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Abstract We consider the family of finite signed measures on the complex plane C with
compact support, of finite logarithmic energy and with zero total mass. We show directly
that the logarithmic potential of such a measure sits in the Beppo Levi space, namely, the
extended Dirichlet space of the Sobolev space of order 1 over C, and that the half of its
Dirichlet integral equals the logarithmic energy of the measure. We then derive the (local)
Markov property of the Gaussian field G(C) indexed by this family of measures. Exactly
analogous considerations will be made for the Beppo Levi space over the upper half plane
H and the Cameron-Martin space over the real line R. Some Gaussian fields appearing in
recent literatures related to mathematical physics will be interpreted in terms of the present
field G(C).

Keywords Logarithmic potential · Logarithmic energy · Beppo Levi space · Gaussian
field · Markov property
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1 Introduction

A basic relationship between a general transient Dirichlet form E and a Gaussian field G
indexed by the family M0 of signed Radon measures of finite 0-order energy was estab-
lished by Michael Röckner [18] in 1985. It was shown in [18] that the field G enjoys
the global Markov property if and only if the form E has the local property by using
the balayage operation on measures in M0 formulated in [8] by means of the transient
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extended Dirichlet space (Fe, E). See also [14]. We will be concerned about extending such
a relationship to a general recurrent Dirichlet form.

In recent literatures related to mathematical physics, some investigations are being made
about Gaussian fields indexed by measures on the complex plane C with finite logarithmic
energy ([2, 7, 19]). A primary purpose of this paper is to clarify the role of such measures
from the above mentioned general view point.

To be more precise, let M00(C) be the linear space consisting of compactly supported
finite signed measures on C of finite logarithmic energy and with vanishing total mass. In
Section 2, we prove directly that the logarithmic potential Uμ of any measure μ ∈ M00(C)

sits in the Beppo Levi space BL(C) (cf. [4, 6]) which is just the extended Dirichlet space of
the Sobolev space H 1(C) over the plane C, and that the half of the Dirichlet integral of Uμ

equals the logarithmic energy I (μ) of μ.
In particular the linear space M00(C) equipped with the mutual logarithmic energy

I (μ, ν) is pre-Hilbertian so that the Gaussian field G(C) indexed by M00(C) can be associ-
ated. We then derive the local Markov property of G(C) by invoking the balayage theorem
for the logarithmic potentials well presented in S.C. Port and C.J. Stone [16, §6.7].

Actually the pre-Hilbertian structure of the space M00(C) appeared already in the book
by Ch.-J. de La Vallèe Poussin [13, II.§1] and its shortest direct proof was given by N.S.
Landkof [12, I.§4] using the composition rule of Riesz kernels. On the other hand, by
making use of Schwartz distributions and their Fourier transforms, Jacques Deny [5, III.5]
introduced the distribution T of finite logarithmic energy ||T || together with the logarith-
mic potential UT of T , and showed that, if T is compactly supported, then UT is in BL(C)

and its Dirichlet integral coincides with ||T ||2 up to a constant factor.
Our result in Section 2 gives a first direct proof of this relation for the subfamily

M00(C) of such general distributions without using the distribution theory. A direct proof
of the corresponding relation for the Newtonian potentials of measures in M0 was sup-
plied by [12, I.§4] using the Gauss-Green formula. In Section 2, we shall instead employ an
approximation by the Brownian semigroup.

Exactly the analogous consideration to Section 2 will be made in Section 3 for the Beppo
Levi space BL(H) over the upper half plane H and the Gaussian field indexed by the space
M00(H) of compactly supported finite signed measures on H with vanishing total mass and
of finite energy relative to the logarithmic kernel for the reflecting Brownian motion on H.

In Section 4, we continue to make an analogous consideration for the Cameron-Martin
space H 1

e (R) over the real line R and linear potentials of measures on R.
In Section 5, Gaussian fields and intrinsically associated positive random measures

appearing in [2, 19] will be interpreted in terms of the present field G(C).
Gaussian fields and their Markov property for more general recurrent Dirichlet forms

will be investigated in [9].

2 Logarithmic Potentials and Gaussian Field Indexed by M00(C)

2.1 Logarithmic Potentials and Beppo Levi Space Over C

For the complex plane C. define

pt (x) = 1

2πt
exp

(
−|x|2

2t

)
, t > 0, x ∈ C, k(x) = 1

π
log

1

|x| , x ∈ C. (2.1)
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pt (x − y) and k(x − y) are the transition density of the planar Brownian motion and the
logarithmic kernel, respectively.

We fix a point x0 ∈ C with |x0| = 1 and let

kT (x) =
∫ T

0
(pt (x) − pt (x0))dt, T > 0, x ∈ C

We then have the following. See Port-Stone [16, p 70].

Lemma 2.1

|kT (x)| =
∫ T

0
|pt (x) − pt (x0)|dt < |k(x)|, T > 0, x ∈ C,

and
lim

T →∞ kT (x) = k(x), x ∈ C.

We consider the Sobolev space of order 1 over C and the Beppo Levi space over C

defined respectively by

H 1(C) = {u ∈ L2(C) : |∇u| ∈ Ł2(C)},
BL(C) = {u ∈ L2

loc(C) : |∇u| ∈ Ł2(C)}.
Denote the Dirichlet integral

∫
C

∇f (x) · ∇g(x)dx of functions f, g on C by D(f, g).(
1
2D, H 1(C)

)
is the Dirichlet form on L2(C) associated with the planar Brownian

motion. Its extended Dirichlet space is known to be identical with the space (BL(C), 1
2D).

In other words, the space BL(C) is the collection of those functions f on C for which there
exist functions fn ∈ H 1(C), n ≥ 1,such that {fn} is D-Cauchy and fn → f a.e. on C as
n → ∞. Such {fn} is called an approximating sequence for f . See Theorem 2.2.13 and
the first part of Theorem 2.2.12 in [4] for a proof. The Beppo Levi space over C enjoys the
following basic properties (cf. [4, p69]).

(BL.a) Denote by N the subspace of BL(C) consisting of constant functions on C. Then
the quotient space ḂL(C) = BL(C)/N is a real Hilbert space with inner product 1

2D.
(BL.b) If un ∈ BL(C) is D-convergent to u ∈ BL(C), then there exist constants cn such

that un + cn converges to u in L2
loc(C).

L(C) will denote the collcetion of bounded Borel functions on C vanishing outside some
bounded sets. For f ∈ L(C), put

Uf (x) =
∫
C

k(x − y)f (y)dy, Ptf (x) =
∫
C

pt (x − y)f (y)dy, ST f (x) =
∫ T

0
Ptf (x)dt, x ∈ C.

(f, g) will designate the integral
∫
C

f (x)g(x)dx for functions f, g on C.

Proposition 2.2 If f ∈ L(C) satisfies∫
C

f (x)dx = 0, (2.2)

then Uf ∈ BL(C) and

1

2
D(Uf, u) = (f, u) for any u ∈ BL(C). (2.3)

In particular,
1

2
D(Uf, Uf ) = (f, Uf ). (2.4)
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Proof Since
∫
C

|k(x−y)||f (y)|dy < ∞, x ∈ C, Lemma 2.1 guarantees the use of Fubini’s
theorem and the dominated convergence theorem to obtain

kT f (x) =
∫
C

kT (x − y)f (y)dy = ST f (x), lim
T →∞ ST f (x) = Uf (x), x ∈ C.

Further we get (f, ST f ) = (f, kT f ) → (f, Uf ), T → ∞,by noting that
∫
C×C

|k(x −
y)||f (x)||f (y)|dxdy < ∞.

As f ∈ L2(C),we see by [10, Lemma 1.5.3] that ST ∈ H 1(C) and

1

2
D(ST f, u) = (f − PT f, u) for any u ∈ H 1(C). (2.5)

Accordingly

1

2
D(ST f − ST ′f, ST f − ST ′f ) = (f, 2ST +T ′f − S2T f − S2T ′f ) → 0, T , T ′ → ∞.

Therefore Uf ∈ BL(C). Since (f, ST f ) = ∫ T

0 (Pt/2f.Pt/2f )dt increases to a finite limit
(f, Uf ) as T → ∞, |(Ptf, u)| ≤ √

(Ptf, Ptf )
√

(u, u) tends to zero as t → ∞ for any
u ∈ H 1(C). Consequently, we get Eq. 2.3 holding for any u ∈ H 1(C) from Eq. 2.5.

For any u ∈ BL(C), there exist un ∈ H 1(C) such that {un} is D-convergent to u. Accord-
ing to (BL.b), there are some constants cn such that {un + cn} is L2

loc-convergent to u. By
letting n → ∞ in 1

2D(Uf, un) = (f, un) = (f, un+cn), we arrive at Eq. 2.3 for u ∈ BL(C).
�

Denote by M+(C) the collection of positive finite measures on C with compact support.
The logarithmic potential Uμ of μ ∈ M+(C) is defined by

Uμ(x) =
∫
C

k(x − y)μ(dy), x ∈ C.

Uμ is superharmonic, namely, it is lower semicontinuous and supermean valued. It is
locally integrable and locally bounded below on C.

For r > 0,consider the function ψr(x) = 1
πr2 IBr (x), x ∈ C,where Br = {y ∈ C : |y| <

r}. For μ ∈ M+, define

μr(x) =
∫
C

ψr(x − y)μ(dy), x ∈ C, (2.6)

which is a continuous function on C belonging to L. Furthermore

[ψr ∗ (Uμ)](x) = Uμr(x) ↑ Uμ(x), x ∈ C, r ↓ 0. (2.7)

Here the notation ∗ designates the convolution of functions.
The integral

∫
C

udν of a function u by a measure ν is denoted by 〈u, ν〉 or 〈ν, u〉. For
μ, ν ∈ M+(C), 〈μ, Uν〉 takes value in (−∞,+∞]. We define the energy I (μ) of μ ∈
M+ by I (μ) = 〈μ,Uμ〉.

For R > 0, we let kR(x) = 1
π

log R
|x| , URμ(x) = ∫

C
kR(x − y)μ(dy). For μ, ν ∈

M+(C), 〈μ, Uν〉 is finite if and only if so is 〈μ,URν〉 for some R > 0, because

〈μ, Uν〉 = 〈μ,URν〉 − log R

π
μ(C)ν(C). (2.8)

Suppose I (μ + ν) is finite for μ, ν ∈ M+(C). Then I (μ), I (ν) and 〈μ,Uν〉 are all finite.
To see this, it is enough to take R > 0 such that the supports of μ and ν are both contained
in BR/2 and to notice that kR(x − y) > 0, x, y ∈ BR/2.
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Let us now introduce several classes of measures on C.

M+
0 (C) = {μ ∈ M+(C) : I (μ) < ∞},

M0(C) = {μ : finite signed measure on C, |μ| ∈ M+
0 (C)}.

For μ ∈ M0(C),let |μ| = μ+ + μ−, μ = μ+ − μ−, μ± ∈ M+
0 (C),be its Jordan

decomposition. Due to the observation made just above, the energy I (μ) of μ is well defined
by

I (μ) = I (μ+) + I (μ−) − 2〈μ+, Uμ−〉 ∈ R. (2.9)
Finally we define the class

M00(C) = {μ ∈ M0(C) : μ(C) = 0}.

Proposition 2.3 For any μ ∈ M00(C), Uμ ∈ BL(C) and

1

2
D(Uμ, Uμ) = I (μ), (2.10)

1

2
D(Uμ, u) = 〈μ, u〉 for any u ∈ C1

c (C). (2.11)

Proof Let μ = μ+ − μ−, μ± ∈ M+
0 (C),be the Jordan decomposition of μ ∈ M00(C).

Taking a sequence rn ↓ 0 with rn < 1
2 ,define the functions μ±

n = μ±
rn

according to Eq. 2.6
and let μn = μ+

n − μ−
n (= ∫

C
ψrn(x − y)μ(dy)). Since each function μn belongs to L

and satisfies (2.2), we obtain from Proposition 1.2 that Uμn ∈ BL(C) and 1
2D(Uμn, u) =

(μn, u) for any u ∈ BL(C). In particular,

1

2
D(Uμn,Uμm) = (μn, Uμm), n, m ∈ N. (2.12)

We first use Eq. 2.12 to get

1

2
D(Uμn,Uμn) = (μ+

n , Uμ+
n ) + (μ−

n , Uμ−
n ) − 2(μ+

n , Uμ−
n ).

By virtue of Eq. 2.7, (μ±
n , Uμ±

n ) ≤ (μ±
n , Uμ±) = 〈Uμ±

n , μ±〉 ≤ 〈Uμ±, μ±〉 < ∞.
On the other hand, if we take a disk BR large enough to contain the supports of μ±,then
the supports of the measures μ±

n (x)dx are contained in BR+1 so that (μ+
n , UR+1μ−

n ) ≥ 0.
Further

∫
C

μ±
n (x)dx = μ±(C) < ∞. Hence it follows from Eq. 2.8 that

−(μ+
n , Uμ−

n ) ≤ 1

π
log(R + 1)μ+(C)μ−(C) < ∞.

We thus obtain the boundedness supn∈N 1
2D(Uμn,Uμn) < ∞.

By the Banach-Saks theorem (cf. [4, Theorem A.4.1]), there exists a subsequence {μnk
}

of {μn} such that, for its Cesàro mean denoted by νk , Uνk is D-convergent to some v ∈
BL(C) as k → ∞. Then, by (BL.b) again, there exist constants ck such that Uνk + ck

converges to v in L2
loc(C) as k → ∞.

Uνk = Uν+
k −Uν−

k for the Cesàro mean ν±
k of {μ±

nk
} and Uν±

k (x) ↑ Uμ±(x), x ∈ C,as
k → ∞ by Eq. 2.7 so that limk→∞ Uνk(x) = Uμ+(x) − Uμ−(x) = Uμ(x) for any
x ∈ C \ N , where N = {x ∈ C : Uμ−(x) = +∞}. But the Lebesgue measure of N is zero
because Uμ− is locally integrable. Hence the limit c = limk→∞ ck exists and v = Uμ + c,
and consequently Uμ ∈ BL(C) and Uνk → Uμ, k → ∞, D-strongly in (BL(C), 1

2D).
We next use Eq. 2.12 to get

1

2
D(Uνk, Uν�) = (Uνk, ν�) = (Uν+

k , ν+
� ) + (Uν−

k , ν−
� ) − (Uν+

k , ν−
� ) − (Uν−

k , ν+
� ).
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As Uν±
k are locally bounded below and Uμ± are locally integrable, we let k → ∞ using

the monotone convergence theorem to obtain

1

2
D(Uμ, Uν�) = (Uμ+, ν+

� ) + (Uμ−, ν−
� ) − (Uμ+, ν−

� ) − (Uμ−, ν+
� )

= 〈μ+, Uν+
� 〉 + 〈μ−, Uν−

� 〉 − 〈μ+, Uν−
� 〉 − 〈μ−, Uν+

� 〉.
By noting (2.9), we finally let � → ∞ using the monotone convergence theorem to arrive
at Eq. 2.10.

To prove (2.11), take any u ∈ C1
c (C). Denote by ψ̃k the Cesàro mean of {ψnk

}. Since
ψn ∗ u converges to u locally uniformly on C as n → ∞, so does ψ̃k ∗ u0 as k → ∞. We
get from Eq. 2.3

1

2
D(Uνk, u) = (νk, u) = 〈μ, ψ̃k ∗ u〉.

By letting k → ∞, we obtain (2.11). �

The rest of this section will be concerned about an extension of the Eq. 2.11 to u ∈ BL(C)

and balayage (sweeping out) of measures. We need some preparations.
Let X = (Xt , {Px}x∈C) be the planar Brownian motion. A subset N of C is called a polar

set (relative to X) if N is contained in a Borel set B such that

Px(σB < ∞) = 0 for any x ∈ C, where σB = inf{t > 0 : Xt ∈ B}.
For u ∈ H 1(C), we put D1(u, u) = 1

2D(u, u) + (u, u) and define the D1-capacity of an
open set G ⊂ C by

Cap(G) = inf{D1(u, u) : u ∈ H 1(C), u ≥ 1 a.e. on G}.
The D1-capacity of an arbitrary set B ⊂ C is defined by Cap(B) = inf{Cap(G) :
G open, G ⊃ B}.

It is known that a subset N of C is polar if and only if Cap(N) = 0 (cf. [10, Theorems
4.1.2, 4.2.1]). ‘quasi-everywhere’ or ‘q.e.’ means ‘except for a polar set’. An extended real
valued function u defined q.e. on C is said to be D1-quasi continuous if, for any ε > 0,
there exists an open set G ⊂ C with Cap(G) < ε such that u

∣∣
C\G is finite and continuous.

Lemma 2.4 (i) Any function in BL(C) admits a D1-quasi continuous version. If fn ∈
H 1(C), n ≥ 1,constitute an approximating sequence of f ∈ BL(C) and each fn is D1-
quasi continuous, then there exists an subsequence {nk} such that fnk

converges to a D1-
quasi continuous version f̃ of f q.e. on C.

(ii) Any u ∈ BL(C) admits an approximating sequence of functions in C1
c (C).

(iii) Take any μ ∈ M+
0 (C). Then μ charges no polar set. Further Uμ(x) < ∞ for q.e.

x ∈ C.

Proof (i) follows from [4, Theirem 2.3.4].
(ii). As in the proof of Theorem 2.2.13 in [4], it suffices to prove this assertion for

bounded u ∈ BL(C). Further, for such u, it is shown there that supn D(un, un) < ∞
for un(x) = u(x)ηn(|x|), x ∈ C,where ηn is a non-negative smooth function on [0, ∞)

satisfying{
ηn(x) = 1 for 0 ≤ x < n, ηn(x) = 0 for x > 2n + 1,

|η′
n(x)| ≤ 1/n for n ≤ x ≤ 2n + 1, 0 ≤ ηn(x) ≤ 1 for x ∈ [0, ∞).

Consider a non-negative smooth function ϕ on C with supp(ϕ) ⊂ B1 and
∫
B1

ϕ(x)dx = 1.

We set ϕn(x) = n2ϕ(nx), x ∈ C,and let vn = ϕn ∗ un. Then vn ∈ C1
c (C) and
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limn→∞ vn(x) = u(x) for a.e. x ∈ C. Moreover D(vn, vn) ≤ D(un, un) so that
supn D(vn, vn) < ∞. This implies that the Cesàro mean sequence of a suitable subsequence
of {vn} is a desired approximating sequence of u.

(iii). We use the following fundamental identity for the logarithmic potential due to [16,
Theorem 3.4.2]: for any non-polar compact set K ⊂ C,

k(x, y) = gC\K(x, y) +
∫

K

hK(x, dz)k(z, y) − WK(x), x, y ∈ C, (2.13)

where k(x, y) = k(x− y), gC\K is the 0-order resolvent density of the absorbing Brownian
motion on C \ K , hK is the hitting distribution for K of the planar Brownian motion X
defined by hK(x, B) = Px(σK < ∞, XσK

∈ B) for any Borel set B and WK is a certain
non-negative locally bounded Borel function on C vanishing q.e. on K .

Take an open disk BR containing the support of μ and write D = BR and S = ∂BR . As
WS(x) = 0, x ∈ D,by [16, §3, Prop.4.7], we have from Eq. 2.13

Uμ(x) =
∫

D

gD(x, y)μ(dy) + Ex
[
Uμ(XσS

); σS < ∞]
, x ∈ D, (2.14)

where gD(x, y) is the 0-order resolvent density of the absorbing Brownian motion XD on
D. Denote by gD

1 (x, y) the 1-order resolvent density of XD .
Since I (μ) < ∞ and the last term of the right hand side of the above identity are bounded

in x ∈ D,we have
∫
D×D

gD(x, y)μ(dx)μ(dy) < ∞,and so
∫
D×D

gD
1 (x, y)μ(dx)μ(dy) <

∞. This means that the measure μ is of finite energy integral relative to XD ([10, Exercise
4.2.2]). Accordingly μ charges no polar set relative to XD , and equivalently, relative to X
(cf. [10, Lemma 2.2.3, Theorem 4.4.3]).

Since Uμ(x) < ∞ for a.e. x ∈ D, so is the function GDμ(x) = ∫
D

gD(x, y)μ(dy). As
GDμ is XD-excessive, we can conclude from [4, Theorem A.2.13 (v)] that it is finite q.e. on
D. We then get the last statement by the above identity because we can take an arbitrarily
large R > 0. �

For u ∈ BL(C), we set

L(u) =
∫

B1

ψ1(x)u(x)dx,

which is well defined because u ∈ L2
loc(C).

Proposition 2.5 It holds for any ν ∈ M+
0 (C) that

〈ν, |̃u − L(u)|〉 ≤ C(ν)
√
D(u, u) for any u ∈ BL(C), (2.15)

where ũ is a D1-quasi continuous version of u and C(ν) is a positive constant independent
of u ∈ BL(C). In particular, ũ for u ∈ BL(C) is ν-integrable.

Proof We proceed as in [10, p 61]. For fixed ν ∈ M+
0 (C) and u ∈ C1

c (C),define the
measures ν̂ and μ by

ν̂ = sgn(u − L(u)) · ν, μ(dx) = ν̂(dx) − ν̂(C)ψ1(x)dx.

As μ ∈ M00(C),we have from Eq. 2.11 that

1

2
D(Uμ, u) = 〈μ, u〉 = 〈̂ν, u〉 − ν̂(C)L(u) = 〈̂ν, u − L(u)〉 = 〈ν, |u − L(u)|〉.
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Consequently, it follows from Eq. 2.10 that

〈ν, |u − L(u)|〉 ≤ 1

2

√
I (μ) · √

D(u, u).

Let us show that 1
2

√
I (μ) is dominated by a constant C(ν) that is independent of u ∈

C1
c (C). Take R > 2 such that the support of ν is contained in BR/2. We have

I (μ) = I (̂ν) + ν̂(C)2(ψ1, Uψ1) − 2̂ν(C)〈̂ν, Uψ1〉.
From Eq. 2.8, we get

I (̂ν) ≤ 〈̂ν+, URν̂+〉 + 〈̂ν−, URν̂−〉 + 2 log R

π
ν̂+(C)̂ν−(C)

≤ 2〈ν,URν〉 + 2 log R

π
ν(C)2,

and

|〈̂ν,Uψ1〉| = |〈̂ν+, Uψ1〉 − 〈̂ν−, Uψ1〉| ≤ 2〈ν, URψ1〉 + 2 log R

π
ν(C),

so that, if we put

c(ν) = 2〈ν, URν〉 + 4ν(C)〈ν, URψ1〉 + ν(C)2
[
(ψ1, Uψ1〉 + 6 log R

π

]
,

then 1
2

√
I (μ) is dominated by C(ν) = 1

2

√
c(ν), which is independent of u ∈ C1

c (C).
We now have Eq. 2.15 holding for ν ∈ M+

0 (C) and for any u ∈ C1
c (C) with this con-

stant C(ν). For any u ∈ BL(C),one can choose its approximating sequence un ∈ C1
c (C)

by Lemma 2.4 (ii). In view of Lemma 2.4 (i), un converges to a D1-quasi continuous ver-
sion ũ of u q.e. on C by selecting a suitable subsequence if necessary. On the other hand,
according to (BL.b), there exist constants cn such that un+cn converges to u in L2

loc(C) and
consequently a.e. on C by choosing a subsequence if necessary. Therefore limn→∞ cn = 0.
Thus

un − L(un) → ũ − L(u), n → ∞, q.e. on C,

and
〈ν, |un − L(un)|〉 ≤ C(ν)

√
D(un, un). n ≥ 1.

We let n → ∞. Since ν charges no polar set by Lemma 2.4 (iii), we can use Fatou’s lemma
to get the desired inequality (2.15).

ũ for u ∈ BL(C) is ν-integrable as 〈ν, |̃u|〉 ≤ C(ν)
√
D(u, u) + ν(C)|L(u)| < ∞. �

Theorem 2.6 For any μ ∈ M00(C), Uμ ∈ BL(C) and Uμ is D1-quasi continuous.
Furthermore

1

2
D(Uμ, u) = 〈̃u,μ〉, for any u ∈ BL(C), (2.16)

where ũ is any D1-quasi continuous version of u.

Proof For any u ∈ BL(C), choose its approximating sequence {un} from C1
c (C) according

to Lemma 4.1 (ii). For μ ∈ M00(C),we have from Proposition 2.5

|〈μ, ũ〉 − 〈μ, un〉| ≤ |〈μ, ũ − un − L(u − un)〉|
≤ 〈μ+, |̃u − un − L(u − un)|〉 + 〈μ−, |̃u − un − L(u − un)|〉
≤ (C(μ+) + C(μ−))

√
D(u − un, u − un) → 0, n → ∞.

So, by letting n → ∞ in Eq. 2.11 for u = un,we arrive at Eq. 2.16.
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We have seen in the proof of Proposition 2.3 that, for μ ∈ M00(C), Uμ

can be D-approximated by a series {Uνk} of continuous functions and furthermore,
limk→∞ Uνk(x) = Uμ(x) for x ∈ C \ N , where N = {x ∈ C : Uμ−(x) = ∞}. As
μ− ∈ M+

0 ,the set N is polar by Lemma 2.4 (iii). Therefore Uμ is D1-quasi continuous in
view of Lemma 2.4 (i). �

Proposition 2.7 (i) {Uμ : μ ∈ M00(C)} is dense in (ḂL(C), 1
2D).

(ii) The linear space M00(C) is pre-Hilbertian with inner product I (μ, ν) =
〈μ, Uν〉, μ, ν ∈ M00(C).

Proof (i). Suppose u ∈ BL(C) is D-orthogonal to {Uμ : μ ∈ M00(C)}. In view of (BL.a),
it suffices to show that u is constant a.e.

For x ∈ C and r > 0, consider the measure μx,r (dy) = ψr(x − y)dy − ψ1(y)dy ∈
M00(C). Then we have from Eq. 2.16 that

1

2
D(Uμx,r , u) = (ψr ∗ u)(x) − (ψ1 ∗ u)(0) = 0, x ∈ C,

and so, (ψr∗u)(x) is a constant for all x ∈ C and r > 0. As u ∈ L2
loc(C), limr↓0(ψr∗u)(x) =

u(x) for a.e. x ∈ C. Thus u is constant a.e. on C.
(ii). By Eq. 2.10, 〈μ, Uμ〉 = 1

2D(Uμ,Uμ) ≥ 0 for any μ ∈ M00(C). Suppose
〈μ, Uμ〉 = 0 for μ ∈ M00(C). Then, for any u ∈ C1

c (C), 〈μ, u〉 = 1
2D(Uμ, u) = 0 by

Eqs. 2.10 and 2.11, yielding μ = 0. �

This proposition means that the abstract completion of the pre-Hilbert space
(M00(C), I ) is isometrically isomorphic with (ḂL(C), 1

2D) by the map μ ∈ M00(C) �→
Uμ ∈ ḂL(C). The space (ḂL(C), 1

2D) can be actually viewed as a reproducing kernel
Hilbert space for (M00(C), I ).

Let K be a non-polar compact set in C. For μ ∈ M0(C),define

μK(B) =
∫
C

μ(dy)hK(y, B), for any Borel set B ⊂ C. (2.17)

The measure μK is called the balayage of μ to K .

Proposition 2.8 Let μ ∈ M00(C). Then μK ∈ M00(C) and, for any ν ∈ M00(C) with
supp[|ν|] ⊂ K,

〈Uμ, ν〉 = 〈UμK, ν〉. (2.18)

Proof Since K is a non-polar compact set, hK(y, K) = 1 for any y ∈ C so that μK

vanishes on C \ K and μK(C) = μ(C) for any μ ∈ M0(C). For μ ∈ M+(C),we get the
followings from the fundamental identity (2.13) (cf. [16, Theorem 6.7.17]): there exists a
constant c(μ) and

UμK(x) ≤ Uμ(x) + c(μ), for any x ∈ C, (2.19)

UμK(x) = Uμ(x) + c(μ), for q.e. x ∈ K. (2.20)

If μ ∈ M+
0 (C),then Eq. 2.19 implies that

〈μK,UμK 〉 ≤ 〈μK, Uμ〉 + c(μ)μK(C)

= 〈UμK,μ〉 + c(μ)μ(C) ≤ 〈Uμ, μ〉 + 2c(μ)μ(C) < ∞,

and consequently, μK ∈ M+
0 (C). One can thus see that, if μ belongs to M00(C),then so

does μK .
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Clearly the identity (2.20) remains valid for any μ ∈ M00(C). Integrating the both hand
sides of this identity by ν ∈ M00(C) with supp[|ν|] ⊂ K and noting that |ν| charges no
polar set (Lemma 2.4 (iii)), we arrive at Eq. 2.18). �

2.2 Markov property of the Gaussian field index byM00(C)

In view of Proposition 2.7 (ii), there exist a system of centered Gaussian random variables
G(C) = {Xμ : μ ∈ M00(C)} on a certain probability space (�,B,P) with covariance

E[XμXν] = 〈μ, Uν〉, μ, ν ∈ M00(C). (2.21)

For a subset A of C, define the sub-σ -field of B by

σ(A) = σ {Xμ : μ ∈ M00(C), supp[|μ|] ⊂ A}.
G(C) is said to have the local Markov property if, for any bounded open subset G of C, the
identity

E[YZ
∣∣σ(∂G)] = E[Y ∣∣σ(∂G)] E[Z∣∣σ(∂G)] (2.22)

holds for any bounded σ(G)-measurable function Y on � and any bounded σ(C \ G)-
measurable function Z on �. The following is known to be a necessary and sufficient
condition for the local Markov property of G(C) (cf. [18, §6]): for any bounded open set
G ⊂ C

σ {E[Y ∣∣σ(G)] : Y is bounded and σ(C \ G)-measurable} ⊂ σ(∂G). (2.23)

Theorem 2.9 The Gaussian field G(C) indexed by M00(C) enjoys the local Markov
property.

Proof Let G be a bounded open subset of C and take any μ ∈ M00(C) with supp[|μ|] ⊂
C \ G. Due to the continuity of the path Xt of the planar Brownian motion X = (Xt ,Px),

μG(B) =
∫
C\G

μ(dy)Py(XσG
∈ B) =

∫
C\G

μ(dy)Py(Xσ∂G
∈ B) = μ∂G(B),

for any Borel set B ⊂ C.
By virtue of Proposition 2.8, we have for any ν ∈ M00(C) with supp[|ν|] ⊂ G

〈Uμ, ν〉 = 〈UμG, ν〉,
which means E[XμXν] = E[XμG

Xν]. Hence Xμ − XμG
is orthogonal to Xν , and

consequently independent of σ(G) because all random varibles involved are Gaussian.
Accordingly

E[Xμ − XμG

∣∣σ(G)] = E[Xμ − XμG
] = 0.

Thus we obtain

E[Xμ

∣∣σ(G)] = E[XμG

∣∣σ(G)] = XμG
= Xμ∂G

∈ σ(∂G).

�

3 RBM on H and Gaussian field indexed by M00(H)

We consider the upper half plane H = {x = (x, y) ∈ C : y > 0}. H will be also denoted by
H+, while H− denotes the lower half plane {x = (x, y) ∈ C : y < 0}. For x = (x, y) ∈ C,

x∗ = (x,−y) denotes its reflection relative to ∂H.
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Let X̂ = (X̂t , {̂Px}x∈H) be the reflecting Brownian motion (RBM in abbreviation) on H.

X̂ is obtained from the planar Brownian motion X = (Xt = (X
(1)
t , X

(2)
t ), {Px}x∈C) by

X̂t = (X
(1)
t , |X(2)

t |), P̂x = Px, x ∈ H. (3.1)

Consider a closed subset F of H and denote by F r the set of all regular points for F

relative to X̂; F r = {x ∈ F ; P̂x(σF = 0) = 1}. F \ F r is then polar relative to X̂, namely,
P̂x(σF\Fr < ∞) = 0 for any x ∈ H (cf. [10, Theorems A.2.6, 4.1.2, 4.1.3]). We also
consider the part X̂

H\F on H \ F of X̂, that is to say, the process obtained from X̂ by killing

upon hitting the set F . Define for any Borel set B ⊂ H

ĝH\F (x, B) = Êx

[∫ σF

0
IB(X̂s)ds

]
, x ∈ H.

For a set B ⊂ H±, B∗ = {x∗; x ∈ B} ⊂ H∓ denotes its reflection relative to ∂H.

Lemma 3.1 If F be a closed subset of H that is non-polar for X̂,then, for any bounded
Borel set B ⊂ H,

sup
x∈H

ĝH\F (x, B) < ∞. (3.2)

Proof We compare ĝH\F (x, B) with its counterpart for the planar Brownian motion X:

gC\F ∗
(x, B) = Ex

[∫ σF∗

0
IB(Xs)ds

]
, x ∈ C.

In view of [16, Proposition 2.2.7], it holds that

sup
x∈C

gC\F ∗
(x, B) < ∞, (3.3)

whenever F ∗ ⊂ C is a non-polar closed set for X and B ⊂ C is a bounded Borel set.
Suppose F and B satisfy the stated conditions. We then have ĝH\F (x, B) = I+II+III, x ∈

H, where

I = Êx

[∫ σF

0
IB(X̂s)ds : σF < σ∂H

]
, II = Êx

[∫ σ∂H

0
IB(X̂s)ds; σ∂H < σF

]
,

and III = Êx

[
ÊX̂σ∂H

[
∫ σF

0
IB(X̂s)ds]; σ∂H < σF

]
.

Accordingly

I ≤ gF∪H−(x, B), II ≤ gH−(x, B), x ∈ H.

The definition (3.1) implies that, for y ∈ ∂H,

Êy

[∫ σF

0
IB(X̂s)ds

]
= Ey

[∫ σF∪F∗

0
IB∪B∗(Xs)ds

]
,

and consequently,
III ≤ sup

y∈C
gF∪F ∗

(y, B ∪ B∗).

Thus Eq. 3.2 follows from Eq. 3.3. �

Recall pt (x), t > 0, x ∈ C,and k(x), x ∈ C,defined by Eq. 2.1. We let

p̂t (x, y) = pt (x− y) + pt (x− y∗), t > 0, k̂(x, y) = k(x− y) + k(x− y∗), x, y ∈ H.

(3.4)
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p̂t (x, y), x, y ∈ H,is the transition density of the RBM on H. Let us call k̂(x, y), x, y ∈
H,the logarithmic kernel for the RBM on H.

The following proposition is a counterpart of Eq. 2.13 for the RBM on H.

Proposition 3.2 For any compact subset K of H that is non-polar for X̂, we have

k̂(x, y) = ĝH\K(x, y) +
∫

K

ĥK(x, dz)̂k(z, y) − ŴK(x), x, y ∈ H. (3.5)

Here ĝH\K(x, y) is the 0-order resolvent density of X̂
H\K , ĥK is the hitting distribution for

K of X̂ defined by ĥK(x, B) = P̂x(σK < ∞, X̂σK
∈ B) for any Borel set B ⊂ H,and ŴK

is a certain non-negative locally bounded function on H vanishing on Kr . For x �= y,both
ĝH\K(x, y) and

∫
K

ĥK(x, dz)̂k(z, y) are finite.

Proof For α > 0,we set

gα(x) =
∫ ∞

0
e−αtpt (x)dt, kα(x) = gα(x) − gα(x0), x ∈ C,

where x0 is a fixed point in H with |x0| = 1. As Lemma 2.1, we can then see that

0 ≤ kα(x) ↑ k(x), for |x| ≤ 1; 0 ≤ −kα(x) ↑ −k(x) < ∞, for |x| > 1, α ↓ 0.

(3.6)
We next set, for x, y ∈ H,

ĝα(x, y) = gα(x − y) + gα(x − y∗), k̂α(x, y) = kα(x − y) + kα(x − y∗).
Since ĝα(x, y) is the α-order resolvent density of X̂, the strong Markov property of X̂ yields
the identity

ĝα(x, y) = ĝH\K
α (x, y) +

∫
K

ĥα
K(x, dz)ĝα(z, y), x, y ∈ H,

for the α-order resolvent density ĝ
H\K
α of X̂

H\K and for the α-order hitting distribution ĥα
K

of X̂ for K . By substituting ĝα(x, y) = k̂α(x, y)−2gα(x0) into the above identity, we obtain

k̂α(x, y) = ĝH\K
α (x, y) +

∫
K

ĥα
K(x, dz)̂kα(z, y) − Ŵα

K(x), x, y ∈ H, (3.7)

where
Ŵα

K(x) = 2gα(x0) (1 − Êx[e−ασK ]), x ∈ H. (3.8)
Integrating the both hand sides of Eq. 3.7 by dy over a bounded Borel set B ⊂ H with a

positive Lebesgue measure |B|,we get

k̂α(x, B) = ĝH\K
α (x, B) +

∫
K

ĥα
K(x, dz)̂kα(z, B) − |B|Ŵα

K(x), x ∈ H.

By Lemma 3.1, gH\K(x, B) is bounded in x ∈ H. Moreover
∫
B

k̂(x, y)dy is locally bounded

on H. Hence we can see by letting α → 0 in the above identity that the limit ŴK(x) =
limα↓0 Ŵα

K(x) exists and further that the limit is locally bounded on H and vanishing on Kr .
We finally let α ↓ 0 in the Eq. 3.7 by noticing (3.6) to arrive at the desired conclusions. �

Denote by M+(H) the collection of positive finite measures on H with compact support.
The logarithmic potential Ûμ of μ ∈ M+(H) for RBM is defined by

Ûμ(x) =
∫
H

k̂(x, y)μ(dy), x ∈ H. (3.9)
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For μ ∈ M+(H) and a compact set K ⊂ H,define

μ̂K(B) =
∫
H

μ(dy)̂hK(y, B), for any Borel B ⊂ H. (3.10)

Then μ̂K ∈ M+(H) and supp[μ̂K ] ⊂ K . μ̂K is called the balayage of μ to K relative to X̂.
〈ν, u〉

H
or 〈u, ν〉

H
will designate the integral

∫
H

u(x)ν(dx) for a function u and a measure
ν on H.

Proposition 3.3 Let K be a compact subset of H that is non-polar for X̂. It holds then for
any μ ∈ M+(H)

Û μ̂K(x) = Ûμ(x) + 〈ŴK, μ〉
H
, for any x ∈ Kr, (3.11)

Û μ̂K(x) ≤ Ûμ(x) + 〈ŴK, μ〉
H
, for any x ∈ H. (3.12)

Proof Both k̂(x, y) and ĝH\K(x, y) being symmetric, Eq. 3.5 yields∫
K

ĥK(x, dz)̂k(z, y) − ŴK(x) =
∫

K

ĥK(y, dz)̂k(z, x) − ŴK(y),

and consequently,

Êx
[
Ûμ(X̂σK

); σK < ∞] = Û μ̂K(x) − 〈ŴK, μ〉
H

+ μ(H)Ŵ (x), x ∈ H. (3.13)

We obtain Eq. 3.11 from Eq. 3.13 for x ∈ Kr . Further Eqs. 3.5 and 3.13 lead us to

Ûμ(x) =
∫
H

ĝH\K(x, y)μ(dy) + Êx
[
Ûμ(X̂σK

); σK < ∞] − μ(H)Ŵ (x)

≥ Û μ̂K(x) − 〈ŴK, μ〉
H
, x ∈ H,

which yields (3.12). �

Let us introduce classes of measures on H by

M+
0 (H) = {μ ∈ M+(H) : 〈μ, Ûμ〉

H
< ∞},

M0(H) = {μ : finite signed measure on H, |μ| ∈ M+
0 (H)},

M00(H) = {μ ∈ M0(H) : μ(H) = 0}.
Given μ ∈ M0(H),its extension μ∗ to a measure on C by reflection relative to ∂H is defined
as follows: for a Borel set B, μ∗(B) = μ(B) if B ⊂ H+, and μ∗(B) = μ(B∗) if B ⊂ H−.
Further, given a function f on H, its extension f ∗ to a function on C by reflection relative
to ∂H is defined as follows: f ∗(x) = f (x) if x ∈ H+, and f ∗(x) = f (x∗) if x ∈ H−.

We readily obtain the following.

Lemma 3.4 It holds for μ ∈ M+(H) that

Uμ∗(x) = (Ûμ)∗(x), x ∈ C, (3.14)

and

〈μ, Ûμ〉
H

= 1

2
〈μ∗, Uμ∗〉. (3.15)

Equation 3.15 implies that μ ∈ M0(H) (resp.μ ∈ M00(H)) if and only if μ∗ ∈ M0(C)

(resp. μ∗ ∈ M00(C)).
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Analogously to the case of the whole plane C, we consider the Sobolev space of order 1
and the Beppo Levi space over H defined respectively by

H 1(H) = {u ∈ L2(H) : |∇u| ∈ Ł2(H)}, BL(H) = {u ∈ L2
loc(H) : |∇u| ∈ Ł2(H)}.

Denote the Dirichlet integral
∫
H

∇f (x) · ∇g(x)dx of functions f, g on H by DH(f, g).
( 1

2DH, H 1(H)) is the regular Dirichlet form on L2(H) associated with the RBM on H. Its
extended Dirichlet space is known to be identical with the space (BL(H), 1

2DH) just as the
case of C in place of H. Moreover the quotient space ḂL(H) of BL(H) by its subspace of
constant functions on H is a real Hilbert space with inner product 1

2DH.

Lemma 3.5 f ∈ BL(H) if and only if f ∗ ∈ BL(C). It holds for any f ∈ BL(H) that

DH(f, f ) = 1

2
D(f ∗, f ∗). (3.16)

Proof For f ∈ L2(H),we let

P̂t f (x) =
∫
H

p̂t (x, y)f (y)dy, x ∈ H, Ptf
∗(x) =

∫
C

pt (x − y)f ∗(y)dy, x ∈ C.

We then easily see that Ptf
∗(x) = (P̂tf )∗(x), x ∈ C,so that

(f ∗, f ∗ − Ptf
∗)L2(C) =

∫
H+

f (x)(f (x) − P̂t f (x))dx

+
∫
H−

f (x∗)(f (x∗) − P̂t f (x∗))dx = 2(f, f − P̂t f )L2(H).

Dividing the above identity by t and letting t ↓ 0,we get the stated relations between the
Sobolev spaces H 1 of order 1, that can be readily extended to the ones between the Bepp
Levi spaces. �

Let us define DH,1-capacity CapH of a subset B ⊂ H and DH,1-quasi continuity of a
function on H in the same way as in Section 2 but with DH in place of D. Then a set N ⊂ H

is polar relative to X̂ if and only if CapH(N) = 0.

Lemma 3.6 (i) Any function in BL(H) admits its DH,1-quasi continuous version.
(ii) Any μ ∈ M+

0 (H) charges no polar set relative to X̂.
(iii) If f is a D1-quasi continuous function on C, then f

∣∣
H
is DH,1-quasi continuous.

(iv) If f is a DH,1-quasi continuous function onH, then f ∗ is D1-quasi continuous on C.

Proof (i). See [10, Theorem 2.1.7].
(ii). This can be shown using the identity (3.5) that any measure ν ∈ M00(H) charges

no polar set for X̂, just as the corresponding statement is shown in the proof of Lemma 2.4
(iii) using the identity (2.13).

(iii). For an open set G ⊂ C, CapH(G ∩ H) ≤ Cap(G).
(iv). For an open set G ⊂ H, Cap(G ∪ G∗) ≤ CapH(G). �

Theorem 3.7 For any μ ∈ M00(H), Ûμ ∈ BL(H) and Ûμ is DH,1-quasi continuous.
Furthermore

1

2
DH(Ûμ, u) = 〈̃u, μ〉

H
, for any u ∈ BL(H), (3.17)

where ũ is any DH,1-quasi continuous version of u.
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Proof μ∗ ∈ M00(C) by Eq. 3.15 so that Uμ∗ is a D1-quasi continuous function in BL(C)

by Theorem 2.6 and Ûμ is DH,1-quasi continuous by Eq. 3.14 and Lemma 3.6 (iii). For any
DH,1-quasi continuous version ũ of u ∈ BL(H), ũ∗ is D1-quasi continuous by Lemma 3.6
(iv). Therefore it follows from Eq. 3.15, Lemma 3.5 and Theorem 2.6 that

1

2
DH(Ûμ, u) = 1

4
D(Uμ∗, u∗) = 1

2
〈μ∗, ũ∗〉 = 〈μ, ũ〉

H
.

�

Proposition 3.8 (i) {Ûμ : μ ∈ M00(H)} is dense in (ḂL(H), 1
2DH).

(ii) The linear space M00(H) is pre-Hilbertian with inner product IH(μ, ν) =
〈μ, Uν〉

H
: μ, ν ∈ M00(H).

Proof Using Eq. 3.17, (i) can be shown as the proof of Proposition 2.7 (i). (ii) follows from
Eq. 3.15 and Proposition 2.7 (ii). �

This proposition implies that the abstract completion of the pre-Hilbert space
(M00(H), IH) is isometrically isomorphic with (ḂL(H), 1

2DH) by the map μ ∈
M00(H) �→ Uμ ∈ .ḂL(H).

We now state a counterpart of Proposition 2.8 for the upper-half plane. For μ ∈ M0(H)

and a compact set K ⊂ H,define the balayage μ̂K of μ on K by Eq. 3.10.

Proposition 3.9 Let μ ∈ M00(H) and K ⊂ H be a compact set that is non-polar relative
to the RBM X̂. Then μ̂K ∈ M00(H) and, for any ν ∈ M00(H) with supp[|ν|] ⊂ K,

〈Ûμ, ν〉
H

= 〈Û μ̂K, ν〉
H
. (3.18)

Proof One can proceed along the same line as the proof of Proposition 2.9. Since the com-
pact set K is non-polar for the RBM X̂ which is irreducible recurrent, ĥK(y, K) = 1 for
any y ∈ H (cf. [10, Exercise 4.7.1]) so that μ̂K(H \ K) = 0 and μ̂K(H) = μ(H) for
any μ ∈ M0(H). By making use of the inequality (3.12), we can show that, if μ belongs
to M00(H), so does μ̂K , just as the corresponding statment is derived in the proof of
Proposition 2.8 from the inequality (2.19).

The equality (3.11) holding for x ∈ Kr remains valid for μ ∈ M00(H) in place of
μ ∈ M+(H). Integrating the both hand sides of this identity with respect to ν ∈ M00(H)

by taking Lemma 3.6 (ii) into account, we arrive at Eq. 3.18. �

By virtue of Proposition 3.8 (ii), there exist a system of centered Gaussian random
variables G(H) = {Xμ : μ ∈ M00(H)} on a certain probability space (�,B,P) with
covariance

E[XμXν] = 〈μ, Ûν〉, μ, ν ∈ M00(H). (3.19)

Exactly in the same way as Theorem 2.9 is derived from Proposition 2.8, we can obtain
the following from Proposition 3.9:

Theorem 3.10 The Gaussian field G(H) indexed by M00(H) enjoys the local Markov
property.
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4 Linear potentials and Gaussian field indexed by M00(R)

For the real line R, let

pt (x) = 1√
2πt

e− x2
2t , t > 0, x ∈ R, k(x) = −|x|, x ∈ R. (4.1)

pt (x − y) is the transition density of the Brownian motion on R and k(x − y) is called the
linear potential kernel. If we set

kT (x) =
∫ T

0
(pt (x) − pt (0))dt, x ∈ R, T > 0,

then (cf. [16, p. 82]),

0 > kT (x) ↓ k(x), T ↑ ∞, x ∈ R. (4.2)

For functions f, g on R, the integrals
∫
R

f (x)g(x)dx and
∫
R

f ′(x)g′(x)dx are denoted
by (f, g) and D(f, g), respectively. The Cameron-Martin space on R is defined by

H 1
e (R) = {u : absolutely continuous on R, D(u, u) < ∞}. (4.3)

Put H 1(R) = H 1
e (R)∩L2(R). Then ( 1

2D, H 1(R)) is the Dirichlet form on L2(R) associated
with the Brownian motion on R and (H 1

e (R), 1
2D) is its extended Dirichlet space (cf. [10,

Exercise 1.6.2]).

Lemma 4.1 The quotient space Ḣ 1
e (R) of H 1

e (R) by constant functions on R is a Hilbert
space with inner product 1

2D.
If un ∈ H 1

e (R) is D-convergent to u ∈ H 1
e (R) as n → ∞,then there are constants cn

such that un − cn converges to u locally uniformly on R as n → ∞.

Proof From f (b) − f (a) = ∫ b

a
f ′(ξ)dx, we have (f (a) − f (b))2 ≤ |a − b|D(f, f ). So

{un − un(0)} is locally uniformly convergent to u + c for some constant c, �

The linear potential of a Borel function f on R is defined by
Uf (x) = ∫

R
k(x − y)f (y)dy, x ∈ R,whenever the integral makes sense.

Proposition 4.2 Let f be a bounded Borel function on R vanishing outside some bounded
set and satisfying

∫
R

f (x)dx = 0. Then Uf ∈ H 1
e (R) and

1

2
D(Uf, u) = (f, u) for any u ∈ H1

e(R). (4.4)

Proof For f with the stated properties, we get by noting (4.2) that

Uf (x) = lim
T →∞

∫
R

kT (x − y)f (y)dy = lim
T →∞

∫ T

0
pt (x − y)f (y)dy x ∈ R.

Hence we can verify as in the proof of Proposition 2.2 that Uf ∈ H 1
e (R) and the Eq. 4.4

holds for any u ∈ H 1(R). For any u ∈ H 1
e (R), choose un ∈ H 1(R), n ≥ 1,that are D-

convergent to u. Then ,taking constants cn, n ≥ 1, as in Lemma 4.1, we can obtain (4.4)
for u from those for un, n ≥ 1. �

Denote by M+(R) the collection of positive finite measures on R with compact support
and define

M0(R) = {μ; finite signed measure, |μ| ∈ M+(R)}, M00(R) = {μ ∈ M0(R) : μ(R) = 0}.
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The linear potential of μ ∈ M0(R) is defined by Uμ(x) = ∫
R

k(x −y)μ(dy), x ∈ R. For a function
f and a measure ν on R, the integral

∫
R

f (x)ν(dx) will be disignated as 〈ν, f 〉 or 〈f, ν〉.

Theorem 4.3 For any μ ∈ M00(R), Uμ ∈ H 1
e (R) and

1

2
D(Uμ, u) = 〈μ, u〉, for any u ∈ H 1

e (R). (4.5)

In particular,
1

2
D(Uμ, Uμ) = 〈μ,Uμ〉. (4.6)

Proof Let ψn(x) = n
2 I(−1/n.1/n)(x), x ∈ R,and JR = [−R, R], R > 0. Consider μ ∈ M+(R)

with supp[μ] ⊂ JR for some R > 0 and define

μn(x) =
∫
R

ψn(x − y)μ(dy), x ∈ R, n ≥ 1. (4.7)

μn is a continuous function whose support is contained in JR+1 and
∫
R

μn(x)dx = μ(R). Hence

|(μn, Uμn)| ≤ Mμ(R)2 where M = sup
x,y∈JR+1

|x − y|.

We further see that

lim
n→∞ Uμn(x) = Uμ(x), x ∈ R; lim

n→∞(u, μn) = 〈μ, u〉, (4.8)

where u is any continuous function on R.
We now take any μ ∈ M00 and define μn by Eq. 4.7. Then μn is a continous function on R with

compact support and
∫
R

μn(x)dx = 0. Therefore, by Proposition 4.2, Uμn ∈ H 1
e (R) and

1

2
D(Uμn, u) = (u, μn), for any u ∈ H 1

e (R). (4.9)

Since 1
2D(Uμn,Uμn) = (μn, Uμn) is uniformly bounded in n by the preceding observation, for

a Cesàro mean sequence (denoted by {νn}) of a suitable subsequence of {μn}, Uνn is D-convergent
to some v ∈ H 1

e (R). According to Lemma 4.1, there are constants cn such that Uνn + cn is locally
uniformly convergent to v. As Eq. 4.8 remains valid for νn in place of μn, the limit limn→∞ cn = c

exists and v = Uμ + c. By letting n → ∞ in the Eq. 4.9 for νn in place of μn, we get to Eq. 4.5. �

Proposition 4.4 (i) {Uμ : μ ∈ M00(R)} is dense in (Ḣ 1
e (R), 1

2D).
(ii) The linear space M00(R) is pre-Hilbertian with inner product IR(μ, ν) = 〈μ, Uν〉 : μ, ν ∈

M00(R).

Proof (i). Suppose u ∈ H 1
e (R) is D-orthogonal to {Uμ : μ ∈ M00(R)}. Then 〈μ, u〉 = 0 for any

μ ∈ M00(R). Taking μ = δx −δ0 ∈ M00(R),where δx denotes the delta-measure on R concentrated
on {x}, we get u(x) = u(0) for any x ∈ R, so that u is a constant function.

(ii). By Eq. 4.6, IR(μ, μ) ≥ 0 for any μ ∈ M00(R). Suppose IR(μ,μ) = 0 for μ ∈ M00(R).
Then 〈μ, u〉 = 1

2D(Uμ, u) = 0 for any u ∈ Cc(R) by Eqs. 4.6 and 4.5, yielding μ = 0. �

This proposition implies that the abstract completion of the pre-Hilbert space (M00(R), IR) is
isometrically isomorphic with (H 1

e (R), 1
2D) by the map μ ∈ M00(R) �→ Uμ ∈ Ḣ 1

e (R).
We finally state a counterpart of Proposition 2.8 and Proposition 3.9 for the present linear case.

The balayage of μ ∈ M00(R) to a non-empty compact set K ⊂ R is defined by μK(·) =∫
R

μ(dy)hk(y, ·) using the hitting distribution hK(x, ·) = Px(XσK
∈ ·) of the one-dimensional

Brownian motion (Xt , {Px}x∈R).

Proposition 4.5 Let μ ∈ M00(R) and K be a non-empty compact set of R. Then μK ∈ M00(R)
and, for any ν ∈ M00(R) with supp[|ν|] ⊂ K, 〈Uμ, ν〉 = 〈UμK, ν〉.
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Proof Due to the recurrence of the one-dimensional Brownian motion, hK(y, K) = 1 for every
y ∈ R so that μK ∈ M00(R) for μ ∈ M00(R). The fundamental identity for linear potentials
presented by formula (6) in page 83 of [16] reads

k(x − y) = gR\K(x, y) +
∫

K

hK(x, dz)k(z − y) − WK(x), x, y ∈ R, (4.10)

where gR\K(x, y) is the 0-order resolvent density of the absorbing Brownian motion on R \ K and
WK(x) is a certain non-negative locally bounded function on R vanishing on K . Just as in the proof
of Proposition 3.3, one can deduce from Eq. 4.10 the identity

UμK(x) = Uμ(x) + 〈WK,μ〉
holding for every x ∈ K,which yields 〈Uμ, ν〉 = 〈UμK, ν〉 immediately. �

In view of Proposition 4.4 (ii), there exist a system of centered Gaussian random variables G(R) =
{Xμ : μ ∈ M00(R)} on a certain probability space (�,B,P) with covariance

E[XμXν ] = 〈μ,Uν〉, μ, ν ∈ M00(R). (4.11)

Exactly in the same way as Theorem 2.9 is derived from Proposition 2.8, we can obtain the
following from Proposition 4.5:

Theorem 4.6 The Gaussian field G(R) indexed byM00(R) enjoys the local Markov property.

5 Gaussian fields and processes induced by G(C) and G(R)

We exhibit several examples of Gaussian fields and processes that can be obtained as subfields of
G(C) and G(R). A special attention will be paid on positive random measures intrinsically associated
with the fields.

We first recall the equilibrium measure in the logarithmic potential theory (cf.[16, §3.4]). For any
non-polar bounded Borel set B ⊂ C, there exists a unique probability measure μB concentrated on
Br whose logarithmic potential UμB(·) = ∫

C
k(·−y)μB(dy) is constant on Br . Here Br denotes the

set of all regular points of B relative to the planar Brownian motion X = (Xt , {Px}x∈C). μB is called
the equilibrium measure of B and it is concentrated on ∂B. Actually μB equals lim|x|→∞ Px(XσB

∈ ·)
the hitting distribution on B of X from ∞. For r > 0, let Br = {x ∈ C : |x| < r} and σr be the
uniform probability measure on ∂Br . Then μBr = σr and

Uσr(x) = 1

π
log

1

|x| ∨ r
, x ∈ C. (5.1)

5.1 Restriction G(∂B1) of G(C) to ∂B1

We put
L(∂B1) = {ψ : bounded Borel function on ∂B1},

and define for ψ ∈ L(∂B1)

μψ(dy) = ψ(y)σ1(dy) − 〈σ1, ψ〉 · σ1(dy). (5.2)

μψ is a member of M00(C). We denote the Gaussian random variable Xμψ ∈ G(C) by Yψ and
consider the Gaussian field

G(∂B1) = {Yψ : ψ ∈ L(∂B1)} (5.3)

indexed by L(∂B1). We then have for ψ1, ψ2 ∈ L(∂B1)

E[Yψ1Yψ2 ] =
∫

∂B1×∂B1

k(x − y)ψ1(x)ψ2(y)σ1(dx)σ1(dy), (5.4)

because of Eq. 2.21 and Uσ1(x) = 0, x ∈ ∂B1.

376



Logarithmic and Linear Potentials of Signed Measures

We identify ∂B1 with the torus T = [0, 1) and denote by D(T) the collection of C∞-functions on
T. With this identification

k(x − x′) = 1

π
log

1

2 sin π |t − s| , x = e2πti , x′ = e2πsi , t, s ∈ T. (5.5)

Equation 5.4 implies that, if ψn ∈ D(T) converges to 0 uniformly on ∂B1,then E[Y 2
ψn

] → 0 and
consequently Yψn → 0 a.s. as n → ∞. Thus the map ψ ∈ D(T) �→ Yψ is in the space of distributions
D′(T) a.s., namely, we may view G(∂B1)

∣∣
D(T)

as a Gaussian random distribution.
Recently this Gaussian random distribution was introduced and studied in [2] via an informal

definition of a Gaussian field {Yt : t ∈ T} indexed by T whose covariance E[YtYs ] is identical with
Eq. 5.5 in the following manner. Using independent random variables {An,Bn, n ≥ 1} with common
distribution N(0, 1), consider a random Fourier series

YN
t = 1√

π

N∑
n=1

1√
n

(An cos 2πnt + Bn sin 2πnt), t ∈ T, (5.6)

and let Yt = limN→∞ YN
t . Since limN→∞ E[(YN

t )2] diverges, Yt is not well defined.
But it can be verified that

lim
N→∞E[YN

t YN
s ] = 1

π
log

1

2 sin π |t − s| , t �= s,

both hand sides being equal to a convergent cosine series 1
π

∑∞
n=1

1
n

cos 2π(t − s)n. As is indicated
by this identity, one can give a representation Ỹψ of our Gaussian random variable Yψ for ψ ∈ L(T)

by

Ỹψ = lim
N→∞

∫
T

YN
t ψ(t)dt. (5.7)

Indeed one can verify that

E[Ỹψ1 Ỹψ2 ] =
∫
T×T

k(e2πti − e2πsi )ψ1(e
2πti )ψ2(e

2πsi ) dtds,

both hand sides being identical with 1
π

∑∞
n=1

1
4n

(a1
na2

n + b1
nb

2
n) for the Fourier coefficeints ai

n, bi
n of

ψi ∈ L(T), i = 1, 2.
A positive random measure μG(T) concentrated on the circle T was constructed in [2] by

approximating the field G(∂B1) via a certain white noise expansion. An alternative conceivable
approximation would be

〈ϕ,μG(T)〉 = lim
ε↓0

∫
T

exp

(
γ Ỹψt,ε − γ 2

2
E(Ỹ 2

ψt,ε )

)
ϕ(t)dt, ϕ ∈ C(T),

where ψt,ε(e2πsi ) is defined to be 1/2ε if s ∈ (t − ε, t + ε) and 0 otherwise.
More generally we may consider the restriction of G(C) to ∂B for any (not necessarily connected)

non-polar bounded Borel set B ⊂ C. Let μB be the equilibrium measure for B. By choosing R > 0
with B ⊂ BR,define for ψ ∈ L(∂B)

μψ(dy) = ψ(y)μB(dy) − 〈μB, ψ〉 · σR(dy) ∈ M00(C), (5.8)

and denote Xμψ by Yψ . Then G(∂B) = {Yψ : ψ ∈ L(∂B)} is a Gaussian field with covariance

E[Yψ1Yψ2 ] =
∫

∂B×∂B

k(x − y)ψ1(x)ψ2(y)μB(dx)μB(dy) + 1

π
log R, ψ1, ψ2 ∈ L(∂B). (5.9)

In connection with this subsection, we mention that the logarithmic potential of a variant of the
measure (5.2) was considered in [5, III.5] already.
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5.2 Gaussian field {Y x,ε} indexed by {μx,ε} and Liouville measure μG(C)

For x ∈ C, ε > 0,let Bε(x) = {y ∈ C : |x − y| < ε} and μx,ε be the uniform probability measure on
∂Bε(x). μx,ε is the equilibrium measure for the set Bε(x) with the equilibrium potential

Uμx,ε(y) = 1

π
log

1

|x − y| ∨ ε
, y ∈ C.

Fix R > 0. For any x ∈ C and ε > 0 with Bε(x) ⊂ BR,define

μ̃x,ε = μx,ε − σR (∈ M00(C)). (5.10)

The associated Gaussian random variable Xμ̃x,ε ∈ G(C) is denoted by Y x,ε . In view of Eq. 5.1, the
Gaussian field {Y x,ε} indexed by (x, ε) has the convariance

E[Y x,εY y,ε] = 〈μx,ε, Uμy,ε〉 + 1

π
log R. (5.11)

In particular, E[(Y x,ε)2] = 1

π
(log R − log ε) so that E[eγY x,ε ] = (R/ε)γ

2/(2π) for a constant

γ > 0. Denote by m the Lebesgue measure on C. It is plausible that the almost sure limit

lim
ε↓0

( ε

R

) γ 2

2π
exp(γ Y x,ε) · m(dx) = μG(C)(dx) (5.12)

exists in the sense of weak convergence of measures on BR and the limit random measure μG(C) =
μ

γ,R

G(C) is non-degenerate for small γ > 0.
A similar assertion is being made in [19] without proof but by quoting [7]. In [7], the existence

of a positive random measure analogous to μG(C) called a Liouville (quantum gravity) measure is
studied for the Gaussian field G(D) associated with the transient Dirichlet form ( 1

2DD, H 1
0 (D)) on

L2(D) of the absorbing Brownian motion on a planar domain D ⊂ C. G(D) can be formulated as the
Gaussian field indexed by signed Radon measures on D of finite 0-order energy. [7] is just treating
its special subfield indexed by {μx,ε; x ∈ D, ε > 0}. One can then well use the Markov property of
G(D) due to [18] or its weak version. D is assumed to be bounded so that the extra term W∂D in
the fundamental identity for the logarithmic potentials vanishes on D (cf. (2.14)). See the proof of
[9, Proposition 2.5 (ii)] for a justification of the formulation mentioned above.

In this connection, we mention the work [1] that studies a time changed planar Brownian motion
with the symmetrizing measure being the Liouville random measure μG for the massive free field G,
namely, the Gaussian field associated with the transient Dirichlet form ( 1

2D(f, g) + α(f, g), H 1(C))

on L2(C) for a fixed α > 0 (cf. [15, §4]). This Liouville measure μG has been rigorously constructed
(cf. [17]) by an approximation of the 0-order resolvent kernel r(x, y) = ∫ ∞

0 qt (x, y)dt for qt (x, y) =
(2πt)−1e−αt e− |x−y|2

2t as a sum of non-singular kernels
∫ an+1
an

qt (x, y)dt and by applying Kahane’s
multiplicative chaos [11] to Gaussian fields {Xn(x), x ∈ C} indexed by {δx; x ∈ C}. See [3] and
references therein for some more general considerations on Liouville random measures.

5.3 Brownian motions produced by G(C) and G(R)

For r ≥ 1, define μr = √
π(σr − σ1) (∈ M00(C)). It follows from Eq. 5.1 that 〈μr1 , Uμr2 〉 =

(log r1) ∧ (log r2), r1, r2 ≥ 1. Therefore, if we denote by Wt the Gaussian random variable Xμet
for

t ∈ [0,∞), then
E[Wt Ws ] = t ∧ s, t, s ≥ 0, (5.13)

namely, {Wt }t∈[0,∞) is a Brownian motion with time parameter [0, ∞).
Finally we take the Gaussian field G(R) indexed by M00(R) considered in Section 4. For x ∈ R,

δx denotes the δ-measure concentrated at {x}. We let

μx = 1

2
(δx − δ0) (∈ M00(R)), x ∈ R,

and denote by Bx the assoicated Gaussian random variable Xμx . We then have from Eq. 4.11

E[BxBy ] = |x| + |y| − |x − y|, x, y ∈ R. (5.14)
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The right hand side equals x ∧ y; 0; and −(x ∨ y),in accordance with x, y ≥ 0; x > 0, y < 0; and
x, y < 0, respectively. This means that {Bx; x ≥ 0} and {B−x : x ≤ 0} are independent Brownian
motion so that {Bx : x ∈ R} is a Brownian motion with time parameter R.
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13. de La Vallèe Poussin, C.-J.: Le Potentiel Logarithmique. Gauthier-Villars, France (1949)
14. Mandrekar, V.S., Gawarecki, L.: Stochastic Analysis for Gaussian Random Processes and Fields. CRC

Press, Boca Raton (2015)
15. Nelson, E.: The free Markovian field. J. Funct. Anal. 12, 211–227 (1973)
16. Port, S.C., Stone, C.J.: Brownian Motion and Classical Potential Theory. Academic Press, Cambridge

(1978)
17. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and appliacations; A review. Probab. Surv. 11,

315–392 (2014)
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