

Logarithmic and Linear Potentials of Signed Measures and Markov Property of Associated Gaussian Fields

Masatoshi Fukushima¹ D

Received: 10 May 2017 / Accepted: 2 October 2017 / Published online: 11 October 2017 © Springer Science+Business Media B.V. 2017

Abstract We consider the family of finite signed measures on the complex plane \mathbb{C} with compact support, of finite logarithmic energy and with zero total mass. We show directly that the logarithmic potential of such a measure sits in the Beppo Levi space, namely, the extended Dirichlet space of the Sobolev space of order 1 over \mathbb{C} , and that the half of its Dirichlet integral equals the logarithmic energy of the measure. We then derive the (local) Markov property of the Gaussian field $G(\mathbb{C})$ indexed by this family of measures. Exactly analogous considerations will be made for the Beppo Levi space over the upper half plane \mathbb{H} and the Cameron-Martin space over the real line \mathbb{R} . Some Gaussian fields appearing in recent literatures related to mathematical physics will be interpreted in terms of the present field $G(\mathbb{C})$.

Keywords Logarithmic potential \cdot Logarithmic energy \cdot Beppo Levi space \cdot Gaussian field \cdot Markov property

Mathematics Subject Classification (2010) Primary 31A15 · Secondary 60G60, 31C25

1 Introduction

A basic relationship between a general transient Dirichlet form \mathcal{E} and a Gaussian field **G** indexed by the family \mathcal{M}_0 of signed Radon measures of finite 0-order energy was established by Michael Röckner [18] in 1985. It was shown in [18] that the field **G** enjoys the global Markov property if and only if the form \mathcal{E} has the local property by using the *balayage* operation on measures in \mathcal{M}_0 formulated in [8] by means of the transient

Masatoshi Fukushima fuku2@mx5.canvas.ne.jp

¹ Branch of Mathematical Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan

extended Dirichlet space ($\mathcal{F}_e, \mathcal{E}$). See also [14]. We will be concerned about extending such a relationship to a general recurrent Dirichlet form.

In recent literatures related to mathematical physics, some investigations are being made about Gaussian fields indexed by measures on the complex plane \mathbb{C} with finite logarithmic energy ([2, 7, 19]). A primary purpose of this paper is to clarify the role of such measures from the above mentioned general view point.

To be more precise, let $\mathcal{M}_{00}(\mathbb{C})$ be the linear space consisting of compactly supported finite signed measures on \mathbb{C} of finite logarithmic energy and with vanishing total mass. In Section 2, we prove directly that the logarithmic potential $U\mu$ of any measure $\mu \in \mathcal{M}_{00}(\mathbb{C})$ sits in the Beppo Levi space BL(\mathbb{C}) (cf. [4, 6]) which is just the extended Dirichlet space of the Sobolev space $H^1(\mathbb{C})$ over the plane \mathbb{C} , and that the half of the Dirichlet integral of $U\mu$ equals the logarithmic energy $I(\mu)$ of μ .

In particular the linear space $\mathcal{M}_{00}(\mathbb{C})$ equipped with the mutual logarithmic energy $I(\mu, \nu)$ is pre-Hilbertian so that the Gaussian field $\mathbf{G}(\mathbb{C})$ indexed by $\mathcal{M}_{00}(\mathbb{C})$ can be associated. We then derive the local Markov property of $\mathbf{G}(\mathbb{C})$ by invoking the *balayage* theorem for the logarithmic potentials well presented in S.C. Port and C.J. Stone [16, §6.7].

Actually the pre-Hilbertian structure of the space $\mathcal{M}_{00}(\mathbb{C})$ appeared already in the book by Ch.-J. de La Vallèe Poussin [13, II.§1] and its shortest direct proof was given by N.S. Landkof [12, I.§4] using the composition rule of Riesz kernels. On the other hand, by making use of Schwartz distributions and their Fourier transforms, Jacques Deny [5, III.5] introduced the distribution T of finite logarithmic energy ||T|| together with the logarithmic potential U^T of T, and showed that, if T is compactly supported, then U^T is in BL(\mathbb{C}) and its Dirichlet integral coincides with $||T||^2$ up to a constant factor.

Our result in Section 2 gives a first direct proof of this relation for the subfamily $\mathcal{M}_{00}(\mathbb{C})$ of such general distributions without using the distribution theory. A direct proof of the corresponding relation for the Newtonian potentials of measures in \mathcal{M}_0 was supplied by [12, I.§4] using the Gauss-Green formula. In Section 2, we shall instead employ an approximation by the Brownian semigroup.

Exactly the analogous consideration to Section 2 will be made in Section 3 for the Beppo Levi space $BL(\mathbb{H})$ over the upper half plane \mathbb{H} and the Gaussian field indexed by the space $\mathcal{M}_{00}(\overline{\mathbb{H}})$ of compactly supported finite signed measures on $\overline{\mathbb{H}}$ with vanishing total mass and of finite energy relative to the logarithmic kernel for the reflecting Brownian motion on $\overline{\mathbb{H}}$.

In Section 4, we continue to make an analogous consideration for the Cameron-Martin space $H_e^1(\mathbb{R})$ over the real line \mathbb{R} and linear potentials of measures on \mathbb{R} .

In Section 5, Gaussian fields and intrinsically associated positive random measures appearing in [2, 19] will be interpreted in terms of the present field $G(\mathbb{C})$.

Gaussian fields and their Markov property for more general recurrent Dirichlet forms will be investigated in [9].

2 Logarithmic Potentials and Gaussian Field Indexed by $\mathcal{M}_{00}(\mathbb{C})$

2.1 Logarithmic Potentials and Beppo Levi Space Over C

For the complex plane \mathbb{C} . define

$$p_t(\mathbf{x}) = \frac{1}{2\pi t} \exp\left(-\frac{|\mathbf{x}|^2}{2t}\right), \quad t > 0, \quad \mathbf{x} \in \mathbb{C}, \qquad k(\mathbf{x}) = \frac{1}{\pi} \log \frac{1}{|\mathbf{x}|}, \quad \mathbf{x} \in \mathbb{C}.$$
(2.1)

 $p_t(\mathbf{x} - \mathbf{y})$ and $k(\mathbf{x} - \mathbf{y})$ are the transition density of the planar Brownian motion and the logarithmic kernel, respectively.

We fix a point $\mathbf{x}_0 \in \mathbb{C}$ with $|\mathbf{x}_0| = 1$ and let

$$k_T(\mathbf{x}) = \int_0^T (p_t(\mathbf{x}) - p_t(\mathbf{x}_0)) dt, \quad T > 0, \quad \mathbf{x} \in \mathbb{C}$$

We then have the following. See Port-Stone [16, p 70].

Lemma 2.1

$$|k_T(\mathbf{x})| = \int_0^T |p_t(\mathbf{x}) - p_t(\mathbf{x}_0)| dt < |k(\mathbf{x})|, \quad T > 0, \ \mathbf{x} \in \mathbb{C},$$

and

$$\lim_{T\to\infty}k_T(\boldsymbol{x})=k(\boldsymbol{x}), \quad x\in\mathbb{C}.$$

We consider the *Sobolev space of order* 1 over \mathbb{C} and the *Beppo Levi space* over \mathbb{C} defined respectively by

$$H^{1}(\mathbb{C}) = \{ u \in L^{2}(\mathbb{C}) : |\nabla u| \in \mathbb{L}^{2}(\mathbb{C}) \},\$$

BL(\mathbb{C}) = \{ u \in L^{2}_{loc}(\mathbb{C}) : |\nabla u| \in \mathbb{L}^{2}(\mathbb{C}) \}.

Denote the Dirichlet integral $\int_{\mathbb{C}} \nabla f(\mathbf{x}) \cdot \nabla g(\mathbf{x}) d\mathbf{x}$ of functions f, g on \mathbb{C} by $\mathbf{D}(f, g)$.

 $\left(\frac{1}{2}\mathbf{D}, H^1(\mathbb{C})\right)$ is the Dirichlet form on $L^2(\mathbb{C})$ associated with the planar Brownian motion. Its extended Dirichlet space is known to be identical with the space $(BL(\mathbb{C}), \frac{1}{2}\mathbf{D})$. In other words, the space $BL(\mathbb{C})$ is the collection of those functions f on \mathbb{C} for which there exist functions $f_n \in H^1(\mathbb{C}), n \ge 1$, such that $\{f_n\}$ is **D**-Cauchy and $f_n \to f$ a.e. on \mathbb{C} as $n \to \infty$. Such $\{f_n\}$ is called an *approximating sequence* for f. See Theorem 2.2.13 and the first part of Theorem 2.2.12 in [4] for a proof. The Beppo Levi space over \mathbb{C} enjoys the following basic properties (cf. [4, p69]).

(**BL.a**) Denote by \mathcal{N} the subspace of $BL(\mathbb{C})$ consisting of constant functions on \mathbb{C} . Then the quotient space $\dot{BL}(\mathbb{C}) = BL(\mathbb{C})/\mathcal{N}$ is a real Hilbert space with inner product $\frac{1}{2}\mathbf{D}$.

(**BL.b**) If $u_n \in BL(\mathbb{C})$ is **D**-convergent to $u \in BL(\mathbb{C})$, then there exist constants c_n such that $u_n + c_n$ converges to u in $L^2_{loc}(\mathbb{C})$.

 $\mathcal{L}(\mathbb{C})$ will denote the collection of bounded Borel functions on \mathbb{C} vanishing outside some bounded sets. For $f \in \mathcal{L}(\mathbb{C})$, put

$$Uf(\mathbf{x}) = \int_{\mathbb{C}} k(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y}, \quad P_t f(\mathbf{x}) = \int_{\mathbb{C}} p_t(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y}, \quad S_T f(\mathbf{x}) = \int_0^T P_t f(\mathbf{x}) dt, \quad x \in \mathbb{C}.$$

(f, g) will designate the integral $\int_{\mathbb{C}} f(\mathbf{x})g(\mathbf{x})d\mathbf{x}$ for functions f, g on \mathbb{C} .

Proposition 2.2 If $f \in \mathcal{L}(\mathbb{C})$ satisfies

$$\int_{\mathbb{C}} f(\mathbf{x}) d\mathbf{x} = 0, \qquad (2.2)$$

then $Uf \in BL(\mathbb{C})$ *and*

$$\frac{1}{2}\mathbf{D}(Uf, u) = (f, u) \quad \text{for any } u \in \mathbf{BL}(\mathbb{C}).$$
(2.3)

In particular,

$$\frac{1}{2}\mathbf{D}(Uf, Uf) = (f, Uf).$$
(2.4)

🖉 Springer

Proof Since $\int_{\mathbb{C}} |k(\mathbf{x} - \mathbf{y})| |f(\mathbf{y})| d\mathbf{y} < \infty$, $\mathbf{x} \in \mathbb{C}$, Lemma 2.1 guarantees the use of Fubini's theorem and the dominated convergence theorem to obtain

$$k_T f(\mathbf{x}) = \int_{\mathbb{C}} k_T (\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y} = S_T f(\mathbf{x}), \quad \lim_{T \to \infty} S_T f(\mathbf{x}) = U f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{C}.$$

Further we get $(f, S_T f) = (f, k_T f) \rightarrow (f, Uf), T \rightarrow \infty$, by noting that $\int_{\mathbb{C} \times \mathbb{C}} |k(\mathbf{x} - \mathbf{y})|| f(\mathbf{x}) || f(\mathbf{y}) || d\mathbf{x} d\mathbf{y} < \infty$.

As $f \in L^2(\mathbb{C})$, we see by [10, Lemma 1.5.3] that $S_T \in H^1(\mathbb{C})$ and

$$\frac{1}{2}\mathbf{D}(S_T f, u) = (f - P_T f, u) \quad \text{for any } u \in H^1(\mathbb{C}).$$
(2.5)

Accordingly

$$\frac{1}{2}\mathbf{D}(S_T f - S_{T'} f, S_T f - S_{T'} f) = (f, 2S_{T+T'} f - S_{2T} f - S_{2T'} f) \to 0, \ T, T' \to \infty.$$

Therefore $Uf \in BL(\mathbb{C})$. Since $(f, S_T f) = \int_0^T (P_{t/2}f, P_{t/2}f)dt$ increases to a finite limit (f, Uf) as $T \to \infty$, $|(P_t f, u)| \le \sqrt{(P_t f, P_t f)}\sqrt{(u, u)}$ tends to zero as $t \to \infty$ for any $u \in H^1(\mathbb{C})$. Consequently, we get Eq. 2.3 holding for any $u \in H^1(\mathbb{C})$ from Eq. 2.5.

For any $u \in BL(\mathbb{C})$, there exist $u_n \in H^1(\mathbb{C})$ such that $\{u_n\}$ is **D**-convergent to u. According to (**BL.b**), there are some constants c_n such that $\{u_n + c_n\}$ is L^2_{loc} -convergent to u. By letting $n \to \infty$ in $\frac{1}{2}\mathbf{D}(Uf, u_n) = (f, u_n) = (f, u_n + c_n)$, we arrive at Eq. 2.3 for $u \in BL(\mathbb{C})$. \Box

Denote by $\mathcal{M}^+(\mathbb{C})$ the collection of positive finite measures on \mathbb{C} with compact support. The *logarithmic potential* $U\mu$ of $\mu \in \mathcal{M}^+(\mathbb{C})$ is defined by

$$U\mu(\mathbf{x}) = \int_{\mathbb{C}} k(\mathbf{x} - \mathbf{y})\mu(d\mathbf{y}), \quad \mathbf{x} \in \mathbb{C}.$$

 $U\mu$ is *superharmonic*, namely, it is lower semicontinuous and supermean valued. It is locally integrable and locally bounded below on \mathbb{C} .

For r > 0, consider the function $\psi_r(\mathbf{x}) = \frac{1}{\pi r^2} I_{B_r}(\mathbf{x}), \ \mathbf{x} \in \mathbb{C}$, where $B_r = \{\mathbf{y} \in \mathbb{C} : |\mathbf{y}| < r\}$. For $\mu \in \mathcal{M}^+$, define

$$\mu_r(\mathbf{x}) = \int_{\mathbb{C}} \psi_r(\mathbf{x} - \mathbf{y}) \mu(d\mathbf{y}), \quad \mathbf{x} \in \mathbb{C},$$
(2.6)

which is a continuous function on \mathbb{C} belonging to \mathcal{L} . Furthermore

$$[\psi_r * (U\mu)](\mathbf{x}) = U\mu_r(\mathbf{x}) \uparrow U\mu(\mathbf{x}), \quad \mathbf{x} \in \mathbb{C}, \quad r \downarrow 0.$$
(2.7)

Here the notation * designates the convolution of functions.

The integral $\int_{\mathbb{C}} u dv$ of a function u by a measure v is denoted by $\langle u, v \rangle$ or $\langle v, u \rangle$. For $\mu, v \in \mathcal{M}^+(\mathbb{C}), \langle \mu, Uv \rangle$ takes value in $(-\infty, +\infty]$. We define the *energy* $I(\mu)$ of $\mu \in \mathcal{M}^+$ by $I(\mu) = \langle \mu, U\mu \rangle$.

For R > 0, we let $k^{R}(\mathbf{x}) = \frac{1}{\pi} \log \frac{R}{|\mathbf{x}|}$, $U^{R}\mu(\mathbf{x}) = \int_{\mathbb{C}} k^{R}(\mathbf{x} - \mathbf{y})\mu(d\mathbf{y})$. For $\mu, \nu \in \mathcal{M}^{+}(\mathbb{C}), \langle \mu, U\nu \rangle$ is finite if and only if so is $\langle \mu, U^{R}\nu \rangle$ for some R > 0, because

$$\langle \mu, U\nu \rangle = \langle \mu, U^R \nu \rangle - \frac{\log R}{\pi} \mu(\mathbb{C})\nu(\mathbb{C}).$$
 (2.8)

Suppose $I(\mu + \nu)$ is finite for $\mu, \nu \in \mathcal{M}^+(\mathbb{C})$. Then $I(\mu), I(\nu)$ and $\langle \mu, U\nu \rangle$ are all finite. To see this, it is enough to take R > 0 such that the supports of μ and ν are both contained in $B_{R/2}$ and to notice that $k^R(\mathbf{x} - \mathbf{y}) > 0$, $\mathbf{x}, \mathbf{y} \in B_{R/2}$. Let us now introduce several classes of measures on \mathbb{C} .

$$\mathcal{M}_0^+(\mathbb{C}) = \{ \mu \in \mathcal{M}^+(\mathbb{C}) : I(\mu) < \infty \},\$$

 $\mathcal{M}_0(\mathbb{C}) = \{\mu : \text{ finite signed measure on } \mathbb{C}, \ |\mu| \in \mathcal{M}_0^+(\mathbb{C})\}.$

For $\mu \in \mathcal{M}_0(\mathbb{C})$, let $|\mu| = \mu^+ + \mu^-$, $\mu = \mu^+ - \mu^-$, $\mu^{\pm} \in \mathcal{M}_0^+(\mathbb{C})$, be its Jordan decomposition. Due to the observation made just above, the *energy* $I(\mu)$ of μ is well defined by

$$I(\mu) = I(\mu^{+}) + I(\mu^{-}) - 2\langle \mu^{+}, U\mu^{-} \rangle \in \mathbb{R}.$$
 (2.9)

Finally we define the class

$$\mathcal{M}_{00}(\mathbb{C}) = \{ \mu \in \mathcal{M}_0(\mathbb{C}) : \mu(\mathbb{C}) = 0 \}.$$

Proposition 2.3 For any $\mu \in \mathcal{M}_{00}(\mathbb{C})$, $U\mu \in BL(\mathbb{C})$ and

$$\frac{1}{2}\mathbf{D}(U\mu, U\mu) = I(\mu), \qquad (2.10)$$

$$\frac{1}{2}\mathbf{D}(U\mu, u) = \langle \mu, u \rangle \quad \text{for any } u \in C_c^1(\mathbb{C}).$$
(2.11)

Proof Let $\mu = \mu^+ - \mu^-$, $\mu^{\pm} \in \mathcal{M}_0^+(\mathbb{C})$, be the Jordan decomposition of $\mu \in \mathcal{M}_{00}(\mathbb{C})$. Taking a sequence $r_n \downarrow 0$ with $r_n < \frac{1}{2}$, define the functions $\mu_n^{\pm} = \mu_{r_n}^{\pm}$ according to Eq. 2.6 and let $\mu_n = \mu_n^+ - \mu_n^- (= \int_{\mathbb{C}} \psi_{r_n}(\mathbf{x} - \mathbf{y})\mu(d\mathbf{y}))$. Since each function μ_n belongs to \mathcal{L} and satisfies (2.2), we obtain from Proposition 1.2 that $U\mu_n \in BL(\mathbb{C})$ and $\frac{1}{2}\mathbf{D}(U\mu_n, u) = (\mu_n, u)$ for any $u \in BL(\mathbb{C})$. In particular,

$$\frac{1}{2}\mathbf{D}(U\mu_n, U\mu_m) = (\mu_n, U\mu_m), \quad n, \ m \in \mathbb{N}.$$
(2.12)

We first use Eq. 2.12 to get

$$\frac{1}{2}\mathbf{D}(U\mu_n, U\mu_n) = (\mu_n^+, U\mu_n^+) + (\mu_n^-, U\mu_n^-) - 2(\mu_n^+, U\mu_n^-)$$

By virtue of Eq. 2.7, $(\mu_n^{\pm}, U\mu_n^{\pm}) \leq (\mu_n^{\pm}, U\mu^{\pm}) = \langle U\mu_n^{\pm}, \mu^{\pm} \rangle \leq \langle U\mu^{\pm}, \mu^{\pm} \rangle < \infty$. On the other hand, if we take a disk B_R large enough to contain the supports of μ^{\pm} , then the supports of the measures $\mu_n^{\pm}(\mathbf{x})d\mathbf{x}$ are contained in B_{R+1} so that $(\mu_n^+, U^{R+1}\mu_n^-) \geq 0$. Further $\int_{\mathbb{C}} \mu_n^{\pm}(\mathbf{x})d\mathbf{x} = \mu^{\pm}(\mathbb{C}) < \infty$. Hence it follows from Eq. 2.8 that

$$-(\mu_n^+, U\mu_n^-) \le \frac{1}{\pi} \log(R+1)\mu^+(\mathbb{C})\mu^-(\mathbb{C}) < \infty.$$

We thus obtain the boundedness $\sup_{n \in \mathbb{N}} \frac{1}{2} \mathbf{D}(U\mu_n, U\mu_n) < \infty$.

By the Banach-Saks theorem (cf. [4, Theorem A.4.1]), there exists a subsequence $\{\mu_{n_k}\}$ of $\{\mu_n\}$ such that, for its Cesàro mean denoted by ν_k , $U\nu_k$ is **D**-convergent to some $v \in$ BL(\mathbb{C}) as $k \to \infty$. Then, by (**BL.b**) again, there exist constants c_k such that $U\nu_k + c_k$ converges to v in $L^2_{loc}(\mathbb{C})$ as $k \to \infty$.

 $Uv_k = Uv_k^+ - Uv_k^-$ for the Cesàro mean v_k^{\pm} of $\{\mu_{n_k}^{\pm}\}$ and $Uv_k^{\pm}(\mathbf{x}) \uparrow U\mu^{\pm}(\mathbf{x}), \mathbf{x} \in \mathbb{C}$, as $k \to \infty$ by Eq. 2.7 so that $\lim_{k\to\infty} Uv_k(\mathbf{x}) = U\mu^+(\mathbf{x}) - U\mu^-(\mathbf{x}) = U\mu(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{C} \setminus N$, where $N = \{\mathbf{x} \in \mathbb{C} : U\mu^-(\mathbf{x}) = +\infty\}$. But the Lebesgue measure of N is zero because $U\mu^-$ is locally integrable. Hence the limit $c = \lim_{k\to\infty} c_k$ exists and $v = U\mu + c$, and consequently $U\mu \in BL(\mathbb{C})$ and $Uv_k \to U\mu$, $k \to \infty$, **D**-strongly in $(BL(\mathbb{C}), \frac{1}{2}\mathbf{D})$.

We next use Eq. 2.12 to get

$$\frac{1}{2}\mathbf{D}(U\nu_k, U\nu_\ell) = (U\nu_k, \nu_\ell) = (U\nu_k^+, \nu_\ell^+) + (U\nu_k^-, \nu_\ell^-) - (U\nu_k^+, \nu_\ell^-) - (U\nu_k^-, \nu_\ell^+).$$

363

As Uv_k^{\pm} are locally bounded below and $U\mu^{\pm}$ are locally integrable, we let $k \to \infty$ using the monotone convergence theorem to obtain

$$\frac{1}{2}\mathbf{D}(U\mu, U\nu_{\ell}) = (U\mu^{+}, \nu_{\ell}^{+}) + (U\mu^{-}, \nu_{\ell}^{-}) - (U\mu^{+}, \nu_{\ell}^{-}) - (U\mu^{-}, \nu_{\ell}^{+})$$
$$= \langle \mu^{+}, U\nu_{\ell}^{+} \rangle + \langle \mu^{-}, U\nu_{\ell}^{-} \rangle - \langle \mu^{+}, U\nu_{\ell}^{-} \rangle - \langle \mu^{-}, U\nu_{\ell}^{+} \rangle.$$

By noting (2.9), we finally let $\ell \to \infty$ using the monotone convergence theorem to arrive at Eq. 2.10.

To prove (2.11), take any $u \in C_c^1(\mathbb{C})$. Denote by $\widetilde{\psi}_k$ the Cesàro mean of $\{\psi_{n_k}\}$. Since $\psi_n * u$ converges to u locally uniformly on \mathbb{C} as $n \to \infty$, so does $\widetilde{\psi}_k * u_0$ as $k \to \infty$. We get from Eq. 2.3

$$\frac{1}{2}\mathbf{D}(Uv_k, u) = (v_k, u) = \langle \mu, \widetilde{\psi}_k * u \rangle$$

By letting $k \to \infty$, we obtain (2.11).

The rest of this section will be concerned about an extension of the Eq. 2.11 to $u \in BL(\mathbb{C})$ and balayage (sweeping out) of measures. We need some preparations.

Let $\mathbf{X} = (X_t, \{\mathbb{P}_{\mathbf{X}}\}_{\mathbf{X} \in \mathbb{C}})$ be the planar Brownian motion. A subset N of \mathbb{C} is called a *polar* set (relative to \mathbf{X}) if N is contained in a Borel set B such that

$$\mathbb{P}_{\mathbf{x}}(\sigma_B < \infty) = 0$$
 for any $\mathbf{x} \in \mathbb{C}$, where $\sigma_B = \inf\{t > 0 : X_t \in B\}$.

For $u \in H^1(\mathbb{C})$, we put $\mathbf{D}_1(u, u) = \frac{1}{2}\mathbf{D}(u, u) + (u, u)$ and define the \mathbf{D}_1 -capacity of an open set $G \subset \mathbb{C}$ by

$$\operatorname{Cap}(G) = \inf\{\mathbf{D}_1(u, u) : u \in H^1(\mathbb{C}), u \ge 1 \text{ a.e. on } G\}.$$

The **D**₁-capacity of an arbitrary set $B \subset \mathbb{C}$ is defined by $\operatorname{Cap}(B) = \inf{\operatorname{Cap}(G)} : G$ open, $G \supset B$.

It is known that a subset N of \mathbb{C} is polar if and only if $\operatorname{Cap}(N) = 0$ (cf. [10, Theorems 4.1.2, 4.2.1]). 'quasi-everywhere' or 'q.e.' means 'except for a polar set'. An extended real valued function u defined q.e. on \mathbb{C} is said to be **D**₁-quasi continuous if, for any $\epsilon > 0$, there exists an open set $G \subset \mathbb{C}$ with $\operatorname{Cap}(G) < \epsilon$ such that $u|_{\mathbb{C}\setminus G}$ is finite and continuous.

Lemma 2.4 (i) Any function in $BL(\mathbb{C})$ admits a D_1 -quasi continuous version. If $f_n \in H^1(\mathbb{C})$, $n \ge 1$, constitute an approximating sequence of $f \in BL(\mathbb{C})$ and each f_n is D_1 -quasi continuous, then there exists an subsequence $\{n_k\}$ such that f_{n_k} converges to a D_1 -quasi continuous version \tilde{f} of f q.e. on \mathbb{C} .

(ii) Any $u \in BL(\mathbb{C})$ admits an approximating sequence of functions in $C_c^1(\mathbb{C})$.

(iii) Take any $\mu \in \mathcal{M}_0^+(\mathbb{C})$. Then μ charges no polar set. Further $U\mu(\mathbf{x}) < \infty$ for q.e. $\mathbf{x} \in \mathbb{C}$.

Proof (i) follows from [4, Theirem 2.3.4].

(ii). As in the proof of Theorem 2.2.13 in [4], it suffices to prove this assertion for bounded $u \in BL(\mathbb{C})$. Further, for such u, it is shown there that $\sup_n \mathbf{D}(u_n, u_n) < \infty$ for $u_n(\mathbf{x}) = u(\mathbf{x})\eta_n(|\mathbf{x}|), \mathbf{x} \in \mathbb{C}$, where η_n is a non-negative smooth function on $[0, \infty)$ satisfying

$$\begin{cases} \eta_n(x) = 1 & \text{for } 0 \le x < n, \quad \eta_n(x) = 0 & \text{for } x > 2n + 1, \\ |\eta'_n(x)| \le 1/n & \text{for } n \le x \le 2n + 1, \quad 0 \le \eta_n(x) \le 1 & \text{for } x \in [0, \infty). \end{cases}$$

Consider a non-negative smooth function φ on \mathbb{C} with $\operatorname{supp}(\varphi) \subset B_1$ and $\int_{B_1} \varphi(\mathbf{x}) d\mathbf{x} = 1$. We set $\varphi_n(\mathbf{x}) = n^2 \varphi(n\mathbf{x}), \ x \in \mathbb{C}$, and let $v_n = \varphi_n * u_n$. Then $v_n \in C_c^1(\mathbb{C})$ and

 \square

 $\lim_{n\to\infty} v_n(\mathbf{x}) = u(\mathbf{x})$ for a.e. $\mathbf{x} \in \mathbb{C}$. Moreover $\mathbf{D}(v_n, v_n) \leq \mathbf{D}(u_n, u_n)$ so that $\sup_n \mathbf{D}(v_n, v_n) < \infty$. This implies that the Cesàro mean sequence of a suitable subsequence of $\{v_n\}$ is a desired approximating sequence of u.

(iii). We use the following *fundamental identity for the logarithmic potential* due to [16, Theorem 3.4.2]: for any non-polar compact set $K \subset \mathbb{C}$,

$$k(\mathbf{x}, \mathbf{y}) = g^{\mathbb{C} \setminus K}(\mathbf{x}, \mathbf{y}) + \int_{K} h_{K}(\mathbf{x}, d\mathbf{z}) k(\mathbf{z}, \mathbf{y}) - W_{K}(\mathbf{x}), \quad \mathbf{x}, \mathbf{y} \in \mathbb{C},$$
(2.13)

where $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y})$, $g^{\mathbb{C}\setminus K}$ is the 0-order resolvent density of the absorbing Brownian motion on $\mathbb{C} \setminus K$, h_K is the hitting distribution for K of the planar Brownian motion \mathbf{X} defined by $h_K(\mathbf{x}, B) = \mathbb{P}_{\mathbf{x}}(\sigma_K < \infty, X_{\sigma_K} \in B)$ for any Borel set B and W_K is a certain non-negative locally bounded Borel function on \mathbb{C} vanishing q.e. on K.

Take an open disk B_R containing the support of μ and write $D = B_R$ and $S = \partial B_R$. As $W_S(\mathbf{x}) = 0$, $\mathbf{x} \in D$, by [16, §3, Prop.4.7], we have from Eq. 2.13

$$U\mu(\mathbf{x}) = \int_D g^D(\mathbf{x}, \mathbf{y})\mu(d\mathbf{y}) + \mathbb{E}_{\mathbf{x}} \left[U\mu(X_{\sigma_S}); \sigma_S < \infty \right], \quad \mathbf{x} \in D,$$
(2.14)

where $g^{D}(\mathbf{x}, \mathbf{y})$ is the 0-order resolvent density of the absorbing Brownian motion \mathbf{X}_{D} on D. Denote by $g_{1}^{D}(\mathbf{x}, \mathbf{y})$ the 1-order resolvent density of \mathbf{X}_{D} .

Since $I(\mu) < \infty$ and the last term of the right hand side of the above identity are bounded in $\mathbf{x} \in D$, we have $\int_{D \times D} g^D(\mathbf{x}, \mathbf{y}) \mu(d\mathbf{x}) \mu(d\mathbf{y}) < \infty$, and so $\int_{D \times D} g_1^D(\mathbf{x}, \mathbf{y}) \mu(d\mathbf{x}) \mu(d\mathbf{y}) < \infty$. This means that the measure μ is of finite energy integral relative to \mathbf{X}_D ([10, Exercise 4.2.2]). Accordingly μ charges no polar set relative to \mathbf{X}_D , and equivalently, relative to \mathbf{X} (cf. [10, Lemma 2.2.3, Theorem 4.4.3]).

Since $U\mu(\mathbf{x}) < \infty$ for a.e. $\mathbf{x} \in D$, so is the function $G^D \mu(\mathbf{x}) = \int_D g^D(\mathbf{x}, \mathbf{y})\mu(d\mathbf{y})$. As $G^D \mu$ is \mathbf{X}_D -excessive, we can conclude from [4, Theorem A.2.13 (v)] that it is finite q.e. on D. We then get the last statement by the above identity because we can take an arbitrarily large R > 0.

For $u \in BL(\mathbb{C})$, we set

$$L(u) = \int_{B_1} \psi_1(\mathbf{x}) u(\mathbf{x}) d\mathbf{x},$$

which is well defined because $u \in L^2_{loc}(\mathbb{C})$.

Proposition 2.5 It holds for any $v \in \mathcal{M}_0^+(\mathbb{C})$ that

$$\langle v, |\widetilde{u} - L(u)| \rangle \le C(v)\sqrt{D(u, u)} \quad \text{for any } u \in BL(\mathbb{C}),$$
 (2.15)

where \tilde{u} is a D_1 -quasi continuous version of u and C(v) is a positive constant independent of $u \in BL(\mathbb{C})$. In particular, \tilde{u} for $u \in BL(\mathbb{C})$ is v-integrable.

Proof We proceed as in [10, p 61]. For fixed $\nu \in \mathcal{M}_0^+(\mathbb{C})$ and $u \in C_c^1(\mathbb{C})$, define the measures $\widehat{\nu}$ and μ by

$$\widehat{v} = \operatorname{sgn}(u - L(u)) \cdot v, \quad \mu(d\mathbf{x}) = \widehat{v}(d\mathbf{x}) - \widehat{v}(\mathbb{C})\psi_1(\mathbf{x})d\mathbf{x}.$$

As $\mu \in \mathcal{M}_{00}(\mathbb{C})$, we have from Eq. 2.11 that

$$\frac{1}{2}\mathbf{D}(U\mu, u) = \langle \mu, u \rangle = \langle \widehat{\nu}, u \rangle - \widehat{\nu}(\mathbb{C})L(u) = \langle \widehat{\nu}, u - L(u) \rangle = \langle \nu, |u - L(u)| \rangle.$$

21a ~ D

Consequently, it follows from Eq. 2.10 that

$$\langle v, |u - L(u)| \rangle \leq \frac{1}{2} \sqrt{I(\mu)} \cdot \sqrt{\mathbf{D}(u, u)}.$$

Let us show that $\frac{1}{2}\sqrt{I(\mu)}$ is dominated by a constant $C(\nu)$ that is independent of $u \in C_c^1(\mathbb{C})$. Take R > 2 such that the support of ν is contained in $B_{R/2}$. We have

$$I(\mu) = I(\widehat{\nu}) + \widehat{\nu}(\mathbb{C})^2(\psi_1, U\psi_1) - 2\widehat{\nu}(\mathbb{C})\langle\widehat{\nu}, U\psi_1\rangle.$$

From Eq. 2.8, we get

$$I(\widehat{\nu}) \leq \langle \widehat{\nu}^+, U^R \widehat{\nu}^+ \rangle + \langle \widehat{\nu}^-, U^R \widehat{\nu}^- \rangle + \frac{2 \log R}{\pi} \widehat{\nu}^+(\mathbb{C}) \widehat{\nu}^-(\mathbb{C})$$

$$\leq 2 \langle \nu, U^R \nu \rangle + \frac{2 \log R}{\pi} \nu(\mathbb{C})^2,$$

and

$$|\langle \widehat{\nu}, U\psi_1 \rangle| = |\langle \widehat{\nu}^+, U\psi_1 \rangle - \langle \widehat{\nu}^-, U\psi_1 \rangle| \le 2\langle \nu, U^R\psi_1 \rangle + \frac{2\log R}{\pi}\nu(\mathbb{C}),$$

so that, if we put

$$c(\nu) = 2\langle \nu, U^R \nu \rangle + 4\nu(\mathbb{C})\langle \nu, U^R \psi_1 \rangle + \nu(\mathbb{C})^2 \left[(\psi_1, U\psi_1) + \frac{6\log R}{\pi} \right],$$

then $\frac{1}{2}\sqrt{I(\mu)}$ is dominated by $C(\nu) = \frac{1}{2}\sqrt{c(\nu)}$, which is independent of $u \in C_c^1(\mathbb{C})$.

We now have Eq. 2.15 holding for $v \in \mathcal{M}_0^+(\mathbb{C})$ and for any $u \in C_c^1(\mathbb{C})$ with this constant C(v). For any $u \in BL(\mathbb{C})$, one can choose its approximating sequence $u_n \in C_c^1(\mathbb{C})$ by Lemma 2.4 (ii). In view of Lemma 2.4 (i), u_n converges to a **D**₁-quasi continuous version \tilde{u} of u q.e. on \mathbb{C} by selecting a suitable subsequence if necessary. On the other hand, according to (**BL.b**), there exist constants c_n such that $u_n + c_n$ converges to u in $L^2_{loc}(\mathbb{C})$ and consequently a.e. on \mathbb{C} by choosing a subsequence if necessary. Therefore $\lim_{n\to\infty} c_n = 0$. Thus

$$u_n - L(u_n) \rightarrow \widetilde{u} - L(u), \quad n \rightarrow \infty, \quad \text{q.e. on } \mathbb{C},$$

and

$$\langle v, |u_n - L(u_n)| \rangle \leq C(v) \sqrt{\mathbf{D}(u_n, u_n)}, \quad n \geq 1.$$

We let $n \to \infty$. Since v charges no polar set by Lemma 2.4 (iii), we can use Fatou's lemma to get the desired inequality (2.15).

 \widetilde{u} for $u \in BL(\mathbb{C})$ is ν -integrable as $\langle \nu, |\widetilde{u}| \rangle \leq C(\nu)\sqrt{\mathbf{D}(u, u)} + \nu(\mathbb{C})|L(u)| < \infty$. \Box

Theorem 2.6 For any $\mu \in \mathcal{M}_{00}(\mathbb{C})$, $U\mu \in BL(\mathbb{C})$ and $U\mu$ is D_1 -quasi continuous. Furthermore

$$\frac{1}{2}D(U\mu, u) = \langle \widetilde{u}, \mu \rangle, \quad \text{for any } u \in BL(\mathbb{C}), \tag{2.16}$$

where \tilde{u} is any D_1 -quasi continuous version of u.

Proof For any $u \in BL(\mathbb{C})$, choose its approximating sequence $\{u_n\}$ from $C_c^1(\mathbb{C})$ according to Lemma 4.1 (ii). For $\mu \in \mathcal{M}_{00}(\mathbb{C})$, we have from Proposition 2.5

$$\begin{aligned} |\langle \mu, \widetilde{u} \rangle - \langle \mu, u_n \rangle| &\leq |\langle \mu, \widetilde{u} - u_n - L(u - u_n) \rangle| \\ &\leq \langle \mu^+, |\widetilde{u} - u_n - L(u - u_n)| \rangle + \langle \mu^-, |\widetilde{u} - u_n - L(u - u_n)| \rangle \\ &\leq (C(\mu^+) + C(\mu^-)) \sqrt{\mathbf{D}(u - u_n, u - u_n)} \to 0, \quad n \to \infty. \end{aligned}$$

So, by letting $n \to \infty$ in Eq. 2.11 for $u = u_n$, we arrive at Eq. 2.16.

We have seen in the proof of Proposition 2.3 that, for $\mu \in \mathcal{M}_{00}(\mathbb{C})$, $U\mu$ can be **D**-approximated by a series $\{U\nu_k\}$ of continuous functions and furthermore, $\lim_{k\to\infty} U\nu_k(\mathbf{x}) = U\mu(\mathbf{x})$ for $\mathbf{x} \in \mathbb{C} \setminus N$, where $N = \{\mathbf{x} \in \mathbb{C} : U\mu^-(\mathbf{x}) = \infty\}$. As $\mu^- \in \mathcal{M}_0^+$, the set *N* is polar by Lemma 2.4 (iii). Therefore $U\mu$ is **D**₁-quasi continuous in view of Lemma 2.4 (i).

Proposition 2.7 (i) $\{U\mu : \mu \in \mathcal{M}_{00}(\mathbb{C})\}$ is dense in $(\dot{BL}(\mathbb{C}), \frac{1}{2}\mathbf{D})$.

(ii) The linear space $\mathcal{M}_{00}(\mathbb{C})$ is pre-Hilbertian with inner product $I(\mu, \nu) = \langle \mu, U\nu \rangle, \ \mu, \nu \in \mathcal{M}_{00}(\mathbb{C}).$

Proof (i). Suppose $u \in BL(\mathbb{C})$ is **D**-orthogonal to $\{U\mu : \mu \in \mathcal{M}_{00}(\mathbb{C})\}$. In view of (**BL.a**), it suffices to show that u is constant a.e.

For $\mathbf{x} \in \mathbb{C}$ and r > 0, consider the measure $\mu^{\mathbf{x},r}(d\mathbf{y}) = \psi_r(\mathbf{x} - \mathbf{y})d\mathbf{y} - \psi_1(\mathbf{y})d\mathbf{y} \in \mathcal{M}_{00}(\mathbb{C})$. Then we have from Eq. 2.16 that

$$\frac{1}{2}\mathbf{D}(U\mu^{\mathbf{x},r},u) = (\psi_r * u)(\mathbf{x}) - (\psi_1 * u)(\mathbf{0}) = 0, \quad \mathbf{x} \in \mathbb{C},$$

and so, $(\psi_r * u)(\mathbf{x})$ is a constant for all $\mathbf{x} \in \mathbb{C}$ and r > 0. As $u \in L^2_{loc}(\mathbb{C})$, $\lim_{r \downarrow 0} (\psi_r * u)(\mathbf{x}) = u(\mathbf{x})$ for a.e. $\mathbf{x} \in \mathbb{C}$. Thus u is constant a.e. on \mathbb{C} .

(ii). By Eq. 2.10, $\langle \mu, U\mu \rangle = \frac{1}{2} \mathbf{D}(U\mu, U\mu) \geq 0$ for any $\mu \in \mathcal{M}_{00}(\mathbb{C})$. Suppose $\langle \mu, U\mu \rangle = 0$ for $\mu \in \mathcal{M}_{00}(\mathbb{C})$. Then, for any $u \in C_c^1(\mathbb{C}), \langle \mu, u \rangle = \frac{1}{2} \mathbf{D}(U\mu, u) = 0$ by Eqs. 2.10 and 2.11, yielding $\mu = 0$.

This proposition means that the abstract completion of the pre-Hilbert space $(\mathcal{M}_{00}(\mathbb{C}), I)$ is isometrically isomorphic with $(\dot{\mathrm{BL}}(\mathbb{C}), \frac{1}{2}\mathbf{D})$ by the map $\mu \in \mathcal{M}_{00}(\mathbb{C}) \mapsto U\mu \in \dot{\mathrm{BL}}(\mathbb{C})$. The space $(\dot{\mathrm{BL}}(\mathbb{C}), \frac{1}{2}\mathbf{D})$ can be actually viewed as a reproducing kernel Hilbert space for $(\mathcal{M}_{00}(\mathbb{C}), I)$.

Let *K* be a non-polar compact set in \mathbb{C} . For $\mu \in \mathcal{M}_0(\mathbb{C})$, define

$$\mu_K(B) = \int_{\mathbb{C}} \mu(d\mathbf{y}) h_K(\mathbf{y}, B), \quad \text{for any Borel set } B \subset \mathbb{C}.$$
(2.17)

The measure μ_K is called the *balayage* of μ to K.

Proposition 2.8 Let $\mu \in \mathcal{M}_{00}(\mathbb{C})$. Then $\mu_K \in \mathcal{M}_{00}(\mathbb{C})$ and, for any $\nu \in \mathcal{M}_{00}(\mathbb{C})$ with $supp[|\nu|] \subset K$,

$$\langle U\mu,\nu\rangle = \langle U\mu_K,\nu\rangle. \tag{2.18}$$

Proof Since *K* is a non-polar compact set, $h_K(\mathbf{y}, K) = 1$ for any $\mathbf{y} \in \mathbb{C}$ so that μ_K vanishes on $\mathbb{C} \setminus K$ and $\mu_K(\mathbb{C}) = \mu(\mathbb{C})$ for any $\mu \in \mathcal{M}_0(\mathbb{C})$. For $\mu \in \mathcal{M}^+(\mathbb{C})$, we get the followings from the fundamental identity (2.13) (cf. [16, Theorem 6.7.17]): there exists a constant $c(\mu)$ and

$$U\mu_K(\mathbf{x}) \le U\mu(\mathbf{x}) + c(\mu), \quad \text{for any } \mathbf{x} \in \mathbb{C},$$
 (2.19)

$$U\mu_K(\mathbf{x}) = U\mu(\mathbf{x}) + c(\mu), \quad \text{for q.e. } \mathbf{x} \in K.$$
(2.20)

If $\mu \in \mathcal{M}_0^+(\mathbb{C})$, then Eq. 2.19 implies that

$$\begin{aligned} \langle \mu_K, U\mu_K \rangle &\leq \langle \mu_K, U\mu \rangle + c(\mu)\mu_K(\mathbb{C}) \\ &= \langle U\mu_K, \mu \rangle + c(\mu)\mu(\mathbb{C}) \leq \langle U\mu, \mu \rangle + 2c(\mu)\mu(\mathbb{C}) < \infty, \end{aligned}$$

and consequently, $\mu_K \in \mathcal{M}_0^+(\mathbb{C})$. One can thus see that, if μ belongs to $\mathcal{M}_{00}(\mathbb{C})$, then so does μ_K .

Clearly the identity (2.20) remains valid for any $\mu \in \mathcal{M}_{00}(\mathbb{C})$. Integrating the both hand sides of this identity by $\nu \in \mathcal{M}_{00}(\mathbb{C})$ with $\operatorname{supp}[|\nu|] \subset K$ and noting that $|\nu|$ charges no polar set (Lemma 2.4 (iii)), we arrive at Eq. 2.18).

2.2 Markov property of the Gaussian field index by $\mathcal{M}_{00}(\mathbb{C})$

In view of Proposition 2.7 (ii), there exist a system of centered Gaussian random variables $\mathbf{G}(\mathbb{C}) = \{X_{\mu} : \mu \in \mathcal{M}_{00}(\mathbb{C})\}$ on a certain probability space $(\Omega, \mathcal{B}, \mathbb{P})$ with covariance

$$\mathbb{E}[X_{\mu}X_{\nu}] = \langle \mu, U\nu \rangle, \quad \mu, \nu \in \mathcal{M}_{00}(\mathbb{C}).$$
(2.21)

For a subset A of \mathbb{C} , define the sub- σ -field of \mathcal{B} by

$$\sigma(A) = \sigma\{X_{\mu} : \mu \in \mathcal{M}_{00}(\mathbb{C}), \text{ supp}[|\mu|] \subset A\}.$$

 $G(\mathbb{C})$ is said to have the *local Markov property* if, for any bounded open subset G of \mathbb{C} , the identity

$$\mathbb{E}[YZ|\sigma(\partial G)] = \mathbb{E}[Y|\sigma(\partial G)] \mathbb{E}[Z|\sigma(\partial G)]$$
(2.22)

holds for any bounded $\sigma(\overline{G})$ -measurable function *Y* on Ω and any bounded $\sigma(\mathbb{C} \setminus G)$ measurable function *Z* on Ω . The following is known to be a necessary and sufficient condition for the local Markov property of $\mathbf{G}(\mathbb{C})$ (cf. [18, §6]): for any bounded open set $G \subset \mathbb{C}$

 $\sigma\{\mathbb{E}[Y \mid \sigma(\overline{G})] : Y \text{ is bounded and } \sigma(\mathbb{C} \setminus G) \text{-measurable}\} \subset \sigma(\partial G).$ (2.23)

Theorem 2.9 The Gaussian field $G(\mathbb{C})$ indexed by $\mathcal{M}_{00}(\mathbb{C})$ enjoys the local Markov property.

Proof Let *G* be a bounded open subset of \mathbb{C} and take any $\mu \in \mathcal{M}_{00}(\mathbb{C})$ with supp $[|\mu|] \subset \mathbb{C} \setminus G$. Due to the continuity of the path X_t of the planar Brownian motion $X = (X_t, \mathbb{P}_X)$,

$$\mu_{\overline{G}}(B) = \int_{\mathbb{C}\backslash G} \mu(d\mathbf{y}) \mathbb{P}_{\mathbf{y}}(X_{\sigma_{\overline{G}}} \in B) = \int_{\mathbb{C}\backslash G} \mu(d\mathbf{y}) \mathbb{P}_{\mathbf{y}}(X_{\sigma_{\partial G}} \in B) = \mu_{\partial G}(B),$$

for any Borel set $B \subset \mathbb{C}$.

By virtue of Proposition 2.8, we have for any $\nu \in \mathcal{M}_{00}(\mathbb{C})$ with supp $[|\nu|] \subset \overline{G}$

$$\langle U\mu,\nu\rangle = \langle U\mu_{\overline{G}},\nu\rangle,$$

which means $\mathbb{E}[X_{\mu}X_{\nu}] = \mathbb{E}[X_{\mu_{\overline{G}}}X_{\nu}]$. Hence $X_{\mu} - X_{\mu_{\overline{G}}}$ is orthogonal to X_{ν} , and consequently independent of $\sigma(\overline{G})$ because all random variables involved are Gaussian. Accordingly

$$\mathbb{E}[X_{\mu} - X_{\mu_{\overline{G}}} | \sigma(\overline{G})] = \mathbb{E}[X_{\mu} - X_{\mu_{\overline{G}}}] = 0.$$

Thus we obtain

$$\mathbb{E}[X_{\mu} | \sigma(\overline{G})] = E[X_{\mu_{\overline{G}}} | \sigma(\overline{G})] = X_{\mu_{\overline{G}}} = X_{\mu_{\partial G}} \in \sigma(\partial G).$$

3 RBM on $\overline{\mathbb{H}}$ and Gaussian field indexed by $\mathcal{M}_{00}(\overline{\mathbb{H}})$

We consider the upper half plane $\mathbb{H} = \{\mathbf{x} = (x, y) \in \mathbb{C} : y > 0\}$. \mathbb{H} will be also denoted by \mathbb{H}_+ , while \mathbb{H}_- denotes the lower half plane $\{\mathbf{x} = (x, y) \in \mathbb{C} : y < 0\}$. For $\mathbf{x} = (x, y) \in \mathbb{C}$, $\mathbf{x}^* = (x, -y)$ denotes its reflection relative to $\partial \mathbb{H}$.

Let $\widehat{\mathbf{X}} = (\widehat{X}_t, \{\widehat{\mathbb{P}}_{\mathbf{X}}\}_{\mathbf{x} \in \overline{\mathbb{H}}})$ be the *reflecting Brownian motion* (RBM in abbreviation) on $\overline{\mathbb{H}}$. $\widehat{\mathbf{X}}$ is obtained from the planar Brownian motion $\mathbf{X} = (X_t = (X_t^{(1)}, X_t^{(2)}), \{\mathbb{P}_{\mathbf{X}}\}_{\mathbf{X} \in \mathbb{C}})$ by

$$\widehat{X}_t = (X_t^{(1)}, |X_t^{(2)}|), \qquad \widehat{\mathbb{P}}_{\mathbf{x}} = \mathbb{P}_{\mathbf{x}}, \ \mathbf{x} \in \overline{\mathbb{H}}.$$
(3.1)

Consider a closed subset F of $\overline{\mathbb{H}}$ and denote by F^r the set of all regular points for F relative to $\widehat{\mathbf{X}}$; $F^r = {\mathbf{x} \in F; \widehat{\mathbb{P}}_{\mathbf{x}}(\sigma_F = 0) = 1}$. $F \setminus F^r$ is then polar relative to $\widehat{\mathbf{X}}$, namely, $\widehat{\mathbb{P}}_{\mathbf{x}}(\sigma_{F\setminus F^r} < \infty) = 0$ for any $\mathbf{x} \in \overline{\mathbb{H}}$ (cf. [10, Theorems A.2.6, 4.1.2, 4.1.3]). We also consider the part $\widehat{\mathbf{X}}_{\overline{\mathbb{H}}\setminus F}$ on $\overline{\mathbb{H}}\setminus F$ of $\widehat{\mathbf{X}}$, that is to say, the process obtained from $\widehat{\mathbf{X}}$ by killing upon hitting the set *F*. Define for any Borel set $B \subset \overline{\mathbb{H}}$

$$\widehat{g}^{\overline{\mathbb{H}}\setminus F}(\mathbf{x},B) = \widehat{\mathbb{E}}_{\mathbf{x}}\left[\int_{0}^{\sigma_{F}} I_{B}(\widehat{X}_{s})ds\right], \quad \mathbf{x} \in \overline{\mathbb{H}}.$$

For a set $B \subset \overline{\mathbb{H}}_+$, $B^* = \{\mathbf{x}^*; \mathbf{x} \in B\} \subset \overline{\mathbb{H}}_{\pm}$ denotes its reflection relative to $\partial \mathbb{H}$.

Lemma 3.1 If F be a closed subset of $\overline{\mathbb{H}}$ that is non-polar for \widehat{X} , then, for any bounded Borel set $B \subset \overline{\mathbb{H}}$,

$$\sup_{\boldsymbol{x}\in\overline{\mathbb{H}}} \widehat{g}^{\mathbb{H}\setminus F}(\boldsymbol{x},B) < \infty.$$
(3.2)

Proof We compare $\widehat{g}^{\overline{\mathbb{H}}\setminus F}(\mathbf{x}, B)$ with its counterpart for the planar Brownian motion **X**:

$$g^{\mathbb{C}\setminus F^*}(\mathbf{x}, B) = \mathbb{E}_{\mathbf{x}}\left[\int_0^{\sigma_{F^*}} I_B(X_s) ds\right], \quad \mathbf{x} \in \mathbb{C}$$

In view of [16, Proposition 2.2.7], it holds that

$$\sup_{\mathbf{x}\in\mathbb{C}} g^{\mathbb{C}\setminus F^*}(\mathbf{x}, B) < \infty, \tag{3.3}$$

whenever $F^* \subset \mathbb{C}$ is a non-polar closed set for **X** and $B \subset \mathbb{C}$ is a bounded Borel set.

Suppose *F* and *B* satisfy the stated conditions. We then have $\widehat{g}^{\overline{\mathbb{H}}\setminus F}(\mathbf{x}, B) = I + II + III$, $\mathbf{x} \in \mathcal{F}$ $\overline{\mathbb{H}}$. where

$$\mathbf{I} = \widehat{\mathbb{E}}_{\mathbf{x}} \left[\int_{0}^{\sigma_{F}} I_{B}(\widehat{X}_{s}) ds : \sigma_{F} < \sigma_{\partial \mathbb{H}} \right], \quad \mathbf{II} = \widehat{\mathbb{E}}_{\mathbf{x}} \left[\int_{0}^{\sigma_{\partial \mathbb{H}}} I_{B}(\widehat{X}_{s}) ds; \sigma_{\partial \mathbb{H}} < \sigma_{F} \right],$$

and
$$\mathbf{III} = \widehat{\mathbb{E}}_{\mathbf{x}} \left[\widehat{\mathbb{E}}_{\widehat{X}_{\sigma_{\partial \mathbb{H}}}} [\int_{0}^{\sigma_{F}} I_{B}(\widehat{X}_{s}) ds]; \sigma_{\partial \mathbb{H}} < \sigma_{F} \right].$$

Accordingly

$$\mathbf{I} \leq g^{F \cup \overline{\mathbb{H}}_{-}}(\mathbf{x}, B), \quad \mathbf{II} \leq g^{\overline{\mathbb{H}}_{-}}(\mathbf{x}, B), \quad \mathbf{x} \in \overline{\mathbb{H}}.$$

The definition (3.1) implies that, for $\mathbf{y} \in \partial \mathbb{H}$,

$$\widehat{\mathbb{E}}_{\mathbf{y}}\left[\int_{0}^{\sigma_{F}} I_{B}(\widehat{X}_{s}) ds\right] = \mathbb{E}_{\mathbf{y}}\left[\int_{0}^{\sigma_{F} \cup F^{*}} I_{B \cup B^{*}}(X_{s}) ds\right],$$

and consequently,

$$\operatorname{III} \leq \sup_{\mathbf{y} \in \mathbb{C}} g^{F \cup F^*}(\mathbf{y}, B \cup B^*)$$

Thus Eq. 3.2 follows from Eq. 3.3.

Recall $p_t(\mathbf{x}), t > 0, \mathbf{x} \in \mathbb{C}$, and $k(\mathbf{x}), \mathbf{x} \in \mathbb{C}$, defined by Eq. 2.1. We let $\widehat{p}_t(\mathbf{x}, \mathbf{y}) = p_t(\mathbf{x} - \mathbf{y}) + p_t(\mathbf{x} - \mathbf{y}^*), \quad t > 0, \quad \widehat{k}(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y}) + k(\mathbf{x} - \mathbf{y}^*),$ **x**, **v** $\in \overline{\mathbb{H}}$. (3.4)

369

Springer

 $\widehat{p}_t(\mathbf{x}, \mathbf{y}), \ \mathbf{x}, \mathbf{y} \in \overline{\mathbb{H}}$, is the transition density of the RBM on $\overline{\mathbb{H}}$. Let us call $\widehat{k}(\mathbf{x}, \mathbf{y}), \ \mathbf{x}, \mathbf{y} \in \overline{\mathbb{H}}$, the *logarithmic kernel for* the RBM on $\overline{\mathbb{H}}$.

The following proposition is a counterpart of Eq. 2.13 for the RBM on $\overline{\mathbb{H}}$.

Proposition 3.2 For any compact subset K of $\overline{\mathbb{H}}$ that is non-polar for \widehat{X} , we have

$$\widehat{k}(\boldsymbol{x},\boldsymbol{y}) = \widehat{g}^{\overline{\mathbb{H}}\setminus K}(\boldsymbol{x},\boldsymbol{y}) + \int_{K} \widehat{h}_{K}(\boldsymbol{x},d\boldsymbol{z})\widehat{k}(\boldsymbol{z},\boldsymbol{y}) - \widehat{W}_{K}(\boldsymbol{x}), \quad \boldsymbol{x},\boldsymbol{y} \in \overline{\mathbb{H}}.$$
(3.5)

Here $\widehat{g}^{\overline{\mathbb{H}}\setminus K}(\mathbf{x}, \mathbf{y})$ is the 0-order resolvent density of $\widehat{X}_{\overline{\mathbb{H}}\setminus K}$, \widehat{h}_K is the hitting distribution for K of \widehat{X} defined by $\widehat{h}_K(\mathbf{x}, B) = \widehat{\mathbb{P}}_{\mathbf{x}}(\sigma_K < \infty, \widehat{X}_{\sigma_K} \in B)$ for any Borel set $B \subset \overline{\mathbb{H}}$, and \widehat{W}_K is a certain non-negative locally bounded function on $\overline{\mathbb{H}}$ vanishing on K^r . For $\mathbf{x} \neq \mathbf{y}$, both $\widehat{g}^{\overline{\mathbb{H}}\setminus K}(\mathbf{x}, \mathbf{y})$ and $\int_K \widehat{h}_K(\mathbf{x}, d\mathbf{z})\widehat{k}(\mathbf{z}, \mathbf{y})$ are finite.

Proof For $\alpha > 0$, we set

$$g_{\alpha}(\mathbf{x}) = \int_{0}^{\infty} e^{-\alpha t} p_{t}(\mathbf{x}) dt, \quad k_{\alpha}(\mathbf{x}) = g_{\alpha}(\mathbf{x}) - g_{\alpha}(\mathbf{x}_{0}), \quad \mathbf{x} \in \mathbb{C},$$

where \mathbf{x}_0 is a fixed point in $\overline{\mathbb{H}}$ with $|\mathbf{x}_0| = 1$. As Lemma 2.1, we can then see that

 $0 \le k_{\alpha}(\mathbf{x}) \uparrow k(\mathbf{x}), \text{ for } |\mathbf{x}| \le 1; \quad 0 \le -k_{\alpha}(\mathbf{x}) \uparrow -k(\mathbf{x}) < \infty, \text{ for } |\mathbf{x}| > 1, \quad \alpha \downarrow 0.$

We next set, for $\mathbf{x}, \mathbf{y} \in \overline{\mathbb{H}}$,

$$\widehat{g}_{\alpha}(\mathbf{x},\mathbf{y}) = g_{\alpha}(\mathbf{x}-\mathbf{y}) + g_{\alpha}(\mathbf{x}-\mathbf{y}^{*}), \quad \widehat{k}_{\alpha}(\mathbf{x},\mathbf{y}) = k_{\alpha}(\mathbf{x}-\mathbf{y}) + k_{\alpha}(\mathbf{x}-\mathbf{y}^{*}).$$

Since $\widehat{g}_{\alpha}(\mathbf{x}, \mathbf{y})$ is the α -order resolvent density of $\widehat{\mathbf{X}}$, the strong Markov property of $\widehat{\mathbf{X}}$ yields the identity

$$\widehat{g}_{\alpha}(\mathbf{x},\mathbf{y}) = \widehat{g}_{\alpha}^{\overline{\mathbb{H}}\setminus K}(\mathbf{x},\mathbf{y}) + \int_{K} \widehat{h}_{K}^{\alpha}(\mathbf{x},d\mathbf{z}) \widehat{g}_{\alpha}(\mathbf{z},\mathbf{y}), \quad \mathbf{x}, \ \mathbf{y} \in \overline{\mathbb{H}},$$

for the α -order resolvent density $\widehat{g}_{\alpha}^{\mathbb{H}\setminus K}$ of $\widehat{\mathbf{X}}_{\mathbb{H}\setminus K}$ and for the α -order hitting distribution \widehat{h}_{K}^{α} of $\widehat{\mathbf{X}}$ for *K*. By substituting $\widehat{g}_{\alpha}(\mathbf{x}, \mathbf{y}) = \widehat{k}_{\alpha}(\mathbf{x}, \mathbf{y}) - 2g_{\alpha}(\mathbf{x}_{0})$ into the above identity, we obtain

$$\widehat{k}_{\alpha}(\mathbf{x},\mathbf{y}) = \widehat{g}_{\alpha}^{\overline{\mathbb{H}}\setminus K}(\mathbf{x},\mathbf{y}) + \int_{K} \widehat{h}_{K}^{\alpha}(\mathbf{x},d\mathbf{z})\widehat{k}_{\alpha}(\mathbf{z},\mathbf{y}) - \widehat{W}_{K}^{\alpha}(\mathbf{x}), \quad \mathbf{x}, \ \mathbf{y} \in \overline{\mathbb{H}},$$
(3.7)

where

$$\hat{W}_{\mathbf{x}}^{\alpha}(\mathbf{x}) = 2g_{\alpha}(\mathbf{x}_{0}) \ (1 - \widehat{\mathbb{E}}_{\mathbf{x}}[e^{-\alpha\sigma_{\mathbf{x}}}]), \quad \mathbf{x} \in \overline{\mathbb{H}}.$$
(3.8)

Integrating the both hand sides of Eq. 3.7 by $d\mathbf{y}$ over a bounded Borel set $B \subset \mathbb{H}$ with a positive Lebesgue measure |B|, we get

$$\widehat{k}_{\alpha}(\mathbf{x}, B) = \widehat{g}_{\alpha}^{\overline{\mathbb{H}} \setminus K}(\mathbf{x}, B) + \int_{K} \widehat{h}_{K}^{\alpha}(\mathbf{x}, d\mathbf{z}) \widehat{k}_{\alpha}(\mathbf{z}, B) - |B| \widehat{W}_{K}^{\alpha}(\mathbf{x}), \quad \mathbf{x} \in \overline{\mathbb{H}}.$$

By Lemma 3.1, $g^{\overline{\mathbb{H}}\setminus K}(\mathbf{x}, B)$ is bounded in $\mathbf{x} \in \overline{\mathbb{H}}$. Moreover $\int_B \hat{k}(\mathbf{x}, \mathbf{y}) d\mathbf{y}$ is locally bounded on $\overline{\mathbb{H}}$. Hence we can see by letting $\alpha \to 0$ in the above identity that the limit $\hat{W}_K(\mathbf{x}) = \lim_{\alpha \downarrow 0} \hat{W}_K^{\alpha}(\mathbf{x})$ exists and further that the limit is locally bounded on $\overline{\mathbb{H}}$ and vanishing on K^r . We finally let $\alpha \downarrow 0$ in the Eq. 3.7 by noticing (3.6) to arrive at the desired conclusions. \Box

Denote by $\mathcal{M}^+(\overline{\mathbb{H}})$ the collection of positive finite measures on $\overline{\mathbb{H}}$ with compact support. The logarithmic potential $\widehat{U}\mu$ of $\mu \in \mathcal{M}^+(\overline{\mathbb{H}})$ for RBM is defined by

$$\widehat{U}\mu(\mathbf{x}) = \int_{\overline{\mathbb{H}}} \widehat{k}(\mathbf{x}, \mathbf{y})\mu(d\mathbf{y}), \quad \mathbf{x} \in \overline{\mathbb{H}}.$$
(3.9)

For $\mu \in \mathcal{M}^+(\overline{\mathbb{H}})$ and a compact set $K \subset \overline{\mathbb{H}}$, define

$$\widehat{\mu}_{K}(B) = \int_{\overline{\mathbb{H}}} \mu(d\mathbf{y}) \widehat{h}_{K}(\mathbf{y}, B), \quad \text{for any Borel } B \subset \overline{\mathbb{H}}.$$
(3.10)

Then $\widehat{\mu}_K \in \mathcal{M}^+(\overline{\mathbb{H}})$ and $\operatorname{supp}[\widehat{\mu}_K] \subset K \cdot \widehat{\mu}_K$ is called the *balayage* of μ to K relative to $\widehat{\mathbf{X}}$.

 $\langle v, u \rangle_{\overline{\mathbb{H}}}$ or $\langle u, v \rangle_{\overline{\mathbb{H}}}$ will designate the integral $\int_{\overline{\mathbb{H}}} u(\mathbf{x})v(d\mathbf{x})$ for a function u and a measure v on $\overline{\mathbb{H}}$.

Proposition 3.3 Let *K* be a compact subset of $\overline{\mathbb{H}}$ that is non-polar for \widehat{X} . It holds then for any $\mu \in \mathcal{M}^+(\overline{\mathbb{H}})$

$$\widehat{U}\widehat{\mu}_{K}(\boldsymbol{x}) = \widehat{U}\mu(\boldsymbol{x}) + \langle \hat{W}_{K}, \mu \rangle_{\overline{\mathbb{H}}}, \quad \text{for any } \boldsymbol{x} \in K^{r},$$
(3.11)

$$\widehat{U}\widehat{\mu}_{K}(\boldsymbol{x}) \leq \widehat{U}\mu(\boldsymbol{x}) + \langle \hat{W}_{K}, \mu \rangle_{\overline{\mathbb{H}}}, \quad \text{for any } \boldsymbol{x} \in \overline{\mathbb{H}}.$$
(3.12)

Proof Both $\widehat{k}(\mathbf{x}, \mathbf{y})$ and $\widehat{g}^{\overline{\mathbb{H}} \setminus K}(\mathbf{x}, \mathbf{y})$ being symmetric, Eq. 3.5 yields

$$\int_{K} \widehat{h}_{K}(\mathbf{x}, d\mathbf{z}) \widehat{k}(\mathbf{z}, \mathbf{y}) - \widehat{W}_{K}(\mathbf{x}) = \int_{K} \widehat{h}_{K}(\mathbf{y}, d\mathbf{z}) \widehat{k}(\mathbf{z}, \mathbf{x}) - \widehat{W}_{K}(\mathbf{y}),$$

and consequently,

$$\widehat{\mathbb{E}}_{\mathbf{x}}\left[\widehat{U}\mu(\widehat{X}_{\sigma_{K}});\sigma_{K}<\infty\right] = \widehat{U}\widehat{\mu}_{K}(\mathbf{x}) - \langle \widehat{W}_{K},\mu\rangle_{\overline{\mathbb{H}}} + \mu(\overline{\mathbb{H}})\widehat{W}(\mathbf{x}), \quad \mathbf{x}\in\overline{\mathbb{H}}.$$
(3.13)

We obtain Eq. 3.11 from Eq. 3.13 for $\mathbf{x} \in K^r$. Further Eqs. 3.5 and 3.13 lead us to

$$\begin{split} \widehat{U}\mu(\mathbf{x}) &= \int_{\overline{\mathbb{H}}} \widehat{g}^{\overline{\mathbb{H}}\setminus K}(\mathbf{x}, \mathbf{y})\mu(d\mathbf{y}) + \widehat{\mathbb{E}}_{\mathbf{x}} \left[\widehat{U}\mu(\widehat{X}_{\sigma_{K}}); \sigma_{K} < \infty \right] - \mu(\overline{\mathbb{H}}) \widehat{W}(\mathbf{x}) \\ &\geq \widehat{U}\widehat{\mu}_{K}(\mathbf{x}) - \langle \widehat{W}_{K}, \mu \rangle_{\overline{\mathbb{H}}}, \quad \mathbf{x} \in \overline{\mathbb{H}}, \end{split}$$

which yields (3.12).

Let us introduce classes of measures on $\overline{\mathbb{H}}$ by

 $\mathcal{M}_{0}^{+}(\overline{\mathbb{H}}) = \{ \mu \in \mathcal{M}^{+}(\overline{\mathbb{H}}) : \langle \mu, \widehat{U} \mu \rangle_{\overline{\mathbb{H}}} < \infty \},\$

 $\mathcal{M}_0(\overline{\mathbb{H}}) = \{\mu : \text{ finite signed measure on } \overline{\mathbb{H}}, \ |\mu| \in \mathcal{M}_0^+(\overline{\mathbb{H}})\},\$

 $\mathcal{M}_{00}(\overline{\mathbb{H}}) = \{ \mu \in \mathcal{M}_0(\overline{\mathbb{H}}) : \mu(\overline{\mathbb{H}}) = 0 \}.$

Given $\mu \in \mathcal{M}_0(\overline{\mathbb{H}})$, its extension μ^* to a measure on \mathbb{C} by reflection relative to $\partial \mathbb{H}$ is defined as follows: for a Borel set B, $\mu^*(B) = \mu(B)$ if $B \subset \overline{\mathbb{H}}_+$, and $\mu^*(B) = \mu(B^*)$ if $B \subset \mathbb{H}_-$. Further, given a function f on $\overline{\mathbb{H}}$, its extension f^* to a function on \mathbb{C} by reflection relative to $\partial \mathbb{H}$ is defined as follows: $f^*(\mathbf{x}) = f(\mathbf{x})$ if $\mathbf{x} \in \mathbb{H}_+$, and $f^*(\mathbf{x}) = f(\mathbf{x}^*)$ if $x \in \mathbb{H}_-$.

We readily obtain the following.

Lemma 3.4 It holds for $\mu \in \mathcal{M}^+(\overline{\mathbb{H}})$ that

$$U\mu^*(\mathbf{x}) = (\widehat{U}\mu)^*(\mathbf{x}), \qquad \mathbf{x} \in \mathbb{C},$$
(3.14)

and

$$\langle \mu, \widehat{U}\mu \rangle_{\overline{\mathbb{H}}} = \frac{1}{2} \langle \mu^*, U\mu^* \rangle.$$
 (3.15)

Equation 3.15 implies that $\mu \in \mathcal{M}_0(\overline{\mathbb{H}})$ (resp. $\mu \in \mathcal{M}_{00}(\overline{\mathbb{H}})$) if and only if $\mu^* \in \mathcal{M}_0(\mathbb{C})$ (resp. $\mu^* \in \mathcal{M}_{00}(\mathbb{C})$).

$$\Box$$

Analogously to the case of the whole plane \mathbb{C} , we consider the *Sobolev space of order* 1 and the *Beppo Levi space* over \mathbb{H} defined respectively by

$$H^{1}(\mathbb{H}) = \{u \in L^{2}(\mathbb{H}) : |\nabla u| \in L^{2}(\mathbb{H})\}, \quad BL(\mathbb{H}) = \{u \in L^{2}_{loc}(\mathbb{H}) : |\nabla u| \in L^{2}(\mathbb{H})\}.$$

Denote the Dirichlet integral $\int_{\mathbb{H}} \nabla f(\mathbf{x}) \cdot \nabla g(\mathbf{x}) d\mathbf{x}$ of functions f, g on \mathbb{H} by $\mathbf{D}_{\mathbb{H}}(f, g)$.
 $(\frac{1}{2}\mathbf{D}_{\mathbb{H}}, H^{1}(\mathbb{H}))$ is the regular Dirichlet form on $L^{2}(\mathbb{H})$ associated with the RBM on \mathbb{H} . Its extended Dirichlet space is known to be identical with the space $(BL(\mathbb{H}), \frac{1}{2}\mathbf{D}_{\mathbb{H}})$ just as the

case of \mathbb{C} in place of \mathbb{H} . Moreover the quotient space $\dot{BL}(\mathbb{H})$, $\frac{1}{2}\mathbf{D}_{\mathbb{H}}$) just as the constant functions on \mathbb{H} is a real Hilbert space with inner product $\frac{1}{2}\mathbf{D}_{\mathbb{H}}$.

Lemma 3.5
$$f \in BL(\mathbb{H})$$
 if and only if $f^* \in BL(\mathbb{C})$. It holds for any $f \in BL(\mathbb{H})$ that
 $D_{\mathbb{H}}(f, f) = \frac{1}{2}D(f^*, f^*).$
(3.16)

Proof For $f \in L^2(\mathbb{H})$, we let

$$\widehat{P}_t f(\mathbf{x}) = \int_{\mathbb{H}} \widehat{p}_t(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}, \ \mathbf{x} \in \mathbb{H}, \quad P_t f^*(\mathbf{x}) = \int_{\mathbb{C}} p_t(\mathbf{x} - \mathbf{y}) f^*(\mathbf{y}) d\mathbf{y}, \ \mathbf{x} \in \mathbb{C}.$$

We then easily see that $P_t f^*(\mathbf{x}) = (\widehat{P}_t f)^*(\mathbf{x}), \ \mathbf{x} \in \mathbb{C}$, so that

$$(f^*, f^* - P_t f^*)_{L^2(\mathbb{C})} = \int_{\mathbb{H}_+} f(\mathbf{x})(f(\mathbf{x}) - \widehat{P}_t f(\mathbf{x})) d\mathbf{x} + \int_{\mathbb{H}_-} f(\mathbf{x}^*)(f(\mathbf{x}^*) - \widehat{P}_t f(\mathbf{x}^*)) d\mathbf{x} = 2(f, f - \widehat{P}_t f)_{L^2(\mathbb{H})}.$$

Dividing the above identity by t and letting $t \downarrow 0$, we get the stated relations between the Sobolev spaces H^1 of order 1, that can be readily extended to the ones between the Bepp Levi spaces.

Let us define $\mathbf{D}_{\mathbb{H},1}$ -capacity $\operatorname{Cap}^{\mathbb{H}}$ of a subset $B \subset \overline{\mathbb{H}}$ and $\mathbf{D}_{\mathbb{H},1}$ -quasi continuity of a function on $\overline{\mathbb{H}}$ in the same way as in Section 2 but with $\mathbf{D}_{\mathbb{H}}$ in place of \mathbf{D} . Then a set $N \subset \overline{\mathbb{H}}$ is polar relative to $\widehat{\mathbf{X}}$ if and only if $\operatorname{Cap}^{\mathbb{H}}(N) = 0$.

Lemma 3.6 (i) Any function in $BL(\mathbb{H})$ admits its $D_{\mathbb{H},1}$ -quasi continuous version.

- (ii) Any $\mu \in \mathcal{M}_0^+(\overline{\mathbb{H}})$ charges no polar set relative to \widehat{X} .
- (iii) If f is a D_1 -quasi continuous function on \mathbb{C} , then $f|_{\overline{\mathbb{H}}}$ is $D_{\mathbb{H},1}$ -quasi continuous.
- (iv) If f is a $D_{\mathbb{H},1}$ -quasi continuous function on $\overline{\mathbb{H}}$, then f^* is D_1 -quasi continuous on \mathbb{C} .

Proof (i). See [10, Theorem 2.1.7].

(ii). This can be shown using the identity (3.5) that any measure $\nu \in \mathcal{M}_{00}(\mathbb{H})$ charges no polar set for $\widehat{\mathbf{X}}$, just as the corresponding statement is shown in the proof of Lemma 2.4 (iii) using the identity (2.13).

(iii). For an open set
$$G \subset \mathbb{C}$$
, $\operatorname{Cap}^{\mathbb{H}}(G \cap \overline{\mathbb{H}}) \leq \operatorname{Cap}(G)$.
(iv). For an open set $G \subset \overline{\mathbb{H}}$, $\operatorname{Cap}(G \cup G^*) \leq \operatorname{Cap}^{\mathbb{H}}(G)$.

Theorem 3.7 For any $\mu \in \mathcal{M}_{00}(\overline{\mathbb{H}})$, $\widehat{U}\mu \in BL(\mathbb{H})$ and $\widehat{U}\mu$ is $D_{\mathbb{H},1}$ -quasi continuous. Furthermore

$$\frac{1}{2}\boldsymbol{D}_{\mathbb{H}}(\widehat{U}\mu, u) = \langle \widetilde{u}, \mu \rangle_{\overline{\mathbb{H}}}, \quad \text{for any } u \in BL(\mathbb{H}),$$
(3.17)

where \tilde{u} is any $D_{\mathbb{H},1}$ -quasi continuous version of u.

🖄 Springer

Proof $\mu^* \in \mathcal{M}_{00}(\mathbb{C})$ by Eq. 3.15 so that $U\mu^*$ is a \mathbf{D}_1 -quasi continuous function in BL(\mathbb{C}) by Theorem 2.6 and $\widehat{U}\mu$ is $\mathbf{D}_{\mathbb{H},1}$ -quasi continuous by Eq. 3.14 and Lemma 3.6 (iii). For any $\mathbf{D}_{\mathbb{H},1}$ -quasi continuous version \widetilde{u} of $u \in BL(\mathbb{H})$, \widetilde{u}^* is \mathbf{D}_1 -quasi continuous by Lemma 3.6 (iv). Therefore it follows from Eq. 3.15, Lemma 3.5 and Theorem 2.6 that

$$\frac{1}{2}\mathbf{D}_{\mathbb{H}}(\widehat{U}\mu, u) = \frac{1}{4}\mathbf{D}(U\mu^*, u^*) = \frac{1}{2}\langle \mu^*, \widetilde{u}^* \rangle = \langle \mu, \widetilde{u} \rangle_{\overline{\mathbb{H}}}.$$

Proposition 3.8 (i) $\{\widehat{U}\mu : \mu \in \mathcal{M}_{00}(\overline{\mathbb{H}})\}$ is dense in $(\dot{\mathbf{BL}}(\mathbb{H}), \frac{1}{2}\mathbf{D}_{\mathbb{H}})$.

(ii) The linear space $\mathcal{M}_{00}(\overline{\mathbb{H}})$ is pre-Hilbertian with inner product $I_{\mathbb{H}}(\mu, \nu) = \langle \mu, U\nu \rangle_{\overline{\mathbb{H}}} : \mu, \nu \in \mathcal{M}_{00}(\overline{\mathbb{H}}).$

Proof Using Eq. 3.17, (i) can be shown as the proof of Proposition 2.7 (i). (ii) follows from Eq. 3.15 and Proposition 2.7 (ii). \Box

This proposition implies that the abstract completion of the pre-Hilbert space $(\mathcal{M}_{00}(\overline{\mathbb{H}}), I_{\mathbb{H}})$ is isometrically isomorphic with $(\dot{\mathrm{BL}}(\mathbb{H}), \frac{1}{2}\mathbf{D}_{\mathbb{H}})$ by the map $\mu \in \mathcal{M}_{00}(\overline{\mathbb{H}}) \mapsto U\mu \in .\dot{\mathrm{BL}}(\mathbb{H}).$

We now state a counterpart of Proposition 2.8 for the upper-half plane. For $\mu \in \mathcal{M}_0(\overline{\mathbb{H}})$ and a compact set $K \subset \overline{\mathbb{H}}$, define the balayage $\widehat{\mu}_K$ of μ on K by Eq. 3.10.

Proposition 3.9 Let $\mu \in \mathcal{M}_{00}(\overline{\mathbb{H}})$ and $K \subset \overline{\mathbb{H}}$ be a compact set that is non-polar relative to the RBM \widehat{X} . Then $\widehat{\mu}_K \in \mathcal{M}_{00}(\overline{\mathbb{H}})$ and, for any $\nu \in \mathcal{M}_{00}(\overline{\mathbb{H}})$ with $supp[|\nu|] \subset K$,

$$\langle \widehat{U}\mu,\nu\rangle_{\overline{\mathbb{H}}} = \langle \widehat{U}\widehat{\mu}_K,\nu\rangle_{\overline{\mathbb{H}}}.$$
(3.18)

Proof One can proceed along the same line as the proof of Proposition 2.9. Since the compact set K is non-polar for the RBM $\widehat{\mathbf{X}}$ which is irreducible recurrent, $\widehat{h}_K(\mathbf{y}, K) = 1$ for any $\mathbf{y} \in \overline{\mathbb{H}}$ (cf. [10, Exercise 4.7.1]) so that $\widehat{\mu}_K(\overline{\mathbb{H}} \setminus K) = 0$ and $\widehat{\mu}_K(\overline{\mathbb{H}}) = \mu(\overline{\mathbb{H}})$ for any $\mu \in \mathcal{M}_0(\overline{\mathbb{H}})$. By making use of the inequality (3.12), we can show that, if μ belongs to $\mathcal{M}_{00}(\mathbb{H})$, so does $\widehat{\mu}_K$, just as the corresponding statment is derived in the proof of Proposition 2.8 from the inequality (2.19).

The equality (3.11) holding for $\mathbf{x} \in K^r$ remains valid for $\mu \in \mathcal{M}_{00}(\overline{\mathbb{H}})$ in place of $\mu \in \mathcal{M}^+(\overline{\mathbb{H}})$. Integrating the both hand sides of this identity with respect to $\nu \in \mathcal{M}_{00}(\overline{\mathbb{H}})$ by taking Lemma 3.6 (ii) into account, we arrive at Eq. 3.18.

By virtue of Proposition 3.8 (ii), there exist a system of centered Gaussian random variables $G(\overline{\mathbb{H}}) = \{X_{\mu} : \mu \in \mathcal{M}_{00}(\overline{\mathbb{H}})\}$ on a certain probability space $(\Omega, \mathcal{B}, \mathbb{P})$ with covariance

$$\mathbb{E}[X_{\mu}X_{\nu}] = \langle \mu, \widehat{U}\nu \rangle, \quad \mu, \nu \in \mathcal{M}_{00}(\overline{\mathbb{H}}).$$
(3.19)

Exactly in the same way as Theorem 2.9 is derived from Proposition 2.8, we can obtain the following from Proposition 3.9:

Theorem 3.10 The Gaussian field $G(\overline{\mathbb{H}})$ indexed by $\mathcal{M}_{00}(\overline{\mathbb{H}})$ enjoys the local Markov property.

4 Linear potentials and Gaussian field indexed by $\mathcal{M}_{00}(\mathbb{R})$

For the real line \mathbb{R} , let

$$p_t(x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}, \quad t > 0, \ x \in \mathbb{R}, \quad k(x) = -|x|, \ x \in \mathbb{R}.$$
(4.1)

 $p_t(x - y)$ is the transition density of the Brownian motion on \mathbb{R} and k(x - y) is called the *linear potential kernel*. If we set

$$k_T(x) = \int_0^T (p_t(x) - p_t(0))dt, \quad x \in \mathbb{R}, \ T > 0,$$

then (cf. [16, p. 82]),

 $0 > k_T(x) \downarrow k(x), \quad T \uparrow \infty, \ x \in \mathbb{R}.$ (4.2)

For functions f, g on \mathbb{R} , the integrals $\int_{\mathbb{R}} f(x)g(x)dx$ and $\int_{\mathbb{R}} f'(x)g'(x)dx$ are denoted by (f, g) and $\mathbf{D}(f, g)$, respectively. The *Cameron-Martin space* on \mathbb{R} is defined by

$$H_e^1(\mathbb{R}) = \{ u : \text{ absolutely continuous on } \mathbb{R}, \quad \mathbf{D}(u, u) < \infty \}.$$
 (4.3)

Put $H^1(\mathbb{R}) = H^1_e(\mathbb{R}) \cap L^2(\mathbb{R})$. Then $(\frac{1}{2}\mathbf{D}, H^1(\mathbb{R}))$ is the Dirichlet form on $L^2(\mathbb{R})$ associated with the Brownian motion on \mathbb{R} and $(H^1_e(\mathbb{R}), \frac{1}{2}\mathbf{D})$ is its extended Dirichlet space (cf. [10, Exercise 1.6.2]).

Lemma 4.1 The quotient space $\dot{H}_{e}^{1}(\mathbb{R})$ of $H_{e}^{1}(\mathbb{R})$ by constant functions on \mathbb{R} is a Hilbert space with inner product $\frac{1}{2}D$.

If $u_n \in H^1_e(\mathbb{R})$ is **D**-convergent to $u \in H^1_e(\mathbb{R})$ as $n \to \infty$, then there are constants c_n such that $u_n - c_n$ converges to u locally uniformly on \mathbb{R} as $n \to \infty$.

Proof From $f(b) - f(a) = \int_a^b f'(\xi) d\mathbf{x}$, we have $(f(a) - f(b))^2 \le |a - b| \mathbf{D}(f, f)$. So $\{u_n - u_n(0)\}$ is locally uniformly convergent to u + c for some constant c,

The linear potential of a Borel function f on \mathbb{R} is defined by $Uf(x) = \int_{\mathbb{R}} k(x - y) f(y) dy, x \in \mathbb{R}$, whenever the integral makes sense.

Proposition 4.2 Let f be a bounded Borel function on \mathbb{R} vanishing outside some bounded set and satisfying $\int_{\mathbb{R}} f(x) dx = 0$. Then $Uf \in H^1_e(\mathbb{R})$ and

$$\frac{1}{2}\boldsymbol{D}(Uf, u) = (f, u) \quad \text{for any } u \in \boldsymbol{H}_{e}^{1}(\mathbb{R}).$$

$$(4.4)$$

Proof For f with the stated properties, we get by noting (4.2) that

$$Uf(x) = \lim_{T \to \infty} \int_{\mathbb{R}} k_T(x - y) f(y) dy = \lim_{T \to \infty} \int_0^T p_t(x - y) f(y) dy \quad x \in \mathbb{R}$$

Hence we can verify as in the proof of Proposition 2.2 that $Uf \in H_e^1(\mathbb{R})$ and the Eq. 4.4 holds for any $u \in H^1(\mathbb{R})$. For any $u \in H_e^1(\mathbb{R})$, choose $u_n \in H^1(\mathbb{R})$, $n \ge 1$, that are **D**-convergent to u. Then ,taking constants c_n , $n \ge 1$, as in Lemma 4.1, we can obtain (4.4) for u from those for u_n , $n \ge 1$.

Denote by $\mathcal{M}^+(\mathbb{R})$ the collection of positive finite measures on \mathbb{R} with compact support and define

$$\mathcal{M}_0(\mathbb{R}) = \{\mu; \text{ finite signed measure, } |\mu| \in \mathcal{M}^+(\mathbb{R})\}, \quad \mathcal{M}_{00}(\mathbb{R}) = \{\mu \in \mathcal{M}_0(\mathbb{R}) : \mu(\mathbb{R}) = 0\}.$$

The linear potential of $\mu \in \mathcal{M}_0(\mathbb{R})$ is defined by $U\mu(x) = \int_{\mathbb{R}} k(x-y)\mu(dy), x \in \mathbb{R}$. For a function f and a measure ν on \mathbb{R} , the integral $\int_{\mathbb{R}} f(x)\nu(dx)$ will be disignated as $\langle \nu, f \rangle$ or $\langle f, \nu \rangle$.

Theorem 4.3 For any $\mu \in \mathcal{M}_{00}(\mathbb{R})$, $U\mu \in H^1_{e}(\mathbb{R})$ and

$$\frac{1}{2}\boldsymbol{D}(\boldsymbol{U}\boldsymbol{\mu},\boldsymbol{u}) = \langle \boldsymbol{\mu}, \boldsymbol{u} \rangle, \quad \text{for any } \boldsymbol{u} \in H^1_e(\mathbb{R}).$$

$$(4.5)$$

In particular,

$$\frac{1}{2}\boldsymbol{D}(U\mu, U\mu) = \langle \mu, U\mu \rangle.$$
(4.6)

Proof Let $\psi_n(x) = \frac{n}{2}I_{(-1/n,1/n)}(x)$, $x \in \mathbb{R}$, and $J_R = [-R, R]$, R > 0. Consider $\mu \in \mathcal{M}^+(\mathbb{R})$ with supp $[\mu] \subset J_R$ for some R > 0 and define

$$\mu_n(x) = \int_{\mathbb{R}} \psi_n(x - y)\mu(dy), \quad x \in \mathbb{R}, \quad n \ge 1.$$
(4.7)

 μ_n is a continuous function whose support is contained in J_{R+1} and $\int_{\mathbb{R}} \mu_n(x) dx = \mu(\mathbb{R})$. Hence

$$|(\mu_n, U\mu_n)| \le M\mu(\mathbb{R})^2$$
 where $M = \sup_{x,y\in J_{R+1}} |x-y|.$

We further see that

$$\lim_{n \to \infty} U\mu_n(x) = U\mu(x), \quad x \in \mathbb{R}; \quad \lim_{n \to \infty} (u, \mu_n) = \langle \mu, u \rangle, \tag{4.8}$$

where *u* is any continuous function on \mathbb{R} .

We now take any $\mu \in \mathcal{M}_{00}$ and define μ_n by Eq. 4.7. Then μ_n is a continous function on \mathbb{R} with compact support and $\int_{\mathbb{R}} \mu_n(x) dx = 0$. Therefore, by Proposition 4.2, $U\mu_n \in H_e^1(\mathbb{R})$ and

$$\frac{1}{2}\mathbf{D}(U\mu_n, u) = (u, \mu_n), \quad \text{for any } u \in H^1_e(\mathbb{R}).$$
(4.9)

Since $\frac{1}{2}\mathbf{D}(U\mu_n, U\mu_n) = (\mu_n, U\mu_n)$ is uniformly bounded in *n* by the preceding observation, for a Cesàro mean sequence (denoted by $\{v_n\}$) of a suitable subsequence of $\{\mu_n\}$, Uv_n is **D**-convergent to some $v \in H_e^1(\mathbb{R})$. According to Lemma 4.1, there are constants c_n such that $Uv_n + c_n$ is locally uniformly convergent to *v*. As Eq. 4.8 remains valid for v_n in place of μ_n , the limit $\lim_{n\to\infty} c_n = c$ exists and $v = U\mu + c$. By letting $n \to \infty$ in the Eq. 4.9 for v_n in place of μ_n , we get to Eq. 4.5. \Box

Proposition 4.4 (i) $\{U\mu : \mu \in \mathcal{M}_{00}(\mathbb{R})\}$ is dense in $(H_e^1(\mathbb{R}), \frac{1}{2}D)$.

(ii) The linear space $\mathcal{M}_{00}(\mathbb{R})$ is pre-Hilbertian with inner product $I_{\mathbb{R}}(\mu, \nu) = \langle \mu, U\nu \rangle : \mu, \nu \in \mathcal{M}_{00}(\mathbb{R})$.

Proof (i). Suppose $u \in H^{-}_{e}(\mathbb{R})$ is **D**-orthogonal to $\{U\mu : \mu \in \mathcal{M}_{00}(\mathbb{R})\}$. Then $\langle \mu, u \rangle = 0$ for any $\mu \in \mathcal{M}_{00}(\mathbb{R})$. Taking $\mu = \delta_x - \delta_0 \in \mathcal{M}_{00}(\mathbb{R})$, where δ_x denotes the delta-measure on \mathbb{R} concentrated on $\{x\}$, we get u(x) = u(0) for any $x \in \mathbb{R}$, so that u is a constant function.

(ii). By Eq. 4.6, $I_{\mathbb{R}}(\mu, \mu) \geq 0$ for any $\mu \in \mathcal{M}_{00}(\mathbb{R})$. Suppose $I_{\mathbb{R}}(\mu, \mu) = 0$ for $\mu \in \mathcal{M}_{00}(\mathbb{R})$. Then $\langle \mu, u \rangle = \frac{1}{2} \mathbf{D}(U\mu, u) = 0$ for any $u \in C_c(\mathbb{R})$ by Eqs. 4.6 and 4.5, yielding $\mu = 0$.

This proposition implies that the abstract completion of the pre-Hilbert space $(\mathcal{M}_{00}(\mathbb{R}), I_{\mathbb{R}})$ is isometrically isomorphic with $(H_{e}^{1}(\mathbb{R}), \frac{1}{2}\mathbf{D})$ by the map $\mu \in \mathcal{M}_{00}(\mathbb{R}) \mapsto U\mu \in \dot{H}_{e}^{1}(\mathbb{R})$.

We finally state a counterpart of Proposition 2.8 and Proposition 3.9 for the present linear case. The *balayage* of $\mu \in \mathcal{M}_{00}(\mathbb{R})$ to a non-empty compact set $K \subset \mathbb{R}$ is defined by $\mu_K(\cdot) = \int_{\mathbb{R}} \mu(dy) h_k(y, \cdot)$ using the hitting distribution $h_K(x, \cdot) = \mathbb{P}_x(X_{\sigma_K} \in \cdot)$ of the one-dimensional Brownian motion $(X_t, \{\mathbb{P}_x\}_{x \in \mathbb{R}})$.

Proposition 4.5 Let $\mu \in \mathcal{M}_{00}(\mathbb{R})$ and K be a non-empty compact set of \mathbb{R} . Then $\mu_K \in \mathcal{M}_{00}(\mathbb{R})$ and, for any $\nu \in \mathcal{M}_{00}(\mathbb{R})$ with $supp[|\nu|] \subset K$, $\langle U\mu, \nu \rangle = \langle U\mu_K, \nu \rangle$.

Proof Due to the recurrence of the one-dimensional Brownian motion, $h_K(y, K) = 1$ for every $y \in \mathbb{R}$ so that $\mu_K \in \mathcal{M}_{00}(\mathbb{R})$ for $\mu \in \mathcal{M}_{00}(\mathbb{R})$. The fundamental identity for linear potentials presented by formula (6) in page 83 of [16] reads

$$k(x - y) = g_{\mathbb{R} \setminus K}(x, y) + \int_{K} h_{K}(x, dz)k(z - y) - W_{K}(x), \quad x, y \in \mathbb{R},$$
(4.10)

where $g_{\mathbb{R}\setminus K}(x, y)$ is the 0-order resolvent density of the absorbing Brownian motion on $\mathbb{R} \setminus K$ and $W_K(x)$ is a certain non-negative locally bounded function on \mathbb{R} vanishing on K. Just as in the proof of Proposition 3.3, one can deduce from Eq. 4.10 the identity

$$U\mu_K(x) = U\mu(x) + \langle W_K, \mu \rangle$$

holding for every $x \in K$, which yields $\langle U\mu, \nu \rangle = \langle U\mu_K, \nu \rangle$ immediately.

In view of Proposition 4.4 (ii), there exist a system of centered Gaussian random variables $G(\mathbb{R}) = \{X_{\mu} : \mu \in \mathcal{M}_{00}(\mathbb{R})\}$ on a certain probability space $(\Omega, \mathcal{B}, \mathbb{P})$ with covariance

$$\mathbb{E}[X_{\mu}X_{\nu}] = \langle \mu, U\nu \rangle, \quad \mu, \nu \in \mathcal{M}_{00}(\mathbb{R}).$$
(4.11)

Exactly in the same way as Theorem 2.9 is derived from Proposition 2.8, we can obtain the following from Proposition 4.5:

Theorem 4.6 The Gaussian field $G(\mathbb{R})$ indexed by $\mathcal{M}_{00}(\mathbb{R})$ enjoys the local Markov property.

5 Gaussian fields and processes induced by $G(\mathbb{C})$ and $G(\mathbb{R})$

We exhibit several examples of Gaussian fields and processes that can be obtained as subfields of $G(\mathbb{C})$ and $G(\mathbb{R})$. A special attention will be paid on positive random measures intrinsically associated with the fields.

We first recall the equilibrium measure in the logarithmic potential theory (cf.[16, §3.4]). For any non-polar bounded Borel set $B \subset \mathbb{C}$, there exists a unique probability measure μ_B concentrated on B^r whose logarithmic potential $U\mu_B(\cdot) = \int_{\mathbb{C}} k(\cdot - \mathbf{y})\mu_B(d\mathbf{y})$ is constant on B^r . Here B^r denotes the set of all regular points of B relative to the planar Brownian motion $\mathbf{X} = (X_t, \{\mathbb{P}_{\mathbf{x}}\}_{\mathbf{x}\in\mathbb{C}})$. μ_B is called the *equilibrium measure* of B and it is concentrated on ∂B . Actually μ_B equals $\lim_{|\mathbf{x}|\to\infty} \mathbb{P}_{\mathbf{x}}(X_{\sigma_B} \in \cdot)$ the hitting distribution on B of \mathbf{X} from ∞ . For r > 0, let $B_r = \{\mathbf{x} \in \mathbb{C} : |\mathbf{x}| < r\}$ and σ_r be the uniform probability measure on ∂B_r . Then $\mu_{B_r} = \sigma_r$ and

$$U\sigma_r(\mathbf{x}) = \frac{1}{\pi} \log \frac{1}{|\mathbf{x}| \vee r}, \qquad \mathbf{x} \in \mathbb{C}.$$
(5.1)

5.1 Restriction $G(\partial B_1)$ of $G(\mathbb{C})$ to ∂B_1

We put

 $\mathcal{L}(\partial B_1) = \{\psi : \text{ bounded Borel function on } \partial B_1\},\$

and define for $\psi \in \mathcal{L}(\partial B_1)$

$$\mu_{\psi}(d\mathbf{y}) = \psi(\mathbf{y})\sigma_1(d\mathbf{y}) - \langle \sigma_1, \psi \rangle \cdot \sigma_1(d\mathbf{y}).$$
(5.2)

 μ_{ψ} is a member of $\mathcal{M}_{00}(\mathbb{C})$. We denote the Gaussian random variable $X_{\mu_{\psi}} \in \mathbf{G}(\mathbb{C})$ by Y_{ψ} and consider the Gaussian field

$$\mathbf{G}(\partial B_1) = \{Y_{\psi} : \psi \in \mathcal{L}(\partial B_1)\}$$
(5.3)

indexed by $\mathcal{L}(\partial B_1)$. We then have for $\psi_1, \psi_2 \in \mathcal{L}(\partial B_1)$

$$\mathbb{E}[Y_{\psi_1}Y_{\psi_2}] = \int_{\partial B_1 \times \partial B_1} k(\mathbf{x} - \mathbf{y})\psi_1(\mathbf{x})\psi_2(\mathbf{y})\sigma_1(d\mathbf{x})\sigma_1(d\mathbf{y}),$$
(5.4)

because of Eq. 2.21 and $U\sigma_1(\mathbf{x}) = 0$, $\mathbf{x} \in \partial B_1$.

🖉 Springer

We identify ∂B_1 with the torus $\mathbb{T} = [0, 1)$ and denote by $\mathcal{D}(\mathbb{T})$ the collection of C^{∞} -functions on \mathbb{T} . With this identification

$$k(\mathbf{x} - \mathbf{x}') = \frac{1}{\pi} \log \frac{1}{2\sin \pi |t - s|}, \quad \mathbf{x} = e^{2\pi t i}, \ \mathbf{x}' = e^{2\pi s i}, \ t, s \in \mathbb{T}.$$
 (5.5)

Equation 5.4 implies that, if $\psi_n \in \mathcal{D}(\mathbb{T})$ converges to 0 uniformly on ∂B_1 , then $\mathbb{E}[Y_{\psi_n}^2] \to 0$ and consequently $Y_{\psi_n} \to 0$ a.s. as $n \to \infty$. Thus the map $\psi \in \mathcal{D}(\mathbb{T}) \mapsto Y_{\psi}$ is in the space of distributions $\mathcal{D}'(\mathbb{T})$ as., namely, we may view $\mathbf{G}(\partial B_1)|_{\mathcal{D}(\mathbb{T})}$ as a Gaussian random distribution.

Recently this Gaussian random distribution was introduced and studied in [2] via an informal definition of a Gaussian field $\{Y_t : t \in \mathbb{T}\}$ indexed by \mathbb{T} whose covariance $\mathbb{E}[Y_tY_s]$ is identical with Eq. 5.5 in the following manner. Using independent random variables $\{A_n, B_n, n \ge 1\}$ with common distribution N(0, 1), consider a random Fourier series

$$Y_t^N = \frac{1}{\sqrt{\pi}} \sum_{n=1}^N \frac{1}{\sqrt{n}} (A_n \cos 2\pi nt + B_n \sin 2\pi nt), \quad t \in \mathbb{T},$$
(5.6)

and let $Y_t = \lim_{N \to \infty} Y_t^N$. Since $\lim_{N \to \infty} \mathbb{E}[(Y_t^N)^2]$ diverges, Y_t is not well defined.

But it can be verified that

$$\lim_{N \to \infty} \mathbb{E}[Y_t^N Y_s^N] = \frac{1}{\pi} \log \frac{1}{2\sin \pi |t-s|}, \quad t \neq s$$

both hand sides being equal to a convergent cosine series $\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \cos 2\pi (t-s)n$. As is indicated by this identity, one can give a representation \widetilde{Y}_{ψ} of our Gaussian random variable Y_{ψ} for $\psi \in \mathcal{L}(\mathbb{T})$ by

$$\widetilde{Y}_{\psi} = \lim_{N \to \infty} \int_{\mathbb{T}} Y_t^N \psi(t) dt.$$
(5.7)

Indeed one can verify that

$$\mathbb{E}[\widetilde{Y}_{\psi_1}\widetilde{Y}_{\psi_2}] = \int_{\mathbb{T}\times\mathbb{T}} k(e^{2\pi ti} - e^{2\pi si})\psi_1(e^{2\pi ti})\psi_2(e^{2\pi si}) dt ds$$

both hand sides being identical with $\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{4n} (a_n^1 a_n^2 + b_n^1 b_n^2)$ for the Fourier coefficients a_n^i , b_n^i of $\psi_i \in \mathcal{L}(\mathbb{T})$, i = 1, 2.

A positive random measure $\mu_{\mathbf{G}(\mathbb{T})}$ concentrated on the circle \mathbb{T} was constructed in [2] by approximating the field $\mathbf{G}(\partial B_1)$ via a certain white noise expansion. An alternative conceivable approximation would be

$$\langle \varphi, \mu_{\mathbf{G}(\mathbb{T})} \rangle = \lim_{\varepsilon \downarrow 0} \int_{\mathbb{T}} \exp\left(\gamma \widetilde{Y}_{\psi^{t,\varepsilon}} - \frac{\gamma^2}{2} \mathbb{E}(\widetilde{Y}_{\psi^{t,\varepsilon}}^2)\right) \varphi(t) dt, \quad \varphi \in C(\mathbb{T}),$$

where $\psi^{t,\varepsilon}(e^{2\pi si})$ is defined to be $1/2\varepsilon$ if $s \in (t - \varepsilon, t + \varepsilon)$ and 0 otherwise.

More generally we may consider the restriction of $G(\mathbb{C})$ to ∂B for any (not necessarily connected) non-polar bounded Borel set $B \subset \mathbb{C}$. Let μ_B be the equilibrium measure for B. By choosing R > 0with $B \subset B_R$, define for $\psi \in \mathcal{L}(\partial B)$

$$\mu_{\psi}(d\mathbf{y}) = \psi(\mathbf{y})\mu_B(d\mathbf{y}) - \langle \mu_B, \psi \rangle \cdot \sigma_R(d\mathbf{y}) \in \mathcal{M}_{00}(\mathbb{C}), \tag{5.8}$$

and denote $X_{\mu_{\psi}}$ by Y_{ψ} . Then $\mathbf{G}(\partial B) = \{Y_{\psi} : \psi \in \mathcal{L}(\partial B)\}$ is a Gaussian field with covariance

$$\mathbb{E}[Y_{\psi_1}Y_{\psi_2}] = \int_{\partial B \times \partial B} k(\mathbf{x} - \mathbf{y})\psi_1(\mathbf{x})\psi_2(\mathbf{y})\mu_B(d\mathbf{x})\mu_B(d\mathbf{y}) + \frac{1}{\pi}\log R, \ \psi_1, \ \psi_2 \in \mathcal{L}(\partial B).$$
(5.9)

In connection with this subsection, we mention that the logarithmic potential of a variant of the measure (5.2) was considered in [5, III.5] already.

5.2 Gaussian field $\{Y^{x,e}\}$ indexed by $\{\mu^{x,e}\}$ and Liouville measure $\mu_{G(\mathbb{C})}$

For $\mathbf{x} \in \mathbb{C}$, $\varepsilon > 0$, let $B_{\varepsilon}(\mathbf{x}) = \{\mathbf{y} \in \mathbb{C} : |\mathbf{x} - \mathbf{y}| < \varepsilon\}$ and $\mu^{\mathbf{x},\varepsilon}$ be the uniform probability measure on $\partial B_{\varepsilon}(\mathbf{x})$. $\mu^{\mathbf{x},\varepsilon}$ is the equilibrium measure for the set $B_{\varepsilon}(\mathbf{x})$ with the equilibrium potential

$$U\mu^{\mathbf{x},\varepsilon}(\mathbf{y}) = \frac{1}{\pi}\log\frac{1}{|\mathbf{x}-\mathbf{y}|\vee\varepsilon}, \quad \mathbf{y}\in\mathbb{C}.$$

Fix R > 0. For any $\mathbf{x} \in \mathbb{C}$ and $\varepsilon > 0$ with $B_{\varepsilon}(\mathbf{x}) \subset B_R$, define

$$\widetilde{\mu}^{\mathbf{x},\varepsilon} = \mu^{\mathbf{x},\varepsilon} - \sigma_R \ (\in \mathcal{M}_{00}(\mathbb{C})).$$
(5.10)

The associated Gaussian random variable $X_{\tilde{\mu}^{\mathbf{x},\varepsilon}} \in \mathbf{G}(\mathbb{C})$ is denoted by $Y^{\mathbf{x},\varepsilon}$. In view of Eq. 5.1, the Gaussian field $\{Y^{\mathbf{x},\varepsilon}\}$ indexed by (\mathbf{x},ε) has the convariance

$$\mathbb{E}[Y^{\mathbf{x},\varepsilon}Y^{\mathbf{y},\varepsilon}] = \langle \mu^{\mathbf{x},\varepsilon}, U\mu^{\mathbf{y},\varepsilon} \rangle + \frac{1}{\pi} \log R.$$
(5.11)

In particular, $\mathbb{E}[(Y^{\mathbf{x},\varepsilon})^2] = \frac{1}{\pi} (\log R - \log \varepsilon)$ so that $\mathbb{E}[e^{\gamma Y^{\mathbf{x},\varepsilon}}] = (R/\varepsilon)^{\gamma^2/(2\pi)}$ for a constant $\gamma > 0$. Denote by *m* the Lebesgue measure on \mathbb{C} . It is plausible that the almost sure limit

$$\lim_{\varepsilon \downarrow 0} \left(\frac{\varepsilon}{R}\right)^{\frac{\gamma^2}{2\pi}} \exp(\gamma \ Y^{\mathbf{x},\varepsilon}) \cdot m(d\mathbf{x}) = \mu_{\mathbf{G}(\mathbb{C})}(d\mathbf{x})$$
(5.12)

exists in the sense of weak convergence of measures on B_R and the limit random measure $\mu_{\mathbf{G}(\mathbb{C})} = \mu_{\mathbf{G}(\mathbb{C})}^{\gamma,R}$ is non-degenerate for small $\gamma > 0$.

A similar assertion is being made in [19] without proof but by quoting [7]. In [7], the existence of a positive random measure analogous to $\mu_{\mathbf{G}(\mathbb{C})}$ called a *Liouville (quantum gravity) measure* is studied for the Gaussian field $\mathbf{G}(D)$ associated with the transient Dirichlet form $(\frac{1}{2}\mathbf{D}_D, H_0^1(D))$ on $L^2(D)$ of the absorbing Brownian motion on a planar domain $D \subset \mathbb{C}$. $\mathbf{G}(D)$ can be formulated as the Gaussian field indexed by signed Radon measures on D of finite 0-order energy. [7] is just treating its special subfield indexed by { $\mu^{\mathbf{x},\epsilon}$; $\mathbf{x} \in D, \epsilon > 0$ }. One can then well use the Markov property of $\mathbf{G}(D)$ due to [18] or its weak version. D is assumed to be bounded so that the extra term $W_{\partial D}$ in the fundamental identity for the logarithmic potentials vanishes on D (cf. (2.14)). See the proof of [9, Proposition 2.5 (ii)] for a justification of the formulation mentioned above.

In this connection, we mention the work [1] that studies a time changed planar Brownian motion with the symmetrizing measure being the Liouville random measure $\mu_{\mathbf{G}}$ for the *massive free field* \mathbf{G} , namely, the Gaussian field associated with the transient Dirichlet form $(\frac{1}{2}\mathbf{D}(f, g) + \alpha(f, g), H^1(\mathbb{C}))$ on $L^2(\mathbb{C})$ for a fixed $\alpha > 0$ (cf. [15, §4]). This Liouville measure $\mu_{\mathbf{G}}$ has been rigorously constructed (cf. [17]) by an approximation of the 0-order resolvent kernel $r(\mathbf{x}, \mathbf{y}) = \int_0^\infty q_t(\mathbf{x}, \mathbf{y})dt$ for $q_t(\mathbf{x}, \mathbf{y}) =$ $(2\pi t)^{-1}e^{-\alpha t}e^{-\frac{|\mathbf{x}-\mathbf{y}|^2}{2t}}$ as a sum of non-singular kernels $\int_{a_n}^{a_{n+1}} q_t(\mathbf{x}, \mathbf{y})dt$ and by applying Kahane's multiplicative chaos [11] to Gaussian fields $\{X_n(\mathbf{x}), \mathbf{x} \in \mathbb{C}\}$ indexed by $\{\delta_{\mathbf{x}}; \mathbf{x} \in \mathbb{C}\}$. See [3] and references therein for some more general considerations on Liouville random measures.

5.3 Brownian motions produced by $G(\mathbb{C})$ and $G(\mathbb{R})$

For $r \ge 1$, define $\mu_r = \sqrt{\pi}(\sigma_r - \sigma_1) \in \mathcal{M}_{00}(\mathbb{C})$. It follows from Eq. 5.1 that $\langle \mu_{r_1}, U\mu_{r_2} \rangle = (\log r_1) \wedge (\log r_2), r_1, r_2 \ge 1$. Therefore, if we denote by W_t the Gaussian random variable $X_{\mu_{e^t}}$ for $t \in [0, \infty)$, then

$$\mathbb{E}[W_t \ W_s] = t \land s, \qquad t, \ s \ge 0, \tag{5.13}$$

namely, $\{W_t\}_{t \in [0,\infty)}$ is a Brownian motion with time parameter $[0,\infty)$.

Finally we take the Gaussian field $\mathbf{G}(\mathbb{R})$ indexed by $\mathcal{M}_{00}(\mathbb{R})$ considered in Section 4. For $x \in \mathbb{R}$, δ_x denotes the δ -measure concentrated at $\{x\}$. We let

$$\mu_x = \frac{1}{2} (\delta_x - \delta_0) \ (\in \mathcal{M}_{00}(\mathbb{R})), \quad x \in \mathbb{R},$$

and denote by B_x the associated Gaussian random variable X_{μ_x} . We then have from Eq. 4.11

$$\mathbb{E}[B_x B_y] = |x| + |y| - |x - y|, \quad x, y \in \mathbb{R}.$$
(5.14)

Deringer

The right hand side equals $x \land y$; 0; and $-(x \lor y)$, in accordance with $x, y \ge 0$; x > 0, y < 0; and x, y < 0, respectively. This means that $\{B_x; x \ge 0\}$ and $\{B_{-x} : x \le 0\}$ are independent Brownian motion so that $\{B_x : x \in \mathbb{R}\}$ is a Brownian motion with time parameter \mathbb{R} .

References

- Andres, S., Kajino, N.: Continuity and estimates of the Liouville heat kernel with application to spectral dimension. Probab. Theory Relat. Fields 166, 713–752 (2016)
- Astala, K., Jones, P., Kupiainen, A., Saksman, E.: Random conformal weldings. Acta Math. 207, 203– 254 (2011)
- 3. Berestycki, N.: An elementary approach to Gaussian multiplicative chaos. arXiv:1506.09113v1
- 4. Chen, Z.-Q., Fukushima, M.: Symmetric Markov processes, time change and boundary theory. Princeton University Press, Princeton (2011)
- 5. Deny, J.: Les potentiels d'énergie finie. Acta Math. 82, 107-183 (1950)
- 6. Deny, J., Lions, J.L.: Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5(1953/54), 305-370 (1954)
- 7. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185, 333–393 (2011)
- 8. Fukushima, M.: Dirichlet Forms and Markov Processes. North-Holland/Kodansha, North-Holland (1980)
- 9. Fukushima, M., Oshima, Y.: Recurrent Dirichlet forms and Markov property of associated Gaussian fields, to appear in Potential Analysis
- Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and Symmetric Markov processes, 2nd edn. de Gruyter, Berlin (2010)
- 11. Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)
- 12. Landkof, N.S.: Foundation of Modern Potential Theory. Spriger, Berlin (1972)
- 13. de La Vallèe Poussin, C.-J.: Le Potentiel Logarithmique. Gauthier-Villars, France (1949)
- Mandrekar, V.S., Gawarecki, L.: Stochastic Analysis for Gaussian Random Processes and Fields. CRC Press, Boca Raton (2015)
- 15. Nelson, E.: The free Markovian field. J. Funct. Anal. 12, 211-227 (1973)
- Port, S.C., Stone, C.J.: Brownian Motion and Classical Potential Theory. Academic Press, Cambridge (1978)
- Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and appliacations; A review. Probab. Surv. 11, 315–392 (2014)
- 18. Röckner, M.: Generalized Markov fields and Dirichlet forms. Acta Appl. Math. 3, 285-311 (1985)
- Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab. 44, 3474–3545 (2016)