditions (i), (ii) and (iii) for the terminal
random variable @ of X" and property (2.2) hold on Ey \ N and @ is P,-integrability for every
x € Ey\ N. By setting A = Ey \ N, we then have, for every z € A and k, PY-a.s.

A A A
h(X50) = 150 oy Egcgg @] = Eg [95 © 050 - 11,0 coy gag} =E; [1{ag<<0}45 | gag] =E; [95 | gag} )

By letting k£ — oo, we get for any = € A

lim h(X,0) =EJ [ [G] =¢  Pl—as. and in L'(PY)

k—o0
because o (ugozlgg‘o) = Q’(;i by virtue of (2.2).
k
(i) In view of the definition of £%nest { A}, the proof is the same as that for [3, Lemma 4.2]. O

We denote by {Pto,t > 0} the transition semigroup of X°. For functions u,v on Ey, we let
= [p u Fo x)mo(dr). The XY-energy functional of an X?-excessive measure 7 and an

X 0 -excessive functlon u is defined by
1
L(O) (777 ) = hlm (77 nPt()? > (23)

The next lemma can be shown in the same way as the proof of [3, Lemma 4.3] (see also [2,
Theorem 1.8] and [16]).



Lemma 2.5 Let @ be a terminal random variable with E? [@2} < oo for q.e. x € Ey. Let h(x) be
the function defined by (2.1) and define

g(z) = EY [9°] — h(z)?, z € Ey, (2.4)

Mh(t) = h(X?)Lyccop + PLlyscoy — h(XG) ¢ >0.

Then g is X°-excessive, {Mh(t)}i>o0 is a PQ-square integrable, uniformly integrable martingale
additive functional of X° and

g(x) = PPg(z) + E [(Mh(t))ﬂ , t>0, q.e. z € Ep.

In particular
1
§L(O)(m0,g) = e(Mh)7

where L) denotes the energy functional of an X°-excessive measure and an X°-excessive function
defined by (2.3) and e(A) denotes the energy of an additive functional A defined in [11, §5.2].

Now let

N = {&: terminal random variable with E2[#?] < 0o for q.c. z € Ey and L) (my, g) < oo},
(2.5)
where g is defined by (2.4) for @. The reflected Dirichlet space ((FO)rf, ) of (F0,£9) are then
defined as follows:

(FO)ef = F) + HN, (2.6)
where
HN = {h: h(z) = E;[®]| for q.e. x € Ey with ® € N}. (2.7)
For f = fo+h € (FO)ef, where fy € F? and h = E.[¢] with & € N, we let
E°N(f, 1) = E°(fo, fo) + 511 (mo, 9), (2.8)

for g defined by (2.4) for .

We note that the space F2 N HN consists only of the zero function because of Lemma 2.4 and
hence the above definition makes sense. (2.8) gives a pre-Hilbertian norm on (F°)*f and, by the
polarization, we get £™f(h, fo) = 0 for functions h, fo as above. On account of Lemma 2.5 and
[2, Theorem 1.8], it is also clear that the above definition of the reflected Dirichlet space coincides
with the one given in [2] when (£°, F°) is regular and transient.

The quadratic form ((F0)ref, £ is called the reflected Dirichlet space of X°. In the rest of this
section, we shall state its basic relationship to the extended regular Dirichlet space (Fe, &) of the m
symmetric Hunt process X = (X;, P, () on E by reorganizing the results obtained in [5]. To this
end, we need the following notion of Feller measures. The cemetery for X is designated by d and
any numerical function ¢ on E is extended to Ey := E U {3d} by setting ¢(J) = 0 by convention.

Define for ¢ € B(F)y,

Ho(z) := E; [p(X5,); op < o0 forz € E,



and ¢(z) := 1 — H1(z) = P,(0p = o). For ¢, psi € B(F);, define
Ulp @) = L°((Hy) -mo, Hy) and  V(g) := LO((Hyp) - mo, q). (2.9)

Here L° is the X%-energy functional introduced by (2.3).

By Lemma 2.3(i) of [5], U is a symmetric measure on F' x F'; which will be called the Feller
measure for F'. The measure V on F will be called the supplementary Feller measure for F'. Note
that under condition (1.1), these Feller measures are intrinsically defined by X°. Indeed we have
the identity for ¢ € B(F);"

Ho(z) = E? [¢(Xgo_); X% €F, " <oo0|l, ack (2.10)

To see this, let o7 = inf{t > 0: X;_ € F'}. Then, in view of [1, p 59], we have P, (¢} < op) =0
for any z € E, while (1.1) implies that P, (6 < 0%) = 0 for any « € Ej. Hence (2.10) follows.
Clearly (2.10) holds for q.e. x € Ejy for any nearly Borel function ¢ on F with H]p|(z) < oo for
qe x € k.

We also need to consider the Lévy system (N(z,dy), H) for the m-symmetric Hunt process X
on E. The Revuz measure of the PCAF H of X will be denoted as py. We define

J(dz,dy) = N(z,dy)pp(dr) and rk(dx) = N(z,0)pm(dz) (2.11)

as the jumping measure and the killing measure of X (or, equivalently, of (£, F)). We point out
that the jumping measure J defined here is twice the jumping measure J defined in [5].
In the following, we will use d to denote the diagonal of £ x E. For u € Fe, ) and ,ufw denote

the Revuz measures of the PCAFs (M") and (M™°) of X, respectively. Here M*" is the MAF of
X in the Fukushima’s decomposition:

u(Xy) —u(Xo) = M + N, t>0

)

where N is the CAF of X having zero energy, and M™¢ is the continuous martingale part of M".
Recall that every member u in F, is represented by its quasi-continuous version. So in particular,
Hu(z) := E; [u(X,,)] is well defined for q.e. = € Ey.

Theorem 2.6 We have the inclusions

{(Hu)|p, ru € Fe} C HN and Felg, C (FOyret, (2.12)
For u,v € F., it holds that

re 1 C
Eu,v) = & f(u’Eo7U‘Eo)+ 7N(Hu,H'U)(F)

2
1
+2/FXF\d(u(€)—U(77))(v(§)—v(n))J(dé,dn)+/Fu(§)v(§)n(dg), (2.13)
and
ref 0 1
E (ulpy,vlEy) =& (uo,vo)+2/FXF\d(u 3 —u(n))(v(ﬁ)—v(n))U(dg‘,dn)Jr/ w(€)v(E)V(dE),

where ug := u — Hu and vg := v — Ho.



Proof. This theorem follows from Theorem 2.7 and Theorem 3.4 of [5]. Though it is assumed that
X has no killings inside Ejy for [5, Theorem 3.4], the present much weaker condition (1.1) suffices.
In fact, we get from (2.10) the expression

Hyo(z) =E2®] for &= P(Xeo-)lix, eF c<oc} a7 € E, (2.15)

for any nearly Borel function ¢ on F with H|p|(z) < oo q.e. Clearly @ is a terminal random
variable of X°. The rest of the proof of Theorem 3.4 in [5] remains valid with no change.
By [5, (3.14)] combined with the proof of [5, Theorem 2.7], we have for u,v € F,

g(“? U) - 5ref(u’E0a U‘Eo)

= Suman () + 5 [ a©un(a)
= L F L J(d¢, d d
= gl (F) 45 [ () —u)0©) — o) dn) + [ wolence)

This proves (2.13). Note that the jumping measure J introduced in [5] is one half of the one in
(2.11) of this paper. By [5, Theorems 2.7 and 2.11], we have for u,v € F,

E(u,v) = E(ug,vp) + E(Hu, Ho)

= E(u10)+ a4 3 [ 06) =)0~ ()0 -+ 7))
+ [ wEe W + (),
This together with (2.13) yields (2.14). O

3 Orthogonal decomposition of active reflected Dirichlet space

Recall that (F, &) and (%, F°) are the Dirichlet forms of X on L?(E;m) and X° on L?(Ey, mo),
respectively, while the reflected Dirichlet space ((F0)rf, £r¢f) of (£9, F0) is introduced by (2.6) and
(2.8). In [2], the active reflected Dirichlet space (F°) ' of (£°, F9) is defined to be

(FO)t = (FO) N L*(Eo, mo), (3.1)

and it is shown in [2, Theorem 3.10] that (£™f, (FO)r!) is actually a Dirichlet form on L?(Fg;my).
Since F = F, N L?(E;m), we deduce from Theorem 2.6 that

0\ref
Flg, € (FR (3.2)

For a > 0 and a terminal random variable @ of X°, we put
H°G(z) == E°[#] and HOd(z):= E? [e—a@@} . z€k,
whenever the expectations make sense. We also define for terminal random variables @, ¥ of XY,
Ua(9,¥) := o(HLP, HU).

Here and in what follows, we denote by (u,v) the integral on u(x)v(x)mo(dx).

9



Lemma 3.1 If @ is a non-negative terminal random variable of X° with H'®(x) < oo, then

H®(z) — H ®(x) = aGIHYd(2),
Hjo(z) — HOO(2) = (o — B)GOHYP(z)  for a, B> 0.

If @ is a non-negative terminal random variable of X, then Uy (P, ®) is increasing in o > 0 and
LU (®,9) is decreasing in o > 0.

Proof. We have

CO
H®(z) - HY®(z) = oE) / ea(cos)ds-@]
0

= aEg/ e_ago((’s)@(ﬁsw)1{s<40}d5}
0

= aEﬁ/ EXg(eaCO@)1{8<C0}d8:|
LJO

= aGIH®.

The second identity can be obtained similarly. Suppose Ug(®,®) < oo for # > 0 and a non-negative
terminal random variable @. Then it follows from the second identity and the symmetry of GO that,
for 8 > a,

Us(®,9) — Ua(®,®) = (3 — o) (H3®, H'®) — (H®, aGOHD))

which is non-negative because aGYH’® < H®. The decreasing property of éUa(@, @) is obvious.
O

We introduce a subspace of terminal random variables by
Ny ={@ e N: U(|?],|P]) < oo}. (3.3)

Proposition 3.2 A terminal random variable @ of X° is in Ny if and only if HO|®| € (FO)ref
for some (and hence for all) o > 0 and

D =100} P P -a.e. for q.e. z € E. (3.4)
In this case
HY¢ = H'® — oGiH2 & (3.5)
represents the unique decomposition of HO® as a sum of elements of HN and F?0. Furthermore
EC' Ao HOP) = £ (HY"D, HO®) + U, ($.D). (3.6)

where % (u,v) = £ (u,v) + au,v) for u,v € (FO)ref,

10



Proof. It suffices to prove this Proposition for non-negative terminal random variable @ of X09.
By Lemma 3.1,
H® = oGYH® + HY 0.

Suppose @ € N1. The above identity implies not only (3.5) but also
a(HYD HOP) + o*(HY 0, GYHY D) = U, (P, D). (3.7)

Since U, (®,P) < 0o, this means first that HO® € L?(Ey;mg) and secondly that HY® is of finite
energy integral with respect to GY and accordingly GJHO® € F0. Hence H,® € (F°)if by (3.5).
Furthermore, (3.5) and (3.7) yield (3.6).

We next prove (3.4). To this end, consider an E%nest {A4;} and let ¢ be the hitting time of
Eo \ Ay, for X°. By Lemma 2.4 (i),

lim (H®)(X

k—o0

)= P’—as. for qe. z € Ep.

0
9k

Since the function H @ is in L2(Ep;mg) and is a-excessive relative to X, it is finite q.e. on FEj.
So by an analogous argument to that for Lemma 2.4(i),

lim e % (Hg@)(Xag) = e Pl—as. for qe. x € Ey,

k—o0

and, consequently, in view of (2.2)

. . _ 0_,0
lim (H&@)(ng) = klfﬂoe (¢ Uk)¢1{<0<oo and o0<oc} = PLic0co0} Pg—a.s. for q.e. z € Ey.

k—oo

Identity (3.5) and Lemma 2.4(ii) then yield (3.4).
Conversely, suppose that a non-negative terminal random variable @ of X° satisfies (3.4) and
HO® € (FO)ref. Then,
H® = HU + f, (3.8)

for some ¥ € N and f € Fy. In the similar manner as in the preceding paragraph where we have
used (3.5), we can draw conclusion from (3.8) that

U = 1icocooy o P,-a.s. for q.e. z € Ej.

Therefore we get ¥ = @ by our assumption (3.4).
Now the identity (3.8) together with Lemma 3.1 yields fo = GYH.® € F2. We note that if
GYu € F? for some non-negative measurable function u on Ejy, then

E%GOu, Gu) = (u,Gu) < oo and E°(GYu,w) = (u,w) for every w € FV. (3.9)

The above can be proved by approximate u by functions u, = 1{4>1/n} (uAn), where g is a reference
function for the transient Dirichlet form (£°, F°) (cf. [11, Theorem 1.5.4].) Therefore we have

(H20, GOHY®) < 0.

This combined with (3.7) shows that U, (®, ®) < oo, namely, & € Nj. O
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Theorem 3.3 Define the subspace N1 of N by (3.3). Then for every a > 0,
(FOref — HONy + FO = {H°P + fy : d € Ny, fo € F°}. (3.10)

The above decomposition is an E -orthogonal decomposition. Further we have the following eax-
pression of the a-order form Eéef of an element f = HO® + fo, & € Ny, fo € F°, of (]-'O)fzef:

EXN(S, f) = EN(HD, HD) + Uy (P, P) + EY( fo, fo)- (3.11)

Proof. By the equivalent definition of reflected Dirichlet space as the space of all functions on Fy
with finite Dirichlet integrals (see [2, Theorem 3.9]), we see immediately that the active Dirichlet
space (£, (FO)ref) is in fact the reflected Dirichlet space of (€2, F9). Note that (£9, F°) is the
Dirichlet space of the a-subprocess Y of X, and Y; = X?/\T where T' is an exponential random
variable with mean 1/a that is independent of X°. Thus for every u € (F°):, by the definition
(2.6) for (£9, F°) and Lemma 2.4, u has the following £:*!-orthogonal decomposition

u(z) = fo+ Eg [klim U(YUEO\Ak )] , x € Ey, (3.12)

where fo € FV, {Ag, k > 1} is an £%nest consisting of compact subsets of Ey and
OE\Ay, ‘= inf{t >0:Y; € Ey \ Ak}
On the other hand, as u € (F0)f C (F0)f by (2.6) and Lemma 2.4,

@ := lim u(XOO

k—o0 TEo\ Ay,

is a terminal random variable of X%. Therefore, in view of (2.2),

lim u(YgEO\Ak) = lim U(XOO /\T)I{CO<T} = @1{C0<T} =@ licoory,

k—oo k—o0 TEo\Ay,

where @1 = @ 1100} So (3.12) becomes

u(z) = fo(x) + Ep [D1 Lycocry] = fo(z) + E; [e*acogpl} = fo(z) + HL®: ().
Applying the above argument to |u| in place of u, we deduce from Proposition 3.2 that ®; € Nj.
This proves that (F°):f ¢ 70+ H,N;. The other direction HON; + F0 c (FO)f 0 L2(Ey, mo) =
(FO)ref is obvious. This proves (3.10).
The £*f-orthogonality of the decomposition (3.10) can be also seen by (3.5) and (3.9):
Ex (HL®, fo) = —a’(GEHLD, fo) + a(He®, fo) =0, @ €Ny, fo € F.

(3.11) then follows from (3.6). O

Remark 3.4 See [16, Theorem 14.5] for a related result.
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In relation to the given process X on F, we let
H,p(z) = E; [e *“To(X,,)], z€E, (3.13)

for a > 0 and for any nearly Borel numerical function on F' with Hy|p|(z) < oo for q.e. z € E.
Note that Hy; ¢ coincides with Hep introduced in the preceding section. Analogously to (2.15), we
then have for x € Ey,

H,p(z) = HO®(x) for @ = QD(Xco_)]_{XC()ieF, C0<o0} (3.14)

This @ is obviously a terminal random variable.

For v € F and « > 0, we have the following &,-orthogonal decomposition
u=Hyu+ foy with fo € FO.

Since Hoéu‘E0 € (FO)ref by (3.2), we conclude from (3.14) that Hau‘E0 € HON; and u € (FO)ret.
The following theorem now follows from Theorem 2.6 and (3.11).

Theorem 3.5 Fix oo > 0. We have the inclusions

{(Hou)|p, tu € F} C HN, and Flg, C (FO)ret, (3.15)

For w,v € F, it holds that

Ealu,v) = E;ef(u|Eovv|Eo) + %M?Hu,Hv)(F)
45 [ @)~ un)e© — )T, dn) + [ w@u©n(de).  (3.10)
2 Jrxr\d 7 F 7
and
ggzef(u‘E()? U‘Eo) = gg(uov UU) + gref(Hau’E()? HO&U|E0)
= &)+ [ ()~ ulm)(v(©) ~ o)V, dn)
FxF\d

+ /F w(€)u(E)V (dE) + Un(u,v) (3.17)

where uy = u — Hau and vg := v — Hyv and Uy (@, v) = a(Hap, HY) for p, ¢ € BL(F).

4 Flux and lateral condition

A nearly Borel measurable function f on Ej is said to have an X°-fine limit function on F if there
exists a nearly Borel measurable function 1 on F' such that

P <1¥<% FX) =v(X%_ )| ¢®<ooand X%_ € F) =1 for qe. z € Fy.
t

In this case, we write ¢ as vf and call vf the X -fine limit function of f on F.

13



Lemma 4.1 (i) If fo is the restriction to Ey of an X-q.e. finely continuous function f on E,
then fo admits an X°-fine limit function f|g on F.

(ii) If f € Fe, then f admits an X -fine limit function f|p on F. If f € F2, the f admits zero
XO-fine limit function on F.

Proof. (i) By [11, Theorem 4.2.2],
P, (ngrtl f(Xy) = f(Xy—) forevery t € [O,C)> =1 for qe. ze€ X.

The assertion (i) follows from our assumption (1.1) and the remark following (2.10).

(ii) The first assertion is immediate from (i). The second follows from the fact that any function
in F? is a quasi-continuous function in F, vanishing q.e. on F. |

Let us put
Hp = {0 € B(F) s Halul € (P51} (4.1)
In view of Proposition 3.2, (3.14) and (3.15), this space is independent of o > 0 and

H oHp c HONy ¢ (FO*f and  4(F) C Hr. (4.2)

Consider the following two conditions:
If fe (FO)ref admits an XO-fine limit function 0 on F, then f € F°. (4.3)

P)(Xpo_ €F | (" <o0)=1 for q.e. x € Ey. (4.4)

These are assumptions imposed on F in relation to the process X°. For instance, when X0 is
the absorbed Brownian motion on the interval (0, 1), then 0 = H}(0,1) and (FO)rf = H1(0,1).
Condition (4.4) is satisfied if F' = {0,1} (in which case X is the reflected Brownian motion on
[0,1]) but it is not satisfied when F' = {0} (in which case X is the Brownian motion on [0, 1)
reflected at 0 and absorbed at 1). On the other hand, when X° is a diffusion on (0, 00) for which
0 is regular and oo is non-regular, then condition (4.3) is fulfilled if F' = {0} because it is known
that 70 = {f € (F)*f . f(0+) = 0} in this case.

Lemma 4.2 (i) For 1 € Hp, the function Hatp has X°-fine limit function 1) on F for any o > 0.
(ii) Condition (4.3) is implied by condition (4.4).

Proof. For @ € N, let h(z) := E.[®] with z € Ey. By Lemma 2.5, {Mh(t)};>0 is a P%-square
integrable martingale for q.e. © € Ey. Combining this with Lemma 2.4(i) and (2.2), we have

l%r% (X)) =&  Plas. on {¢’ <o} forqexc Ey. (4.5)
t1¢
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(i) Let ¢ € Hp. By (3.5), (3.14) and Lemma 4.1(ii),

l#rc% H oy (X?) = (1 - 1F)(Xgo_) P-as. on {¢¥ < 0o} for q.e z € Ey,
t

which implies that Hat) admits ¢ as an Xfine limit function on F.

(ii) Suppose that a function f € (F°)'f admits an X°-fine limit function 0 on F. By Theorem
3.3 and (3.5), we can decompose f as f(z) = EV[®] + fo(x) with & € N; and fo € F?. By Lemma
4.1(ii), vfo = 0 and so & - LiX,0_eFco<oc} = 0 by (4.5). (3.4) and condition (4.4) yield that ® =0
and consequently f = fo € FO N L?(Ey;mg) = FO. O

Let us introduce a linear operator £ on L?(Eg;mg) specified by the following:
FeEDL) with Lf =g (e L*(Eoim)),

if and only if
fe(FO*  with  &£™(f,v) = —(g,v) for every v e F°. (4.6)

Lemma 4.3 Assume condition (4.3) holds. Suppose u € D(L) having an X-fine limit function
yu € Hp on F and
Lu = au for some o > 0.

Then u = Hy(yu) on Ey

Proof. By (4.6), u € (FO)rf and £ (u, w) = 0 for any w € FO. Define ¢ := yu and ug := u—Ha.
Then ug € (FO)f by (4.2) and y(ug) = 1 — 3 = 0 by Lemma 4.2. Hence by assumption (4.3),
ug € FO.

Since by (4.2) Hy® € HONj, we have by Theorem 3.3 that

EX (Hy 1, w) =0 for every w € FU.

It follows then
Ert(ug, w) = £ (u — Hotp,w) =0 for every w € FC.

Taking w = ug yields £ (ug, ug) = 0 and therefore u = Hytp = Hy (yu). O

For f € D(L) and ¢ € Hp, define

N(f)(@ = gref(f’ Ha¢) + (£f7 Haw)LQ(Eo,moﬁ a>0. (47)

Note that for a and 8 > 0, Hyt) — Hgyy € F° by Lemma 3.1 and (3.14). Hence N (f)(¢)) defined
by (4.7) is independent of the choice of & > 0 in view of (4.6). We call N'(f) the fluzx functional of
f being regarded as a linear functional on the space Hp.

In the remaining of this paper, we assume that

m(F)=0 and [{pyy (F) =0 for every u € F. (4.8)

15



Denote by A the L?-infinitesimal generator of X. That is, A is the self adjoint operator on
L?(E;m) (= L*(Eo;mp)) such that

f € D(A) with Af =g if and only if f € F with £(f,v) = —(g,v) for every v € F. (4.9)

Recall the operator £ is defined by (4.6). We see from Theorem 2.6 that £ is an extension of
A in the sense that
DA) CcD(L) and Af=Lf for f e D(A). (4.10)

We aim at formulating a lateral condition that gives a characterization of a function in D(L) to
be in D(A). To this end, we need to introduce a function space on F' on account of Theorem 3.5.
For a Borel function ¢ on F', we let

1

o=y [ (Wl - elnPU+ D) dn + [ o V). @)
FxF\d F

We define a function space Gg on F' by
Gr = {Borel function ¢ on F : £¥(p, ) + Ui(|¢|, |¢|) < oo} (4.12)

The inner product £ is well defined on the function space G by polarization. For each a > 0, we
define

EFAl(p,0) == EF (0, 9) + Ua(p, ), @, ¥ € Gp. (4.13)

Under the present condition (4.8), Theorem 3.5 implies that
VF)CGr  and  Eo(Hap Hot) =N p,0) forp, v eq(F).  (414)

Let C be a core of the regular Dirichlet space (£,F): C is a subset of F N C.(F) which is dense
in (F,&1) and in (Ce(E), || - |lo), where C.(E) denotes the collection of continuous functions on E
with compact support. Denote by Cr the space of functions in C restricted to F.

It follows from (3.16)-(3.17) that (H;(yF), &) is a closed subspace of the Dirichlet space (F, 1)
spanned by H;(Cr). Therefore (4.14) implies that v(F) is a closed subspace of (G, EIF1)) spanned
by Cg. In other words, if we define

Gy == the closure of Cr in (Gr, EF), (4.15)

then
1) =G (116

The identity (4.16) means that the trace space (F) is completely described by the Feller measures
U, V, Ui, the restrictions to F' of the jumping measure J and the killing measure x of X, and the
function space Cp.

Now we are in a position to present our main theorem.

Theorem 4.4 Assume that condition (4.8) holds.
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(i) Suppose f € D(A). Then f € D(L) and f satisfies the lateral conditions that
f admits an X°-fine limit function vf € G, (4.17)

and for every v € G,

N(f)(w)Jré/FxF\d(('yf)(é) — (v /(@ (€) —w(n))J(dﬁ,dn)+/F(7f)(€W(§)f<a(d§) = 0.
(4.18)

(ii) Assume the condition (4.3) holds. If f € D(L) satisfies the lateral conditions (4.17) and (4.18)
for every i € Cp, then f € D(A).

Proof. (i). Suppose f € D(A). Then for a > 0, f = Gog with g = (a—A)f € L?(E;my). Here G,
denotes the a-resolvent of X. Since f € F, f admits the X -fine limit function vf = f|, € v(F)
by Lemma 4.1. For ¢ € y(F), Hyt € F. Since L is an extension of A, we have from (4.9)

g(fv Hoﬂp) + (,Cf, Haw) =0,

whose left hand side coincides with the left hand side of (4.18) in view of (4.7) and (2.13). We can
then replace (F) with G5 by (4.16).

(ii). Suppose that f € D(L) satisfies (4.17) and (4.18). Let g = (o« — £)f and fy := f — Gog. Then
by (4.2), (4.10) and (4.15), fo admits an X -fine limit function v fy € v(F) C Hp and (a—L)fo = 0.

Consequently, fo = Huo(7fo) € F by virtue of Lemma 4.3.
As foe D(L) and (o — L) fo =0,

N (fo) () = €™ (fo, Hatp) + (Lfo, Hatp) = EXF(fo, Hat))

for every ¢ € Hp. On the other hand, we have by (i) that G,g € D(.A) satisfies the equation (4.18)
and so does fy. It follows then for every ¢ € Cp,

ggef(Hoé (’YfO)’ Ha(p)

5 [ QRO = 1)) — e dn) + [ 1o ©p(En(dg) =0,
FxF\d F

Since fp € F, we see by (3.16) that the above identity is equivalent to &, (Hu (v fo), Hap) = 0 for
every ¢ € Cp, which extends to every ¢ € v(F) since C is a core of (£, F). Taking ¢ = v fy, we
obtain Hy (v fo) = 0 and, consequently, f = Gn,g € D(A). O

Remark 4.5 (i) We note that the space G} is contained in the L2-space is contained in L?(F;v),
where v is a measure on F' defined by

/F Snw(dn) = Ui (L,g)  for o € By (F).

In fact, Uy(p, ) is known to increase to U(p, ) as a T oo for ¢, ¢ € BL(F), and we get
from (4.11) the following inequality

1

o) 2 3 [ (0O - eV + Uilog) = [ plePude).  (419)
FxF\d F

17



(ii) The descriptions (4.17) and (4.18) are given in terms of the quantities intrinsic to X, the
restrictions to F' of jumping and killing measures of X and the restriction Cr of a core C of
(F,E) to F. There are many cases where Cp can be chosen in a universal way not depending
on the space (€, F).

We shall verify in the next section that, when F' is a locally finite countable subset of E, we
can choose as Cp the space B.(F') of functions on F' vanishing except on a finite number of
points.

(iii) If the Dirichlet form (€9, FY) satisfies the Poincaré inequality in the sense that there exists a
constant C' > 0 with
(u,u) < CE(u,u) for every u € F0,

then for ¢ € Hp,

N(N) (@) = E(f, Hy) + (Lf,Hyp)  for f € D(L).

The proof is quite analogous to the one for [3, Lemma 4.9] and is omitted. O

5 When boundary set F'is countable

In this section, we assume that the quasi-closed set F' is countable, that is, F' = {a1,a2,-- -}, and
F is locally finite in the (generalized) sense that for every z € F, there is a quasi-open set U,
containing x such that U, N (F'\ {z}) = 0. Note that this (generalized) notion of locally finiteness
is invariant under the quasi-homeomorphism of Dirichlet forms and is an extension of the classical
notion of locally finiteness on locally compact metric spaces.

Recall Ey := E\ F. We assume that the irreducible m-symmetric Hunt process X = (X, (,P,)
on E satisfies the condition (1.1), the Dirichlet form (£, F) of X is regular, m(F) = 0 and further
each point a; has positive capacity:

Cap(a;) >0 for each 7 > 1,
where Cap denotes the 1-capacity for (&£, F).

Lemma 5.1 Under the above condition, we have M?HM (F) =0 for every u € F.

Proof. By [5, Lemma 2.8], there is a positive smooth Radon measure p with quasi-support F'. Let
A" be the PCAF of X with Revuz measure p and {7,¢ > 0} be the right inverse of A*. Then the
time-changed process Y := {X,,,¢t > 0} is an p-symmetric Markov process on F' whose Dirichlet
form (€, F) is quasi-regular on F. Tt is known (cf. [11, Theorem 6.2.1]) that the extended Dirichlet
space (€, F.) of (£,F) is given by F, = F.|r and E(f,g) = E(Hf,Hg) for f,g € F.. It is proved
in Corollary 2.9 and Theorems 2.10-2.11 of [5] that the strongly local part £¢ in the Beurling-Deny
decomposition of (£, F,) is given by

EF, ) = ghfup(F)  for fe 7o
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Note that by the equivalent characterization of £-nest (see [11, Lemma 5.1.6], {F, N F,k > 1}
is an £-nest whenever {Fj,k > 1} is an E-nest. So by the definition of quasi-openness and the
(generalized) locally finiteness condition on F, we see that each point a; € F is (relatively) quasi-
open in F' with respect to the Dirichlet form (5‘ JF ). It follows from Lemma 5.3.3 and Theorem
4.6.1 of [11] that £°(f, f) = O for every f € F,.. This in particular implies that 1) (F) =0 for
every u € F. O

Lemma 5.1 says that the condition (4.8) is satisfied. For i # j, let
U7 :=U({ai}, {a;})  and  UZ := Us({ai}, {a;})

and V¥ :=V({a;}).
Define for z € F and i > 1,

0 (z) == Py(op < 00, Xgp =a;) and ul)(z):=E, (€777 X, = ail, (5.1)

which are positive mg-a.e. by the irreducibility assumption on X. As X admits no jumps from FE
to F', we have as before

cp(i) (x) = Pg (CO < oo and X?o_ = a@') and  uf) (z) = E?c [e_aCO;XOO_ = ai} : (5.2)

Since () = H1y,,, and ug) = Ha1y,,), we see that
U7 = LW g, o9), V= L™ -my,1—pU)) and UY = a(u?, o)

We notice that cp(i), ug) admit the expressions

» 1 , 1
(D) () = H @) () = H fi E
o\ (x) (@) o+v(z) and wuy (z) o(ar) V() orz ek,

where

TF\a;
v(z) = E, {/ e 'f(X,)ds|, z€E,
0

for a strictly positive bounded m-integrable function f on E. Since v € F and v(a;) > 0 by the
locally finiteness of F', we have ¢’ € F, and e rF (cf. [11]).

Let B.(F') be the space of functions on F' that take value 0 except on a finite many points; in
other words, B.(F') is the of the linear space spanned by {ugi),i > 1}. Note that B.(F) C ~(F)
as 1yg,y = ugl)]F Let C = F N C.(F), which is a core of the regular Dirichlet space (F,&). For
any choice of compact set K C E, one can find a function in C which is supported by K (cf. [11,
Lemma 1.4.2]). Due to the locally finiteness assumption on F, we therefore have

Cr = B.(F). (5.3)

Recall the definition of the function space G in (4.12). Under the current assumption on F in
this section, the inner product £F1) on the space Gp takes the following specific form:
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ST wla) = (@)UY + Jij) + 3 () (Vi + i) + Y dlai)(a)Uy.

i,5> 10 i>1 i5>1

N | —

XNy, v) =

where J;; := J({a;},{a;}) and k; := k({a;}). As (4.19), we also have the bound

PN, ) > 3 (a)?Ui1() with  Uy1(i) = S UV,

i>1 >1

Since U11(i) > 0 for every i > 1, we conclude from this that the space Gr is a Hilbert space with
inner product £, Hence the space Gy defined by (4.15) is now described as

Gr» = the closed subspace of (Gp, V) spanned by B.(F). (5.4)

We can define for f € D(L), the flux of f at a; by

N(H)(ai) == N()(L{ay) = E(frul)) + (Lf,ul)).
Theorem 4.4 now reads as follows:
Theorem 5.2
(i) If f € D(A), then f € D(L) and f satisfies the lateral conditions that
f admits an X°-fine limit function vf € G, (5.5)

for the space G specified by (5.4) and

N()ai)+ Y ((v))@i) = (1)) i + (vf)(ai)ki =0 for every i >1.  (5.6)

J=2Lj#i

(i1) Assume the condition (4.3) holds. If f € D(L) satisfies the lateral conditions (5.5) and (5.6),
then f € D(A).

Finally let us consider a special case when X admits no jumps from F' to F nor killing at F;
that is,

Jij =0 for i,7>1,1#j and ki =0 fori>1. (5.7)

The process X is then uniquely determined by its part process X° on Ey because, in view of [4,

Theorem 2.6], the resolvent G, of X is described by the resolvent G2 of X° and @(i), ug), the
quantities completely determined by XV.

Under the above condition (5.7), it follows immediately from Theorem 2.6 and (5.4) the following
simple description of the Dirichlet form (€, F) of X in terms of the active reflected Dirichlet space
((FO)ret gref) of the Dirichlet form (£9, F°) of X©.
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Theorem 5.3 Assume condition (5.7) holds.
(i) fe‘E‘o C (‘7:0)“5f and E(u,v) = Eref(u‘EO,v‘Eo) for u,v € Fe.
(ii) For a >0, let
Hqo = {Zciug) t ¢ €R for i > 1},
i=1
where the infinity sum is assumed to be convergent in the space ((FO):t, £21). Then H, is a closed
subspace of (FO)'t and moreover the space (F, &) is the subspace of ((FO)et, £F) expressible as

a a 03
an Eq-sum

Flg, =F & Ha

6 Examples: flux for absorbed Brownian motions

In the first half of this section, we show that when X° is an absorbed Brownian motion in a domain
in R™, the flux appearing in the last sections is a genuine extension of the classical notion. For an
open set U C R", we let

H\(U) = {u e L2(U) : g“ € L2(U) for 1 <i< n}
T
and define
DY (u,v) = / Vu(zx) - Vou(z)dz for u,v € H'(U).
U

CL(U) will denote the space of continuously differentiable functions on U with compact support.
The completion of C}(U) in (H'(U) with metric DY (u, u) + (u, ) 2(yyy is denoted by Hg(U).

Let D be a bounded C?-smooth domain in R” and K a closed subset of 9D. Let X = (X;, P,) be
the (normally) reflected Brownian motion on D killed upon hitting K. Let E = D\ K, F = 0D\ K,
and m the Lebesgue measure on E. The subprocess X of X killed upon leaving Ey := E\ F = D
is just the absorbed Brownian motion in D. Let (£,F) and (€Y, F°) denote the Dirichlet forms of
X and X°, respectively. It is well-known that

(€9, 7°) = (1DP, HY(D)).
The active reflected Dirichlet space (€7, (FO)rf) is
(gref7 (fO)fff) — (%DD, HI(D))

The active reflected Dirichlet space (£, (F0) f) is a regular Dirichlet space on D and its associated
process is the classical (normally) reflected Brownian motion on D. The Dirichlet form (&, F) of
X is given by

1
F = {u e HY(D): u=0 &*qe. on K} and &= §DD.

Let A denote the L2-infinitesimal generator of X. The linear operator £ on L?(D) specified by
(3.5) is
L=iA with D)= {ueH'(D):Aue L*(D)}.

The Dirichlet form (€, F) is a regular Dirichlet form on E. Let C be a core of it and let Cr = C|p.
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Lemma 6.1 Under the above condition, the flur functional N'(f))(v) for f € D(L) and ¢ € Cp

has the form
= 1/ 111(93)*8f($)0(d$)
- 2 F an ’

where n(z) is the unit inward normal vector of 0D at x € 0D and o(dx) is the Lebesque surface
measure on 0D.

Proof. By definition (4.7), for f € D(L) and ¢ € C,

NOW) = 5 [ V5@) B+ 5 (A7 i),

= 2 [ Y mi@otan

oD 81’1

_ /w 2L (5)or(d)
- 5 /F 9(@) 2 (@)o(da),

where in the second equality, we used Gauss-Green formula on D, and the last identity is due to
the fact that ¢» =0 on 0D \ F for ¢ € Cp. O

Next let X = (X, P,) be the Brownian motion on R", K be a closed subset of R™ expressible
as a disjoint union of compact subsets K;, i > 1, which are locally finite, and X° = (X?,¢% PY)
be the absorbed Brownian motion on Ey = R™ \ K obtained from X by killing upon the hitting
time o . We assume that each set K; is not polar. We can then apply Theorem 3.1 of [4] to X and
produce an extension X* of X to the space E* = EgU{ay,az, - -} obtained from R" by regarding
each compact set K; as a one point a;, 7 > 1.

Since X is symmetric with respect to the Lebesgue measure, we can use Theorem 5.2 in char-
acterizing the extension X*. Here we show that the flux AV(f)(a;) appearing there is actually an
generalization of the classical notion of the flux of the vector field V f through the surface OK; (cf
[12]).

Notice that the Dirichlet form of X% on L?(Ey) equals (3D, H}(Ep)). The active reflected
Dirichlet space of the latter is (3D, Wh2(Ejp)) (cf. [2]).

For i > 1, we let

«

ud (@) = By [0 Xy, € K =B [ X0 € Ky

The linear operator £ on L?(Ej) specified by (3.5) and the flux N'(f)(a;) at a; specified by (3.6)
are
L=1A with D)= {feH (E):Af € L*Ey)},
4 1 .
N(f)(ai) = 3D(f,ull) + 5(Af.ul))  for f € D(L) and i > 1.
Lemma 6.2 Suppose that the disjoint compact sets {K;,i > 1} are locally finite in the sense that
there is only finite many of them intersects with each ball in R™. Assume that each OK; is a C'-

class hypersurface. Then, for each i > 1 and for any C?*-smooth function f on R™ with compact
support,
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N(Pa) =2 [ )0,

2 Jox, On

where n denotes the outward normal for OK; and o is the surface measure on 0K;.

Proof. We prove for the case that i = 1. Let f € C?(R?) and let r > 0 large enough so that the
support of f is strictly contained in ball B, := B(0,r). Since ut(xl) takes value 1 on 0K7 and 0 on

OK; for i > 2, we have by the Gauss-Green formula

Netton) = 5 [ V@) el [ A uD )i
_ L[ oof
= 3/, n©70)
This proves the lemma. O

In the second half of this section, we investigate the extensions of a specific one dimensional
absorbed Brownian motion and their characterizations.
Let ap = 0 and {a,}n>1 be a sequence of positive numbers strictly decreasing to 0. Set

F = {an}n>o0, Iy := (—00,0), I := (a1, 00), I, == (an,ap—1) forn >2

and Ep := R\ F = U2 I,,. The Lebesgue measure on R is denoted by m.

Let X° be the absorbed Brownian motion on Ep, namely the Brownian motion being killed
upon hitting the set F. Since ag = 0 is an accumulation point in F', we can not use Theorem 5.2
nor Theorem 5.3 in characterizing extensions of X to R. Instead we shall utilize Theorem 3.5 and
Theorem 4.4.

Proposition 6.3 Let X be an m-symmetric diffusion process on R extending X° that has no
killings at F. Assume that the Dirichlet form (£, F) of X on L*(R;m) has CL(R) as its core. Then
X coincides in law with the Brownian motion on R.

Proof. We will use Theorem 3.5 to the characterization of (€, F). First we verify that condition
(4.8) is fulfilled, namely,

e ({ai}) =0 for every ¢ > 0 and for any u € F. (6.1)

When i > 1, (6.1) can be shown just as in the proof of Lemma 5.1 (as a special easier case). To
show (6.1) for i = 0, it suffices to prove ji(,,,({0}) = 0 for any u € F, because this is then true for
any u € F. and in particular for Hu with u € F.

Suppose fi(,)({0}) > 0 for some u € F. Since (£, F) is local, for any ¢ € Cl(R), we have
Y(u) € F and

EW(u), (u)) = 4'(0) 114y ({0})- (6.2)
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Take ¢ € CL(R) so that ¢(0) =0, ¢'(0) = 1 and ||¢/||cc = 1. For n > 1, define 9, (t) = n~'é(nt).
Clearly, ¢, € CH(R) with ¢7,(0) = 1, ||/} lec = |¢/[lcc = 1 and limy, o 1, = 0. Since ¢p(u) is a
normal contraction of u, we have (cf. (£.4)" of [11, page 5])

E(n(u), Yn(u)) < E(u,u) for every n > 1.

Moreover, by the mean-value theorem |¢,(u)] < ||¢]||co]u| = |u|, we see that v, (u) converges
in L?(R,m) to 0. Thus by the Banach-Saks theorem (see [15, Lemma 1.2.12]), there exists a
subsequence {ng,k > 1} such that w; := j~1 >4 _, 1y, (u) converges to some w in (F,&). As

w; — 0 in L*(R,m), w = 0. On the other hand, since w; = <j*1 i:l 1/’7%) (u), we have by (6.2)

E(wj,wy) = py({0}) >0 for every j > 1.

This is a contradiction, as we just showed that lim;_.. €(w;,w;) = 0. Therefore (6.1) is true.
Denote by (£°, F%) and (£, (FO)rf) the Dirichlet form of X° on L?(Ep;mg) and its active
reflected Dirichlet space, respectively. For a function f on R and n > 0, we let f,, := f|;,. Then

FO = {f e L2 (R;m): f, € H&(In) for every n > 0},

(POt = {feL*Rim): f, € H'(I,) for every n >0},
ref o > 1 n ref
gt f) = nz::o?DI (frs fn)  for f e (FO)rt. (6.3)

By virtue of Theorem 3.5, (6.1) and the assumption, we have
f’Eo C (FOyret and & (u,u) = Sfef(u|EO,u‘Eo) for u € F.
Since F is the &1-closure of CL(R), we get from (6.3) the desired conclusion
F =H'(R) and E(u,u) = %DR(u,u) for u € F.
This implies that X is a standard Brownian motion on R. O.
Next let us take positive numbers {py }n>0 such that

Ozgpnﬁﬂ, n:071727'”

for some positive constants «, 3, and we let
o0
m(dz) = anlln (z)dz.
n=0

The absorbed Brownian motion X is symmetric with respect to the Lebesgue measure m but it
can also be viewed as an m-symmetric diffusion on Ep as has been observed in [3] already. Let
(E9, F) and (€7, (FO)rf) be the Dirichlet form of X° on L?(Ep; m) and its active reflected Dirichlet
space, respectively. They are given by
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Foo= {fELZ(R;ﬁL) fn € Hy(I,) for every n >0},
(FOret = {feL*R;m): f, € H'(I,) for every n >0},

ENLS) = Y BD(fufa)  for fe (FO (6.4)
n=0

Proposition 6.4 Let X be an m- symmetric diffusion _process on R extending XO that has no
killings at F. Assume that the Dirichlet form (€, F) of X on L2(R;m) has CL(R) as its core. We
have then the following:

(i) F=H'R) and E(f,f) = ZP"DI (fus fn) for f e F.

(ii) Let A be the L2—inﬁmteszmal generator ofX on L?(R;m). Then f € D(A ) if and only if the
following holds:

fe HY(R), f" is absolutely continuous on I, for everyn >0, f” e L*(R;m),
Pt f (an—) = puf (an+) for everyn > 1 and nleréopnf’(an+) = pof'(0-). (6.5)

Further
1

Af = 5" Jorfe D(A).

Proof. By making use of (6.4), (i) can be proved exactly in the same way as the proof of the
preceding Proposition. We now apply Theorem 4.4 to the proof of (ii). Condition (4.3) is obviously
satisfied in view of exact description of (FO)ref. Descriptions in (6.4) also imply that f € D(L)
if and only if f € L2(R;m)(= L?(R;m)), fn € H'(I,) and f/, is absolutely continuous for every

n >0, and f” € L>(R;m). In this case, Lf = 5 f”. We further see from (i) that Gj. = H'(R )}F
The flux functional (4.7) now reads for f € HY(R) and v € C}(R) as follows:
N = %Z (pn / f (Mot dz + p / 2 Hawdx)
= _*plf ((11+ an an 1— 77b(CL7L—1) - f/(an"i_)w(an)) + %pﬂfl(o_)¢(0)

The lateral condition (4.18) holding for any 1 € C}(R) with J‘FxF =0 and m‘F = 0 is therefore
equivalent to the equation (6.5), completing the proof of (ii) on account of Theorem 4.4. O

The process X characterized in the above Proposition is nothing but a diffusion process on R

with Feller’s generator A= —, where

d d
dm ds

s(dx) =2 Zp;lljn (x)dz, and m(dx) == an].]n (x)dx
n=0

n=0
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By repeating the one-point skew extensions formulated in [3, Theorem 4.10], X can be con-
structed from the Brownian motion as follows. Let B~ and BT be the absorbed Brownian motions
on R_ = (—o0,0) and R} = (0,00), respectively. Let X! be the subprocess of B* on R \ {a;}
killed upon hitting a;. The process X°! is symmetric with respect to the measure

mi(dz) = pal(ga)(T)dr + p11(4, o0)(T)d,

and we can apply [3, Theorem 4.10] to construct a unique mi-symmetric diffusion X! on R,
o
extending X% by darning the hole a; with entrance law p; determined by / u%dt =m;.

0
We next consider the subprocess X% of X! on R, \ {as} being killed upon hitting the point

as. X2 is symmetric with respect to the measure
p3
ma(dz) = El(ﬂ,az)ml(dm) + L(ag,00)M1(d7) = P31 (0,a,)d% + P21(a;,1)dT + P11(a; 00)

and we can construct a unique meo-symmetric diffusion X2 on R, extending X2 just as above.
Repeating this procedure and taking the limit as in [4, §3], we get a diffusion X+ on R,
satisfying the following: X is symmetric with respect to the measure

my(dz) = 1g, (x)m(dz) = anljn (x)dx

and it is actually an m -symmetric extension of the subprocess X% of X on EyN(0,00) = U, I,.
The process X' has a finite life time and approaches to 0 almost surely.

We finally piece X together with B~ at 0 via [3, Theorem 4.10] to get a desired diffusion X
on R which is symmetric with respect to

m(dz) = 1g_(z)dx + my (dz)

and actually an m-symmetric extension of X0,

An analogous method works in constructing skew Borwnian motions on a Sierpinski gasket.
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