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Abstract

Given a regular transient Dirichlet space on L2(X;m) and an associated m-
symmetric Hunt process M on X, we show the equivalence of the capacitary
isoperimetric inequality µ(K)κ ≤ Θ Cap(K) for a Radon measure µ on X and
the ultracontractivity p̌t(x, y) ≤ (H/t)1/(1−κ) for the transition function p̌t of
the time changed process ofM on the support of µ by the corresponding additive
functional. We shall also show how the constants Θ and H control each other.
When the Dirichlet space is the Riesz potential space and M is the symmetric
stable process on Rn, we show further that the isoperimetric constant can be
replaced by the d-bound supx∈Rn,r>0 µ(B(x, r))r−d of the measure µ.

Résumé

Etant donné un espace de Dirichlet régulier transient sur L2(X;m) et le pro-
cessus associé de Hunt m-symétrique M sur X, nous montrons l’équivalence de
l’inégalité isopérimétrique capacitaire µ(K)κ ≤ Θ Cap(K) pour une mesure de
Radon µ sur X et la ultracontractivité p̌t(x, y) ≤ (H/t)1/(1−κ) pour la fonction
de transition p̌t du processus sur le support de µ qui s’obtient de M après le
changement de temps associé à la fonctionnelle additive correspondante. Nous
alons aussi montrer comment les deux constantes Θ et H sont liées. Lorsque cet
espace de Dirichlet est l’espace potentiel de Riesz et M est un processus stable
symétrique dans Rn, nous montrons en plus que la constante isopérimétrique
peut être remplacée par la quantité supx∈Rn,r>0 µ(B(x, r))r−d pour la mesure
µ.
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1 Introduction

Let (X,m, E ,F) be a general regular transient Dirichlet space and M be the
associatedm-symmetric Hunt process onX. For a given smooth Radon measure
µ on X, let M̌ be the Markov process living on the support F of µ obtained
from the process M by the time change with respect to its positive continuous
additive functional whose Revuz measure is µ.
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Let κ ∈ (0, 1). In this paper, we are concerned with the relationship between
the capacitary isoperimetric bound

µ(K)κ ≤ Θ Cap(K) ∀K(compact) ⊂ X (1.1)

of the measure µ and the ultracontractivity bound

p̌t(x, y) ≤
(
H

t

) 1
1−κ

, t > 0, (1.2)

of the transition function p̌t of the time changed process M̌. In Theorem 3.2
and Theorem 3.3, we shall show not only the equivalence of (1.1) and (1.2) but
also some explicit mutual dependency of the isoperimetirc constant Θ and the
heat constant H. By observing the behaviours of the time changed process M̌
over F , we can thus detect certain isoperimetric characters of the measure µ.

To this end, we prepare in §2 the capacitary strong type inequality∫ ∞

0

Cap({x ∈ X : |u(x)| ≥ t})d(t2) ≤ 4E(u, u) ∀u ∈ F ∩ C0(X), (1.3)

the constant 4 on the right hand side being optimal. (1.3) has been shown by
Vondraček[Vo 96] in the present general context but we will give an alternative
simple proof of it.

By using this inequality, one can easily see the equivalence of the isoperi-
metric bound (1.1) to the Sobolev imbedding:

||u||2L2/κ(X;µ) ≤ SE(u, u), ∀ u ∈ Fe, (1.4)

the Sobolev constant S and the isoperimetric constant Θ controlling each other
explicitly as will be exhibited in Corollary 3.1. By the general time change
theory for the Dirichlet form ([FOT 94, §6.2]), (1.4) can be converted into the
Sobolev inequality holding for the Dirichlet form (Ě , F̌) of the time changed
process M̌ on L2(F ;µ)

||φ||2L2/κ(F ;µ) ≤ S Ě(φ,φ) ∀φ ∈ F̌e, (1.5)

with the same constant S as in (1.4).
The equivalence of (1.2) and (1.5) is well known as the Varopoulos theo-

rem ([Va 85]) but we are more concerned with the mutual dependence of con-
stants H and S. The mutual dependence of H and the constant N appear-
ing in the Nash type inequality has been well studied by Carlen,Kusuoka and
Stroock[CKS 87] and so we shall invoke the work by Bakry, Coulhon, Ledoux
and Saloff-Coste[BCLS 95] concerning the relation between N and S to finish
the proof of the stated assertions in §3.

In §4, we shall work with the symmetric 2α-stable process M on Rn for
0 < α ≤ 1, 2α < n. The associated extended Dirichlet space coincides with
the space L̇α,2(Rn) of the Riesz potentials of functions in L2(Rn). For a Radon
measure µ on Rn, we will be concerned with its d-bound defined by

vd(µ) = sup
x∈Rn,r>0

µ(B(x, r))

rd
.

For n−2α < d ≤ n, we shall prove that isoperimetric constant Θ of the measure
µ with respect to the Riesz capacity and for the exponent

κ =
n− 2α

d
(1.6)
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can be estimated by vd(µ) from below and above with some explicit constants
(see (4.7) and (4.9)). Combining this with the general results in §3, we shall see
in Theorem 4.2 and Theorem 4.3 that the ultracontractivity bound (1.2) for κ
of (1.6) of the time changed process is equivalent to the finiteness of vd(µ) and
that the heat constant H and the d-bound vd(µ) control each other to a certain
extent.

Theorem 4.2 also contains an assertion of imbedding of the space L̇α,2(Rn)

into L
2d

n−2α (F ;µ) which goes back to the work of Adams [A 73]. But the present
estimate of the Sobolev constant S in terms of the d-bound of µ is more explicit
than [A 73] (see (4.14)).

The trace Dirichlet space (Ě , F̌) on a d-set F of the present Riesz potential
space L̇α,2(Rn) is related to the Besov space B2,2

{d−(n−2α)}/2(F ) over F recently

studied in [FU 02] and [CK 02]. We shall discuss their relationship in §5. Es-
pecially the latter will be seen to be continuously imbedded into the former.

At the ends of §3 and §4, we shall also give some sufficient conditions for the
gaugeability (cf. Takeda[T 02]) of the positive continuous additive functional
with Revuz measure µ in terms of Θ and vd respectively.

2 Capacitary strong type inequality

The capacitary strong type inequality was first established by V. Maz’ya [M 73]
for the Sobolev space W 1,p(Rn), 1 < p <∞, as

∫ ∞

0

C1,p({x ∈ Rn : |u(x)| ≥ t})d(tp) ≤ pp

(p− 1)p

∫
RN

|∇u|pdx, u ∈ C∞
0 (Rn)

(2.1)
the constant on the right hand side being the best. It was then extended to
a large class of function spaces on Rn including the Riesz and Bessel potential
spaces ([AH 96]) and to a general function spaces with contractive p-norms as
well ([Ka 92],[FU 02]).

When p = 2, the constant appearing on the right hand side of (2.1) equals 4
and the integral on the right hand side is just the Dirichlet integral. Accordingly
we see that, if a counterpart of the inequality (2.1) should ever hold for a general
Dirichlet form, then 4 must be the optimal constant for the counterpart.

Let (X,m, E ,F) be a regular transient Dirichlet space. By this, we mean
that X is a locally compact separable metric space, m is an everywhere dense
positive Radon measure on X, and that (E ,F) is a regular transient Dirichlet
form on L2(X;m). The 0-order capacity of a compact set K ⊂ X is then defined
by

Cap(K) = inf {E(u, u) : u ∈ F ∩ C0(X), u(x) ≥ 1, x ∈ K} (2.2)

and extended to any subsets of X as a Choquet capacity. Fe denotes the ex-
tended Dirichlet space. In what follows, any function u ∈ Fe will be always
taken to be quasi-continuous (cf. [FOT 94]).

The following is the Dirichlet form version of the capacitary strong type
inequality and the inequality is sharpe by the reason mentioned above.

Theorem 2.1.∫ ∞

0

Cap({x ∈ X : |u(x)| ≥ t})d(t2) ≤ 4E(u, u) ∀u ∈ F ∩ C0(X). (2.3)
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Without loss of generality we can assume the transience of E , because oth-
erwise we may replace E and Cap by E1 and the 1-order capacity respectively.

This theorem was first proved by K. Hansson [H 79] in a little different set-
ting and under the condition that the resolvent admits a continuous density
with respect to m. Z. Vondraček [Vo 96] has succeeded to remove this condi-
tion in a general regular Dirichlet form setting but still by adopting Hansson’s
proof. Being suggested by a related inequality in A. Ben Amor[BA 02], we
will present here an alternative simple proof of this theorem. We note that T.
Kolsrud[Ko 84] and M. Rao[R 88] have also obtained the inequality (2.2) with
less sharpe constants.

Proof of Theorem 2.1: Take u ∈ F ∩ C0(X) and let Nt = {x ∈ X : |u(x)| ≥
t}, t > 0. Since Nt is a compact set, we can take the 0-order equilibrium
potential e(t) ∈ F and the equilibrium measure µt of the set Nt. According to
[FOT 94, §2.2],

Cap(Nt) = µt(Nt) = E(e(t), e(t)), E(e(t), v) =
∫
Nt

v(x)µt(dx) ∀v ∈ Fe.

For 0 < s ≤ t, e(s) = 1 q.e. on Nt and hence

E(e(t), e(s)) = Cap(Nt) = E(e(t), e(t)) (2.4)

and we have
||e(s)− e(t)||2E = Cap(Ns)− Cap(Nt),

which decreases to 0 as s ↑ t by the right-continuity of the Choquet capacity
Cap on compact sets. Therefore e(t) is E-left-continuous and E-measurable.

Denote by Su the compact support of u. Since Nt ⊂ Su and Nt is empty for
t > ||u||∞, we have the integrability of ||e(t)||E :∫ ∞

0

||e(t)||Edt =
∫ ∞

0

√
Cap(Nt)dt ≤ ||u||∞

√
Cap(Su).

Therefore (cf. [Y 69, Th.5.1]) the Bochner integral ψ =
∫∞
0
e(t)dt makes sense

in the space (Fe, E) and moreover

E(ψ, v) =
∫ ∞

0

E(e(t), v)dt, v ∈ Fe.

We turn to the proof of the inequality (2.2). Since |u|/t ≥ 1 on Nt,∫ ∞

0

Cap(Nt)d(t
2) = 2

∫ ∞

0

tCap(Nt)dt = 2

∫ ∞

0

tµt(Nt)dt

≤ 2

∫ ∞

0

t·1
t

∫
Nt

|u(x)|µt(dx)dt

= 2

∫ ∞

0

E(e(t), |u|)dt = 2E(ψ, |u|).

≤ 2
√
E(ψ,ψ)

√
E(u, u).

We compute E(ψ,ψ). By the symmetry of E ,

E(ψ,ψ) = E
(∫ ∞

0

e(t)dt,

∫ ∞

0

e(s)ds

)
=

∫ ∞

0

∫ ∞

0

E(e(t), e(s))dtds

= 2

∫ ∞

0

∫ s

0

E(e(t), e(s))dtds.
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We then have from (2.4)

E(ψ,ψ) = 2

∫ ∞

0

∫ s

0

E(e(s), e(s))dtds = 2

∫ ∞

0

sE(e(s), e(s))ds

= 2

∫ ∞

0

tCap(Nt)dt =

∫ ∞

0

Cap(Nt)d(t
2).

Thus we get the desired inequality (2.3).

3 Capacitary bounds of measures and ultracon-
tractivity of time changed processes

We continue to work with a regular transient Dirichlet space (X,m, E ,F). The-
orem 2.1 implies the following (cf. [AH 96, §7.2]):

Theorem 3.1. Let µ be a Borel measure on X and κ ∈ (0, 1].
(i) If

µ(K)κ ≤ ΘCap(K), ∀ K compact, (3.1)

for some positive constant Θ, then µ is a smooth Radon measure and

||u||2L2/κ(X;µ) ≤ SE(u, u), ∀ u ∈ Fe, (3.2)

for some positive constant S ≤ (4/κ)κΘ.
(ii) Conversely, if (3.2) holds for any u ∈ F ∩ C0(X) and for some positive
constant S, then (3.1) holds for some positive constant Θ ≤ S.

Proof: (ii) is evident by taking the infimum in (3.2) for u ∈ F ∩ C0(X) such
that u ≥ 1 on K.

We assume (3.1). Obviously µ is then a smooth Radon measure. Let u ∈
F ∩ C0(X). Since the level set Nt = {x ∈ X : |u(x)| ≥ t} is compact for t > 0,
we have, by using the level set representation of u with respect to µ,∫

X

|u(x)|2/κµ(dx) =

∫ ∞

0

µ(Nt)d(t
2/κ)

≤
∫ ∞

0

Θ1/κCap(Nt)
1/κd(t2/κ)

= Θ1/κ

∫ ∞

0

Cap(Nt)
(1/κ)−1Cap(Nt)d(t

2/κ).

Since |u(x)|/t ≥ 1 on Nt, we have Cap(Nt) ≤
1

t2
E(u, u), and

∫
X

|u(x)|2/κµ(dx) ≤ Θ1/κE(u, u)(1/κ)−1

∫ ∞

0

Cap(Nt)

(
1

t

)2/κ−2

d(t2/κ).

By Theorem 2.1, we are led to∫
X

|u(x)|2/κµ(dx) ≤ Θ1/κE(u, u)(1/κ)−1 1

κ

∫ ∞

0

Cap(Nt)d(t
2)

≤ Θ1/κ

(
4

κ

)
E(u, u)1/κ.
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We get (3.2) for S = (4/κ)κΘ and u ∈ F∩C0(X), which can be readily extended
to u ∈ Fe.

For a measure µ on X, we introduce its isoperimetric constant and Sobolev
constant respectively by

Θκ(µ) = sup
K

µ(K)κ

Cap(K)
κ ∈ (0, 1], (3.3)

Sη(µ) = sup
u∈F∩C0(X)

||u||2Lη(µ)

E(u, u)
η ∈ [2,∞). (3.4)

The supremum in (3.4) can be taken for all u ∈ Fe. S2(µ) may be called the
Poincaré constant of µ. Theorem 3.1 can be rephrased as follows:

Corollary 3.1. For a measure µ on X and for κ ∈ (0, 1], 0 < Θκ(µ) < ∞ if
and only if 0 < S2/κ(µ) <∞. Moreover,

Θκ(µ) ≤ S2/κ(µ) ≤ (4/κ)κ Θκ(µ), κ ∈ (0, 1]. (3.5)

The number (4/κ)κ in the inequality (3.5) takes value in (1, 4] and decreases
to 1 as κ ↓ 0. Hence, the isoperimetric constant becomes more optimal to control
the Sobolev constant when κ gets closer to 0. In the next section, we shall see that
many d-measures on Rn admit finite isoperimeric constants for some κ ∈ (0, 1)
with respect to the Riesz capacity Ċα,2.

Suppose that a measure µ is of finite energy integral and that its potential
Uµ is m-essentially bounded. Then

Θ1(µ) ≤ ||Uµ||∞. (3.6)

In fact, we have for any φ ∈ F ∩ C0(X) and any compact set K∫
φIKdµ = E(φ,UIKµ) ≤ ||φ||E · ||UIKµ||E ,

and

E(UIKµ,UIKµ) =
∫

˜UIKµ · IKdµ ≤ ||Uµ||∞ · µ(K).

It then suffices to take the infimum for φ ∈ F ∩ C0(X) which is equal to 1 on
K.

By Corollary 3.1 and (3.6), we are led to the bound of the Poincaré constant
S2(µ):

S2(µ) ≤ 4||Uµ||∞. (3.7)

Vondračeck[Vo 96] first derived this bound from the capacitary strong type in-
equality (2.2). As a matter of fact, a better estimate is known in this case:

S2(µ) ≤ ||Uµ||∞. (3.8)

At least three different proofs of (3.8) have been given by Stollmann-Voigt[SV 96],
Fitzsimmons[F 00] and Ben Amor[BA 02]. The proof in [BA 02] seems to be
simplest among them. The capacitary strong type inequality is less useful in
this case.
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The trace Sobolev inequality (3.2) is intrinsically related to the ultracon-
tractivity of the transition semigroup of a time changed process. Therefore
Corollary 3.1 indicates that the isoperimetric constant of a measure and the
(heat) constant in the ultracontractive bound may control each other.

Let M = {Xt, Px} be an m-symmetric Hunt process on X associated with
the Dirichlet form E and A = At be a PCAF of M whose Revuz measure is a
given smooth Radon measure µ. Denote by F and F̃ the support of µ and A
respectively. Then F̃ ⊂ F q.e., µ(F \ F̃ ) = 0 and further F̃ is a quasi-support of
µ, namely, if quasi-continuous functions coincide µ-a.e., then they coincide q.e.
on F̃ . Recall that each element u ∈ Fe is taken to be quasi-continuous in this
paper.

We consider the time changed process M̌ = (X̌t, Px)x∈F̃ defined by

X̌t = Xτt τt = inf{s > 0 : As > t}.

M̌ is a µ-symmetric transient right process, whose Dirichlet form (Ě , F̌) on
L2(F ;µ) and the extended Dirichlet space F̌e can be described as follows (cf.
[FOT 94, §6.2]) :

F̌e = {φ = u|F µ− a.e. : u ∈ Fe} F̌ = F̌e ∩ L2(F ;µ) (3.9)

Ě(φ,φ) = E (HF̃u,HF̃u) φ = u|F ∈ F̌e, (3.10)

where
HF̃u(x) = Ex

(
u
(
XσF̃

))
x ∈ X,

Ex denoting the expectation with respect to Px and σF̃ being the hitting time

of the set F̃ by the sample path Xt. Two elements of F̌e are regarded identical
if they coincides µ-a.e. Since F̃ is a quasi-support of µ, the definition (3.10) of
Ě makes sense.

The definition (3.10) can be described in a more analytic way. We introduce
the closed subspace of (Fe, E) by

Fe,X\F̃ = {u ∈ Fe : u = 0 q.e. on F̃},

and let HF̃ be its orthognal complement:

Fe = Fe,X\F̃ ⊕HF̃ .

Then (c.f. [FOT 94, The. 4.3.2])

Pu = HF̃u u ∈ Fe.

where P denotes the orthogonal projection on the spaceHF̃ . Thus we can restate
(3.10) as follows (the Dirichlet principle):

Ě(φ,φ) = inf{E(u, u) : u ∈ Fe, u = φ µ-a.e. on F}, φ ∈ F̌e. (3.11)

The first half of the next theorem is immediate from (3.2) and (3.11).

Theorem 3.2. Suppose a measure µ satisfies Θκ(µ) ∈ (0,∞) for some κ ∈
(0, 1). Then we have the following for S = S2/κ(µ)(∈ (Θκ(µ), (4/κ)

κΘκ(µ))).
(i)

||φ||2L2/κ(F ;µ) ≤ S Ě(φ,φ) ∀φ ∈ F̌e. (3.12)
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(ii) The transition function p̌t of the time changed process M̌ on F satisfies

p̌t(x, y) ≤
(
H

t

) 1
1−κ

, t > 0, (3.13)

for µ× µ−a.e. (x, y) ∈ F × F, where H is some positive constant with

H ≤ 1

1− κ
· S. (3.14)

We know that (3.12) and (3.13) are equivalent by Voropoulos [Va 85]. But
we are more concerned with dependence of constants Θκ and H.

In order to get the bound (3.14), we set

κ = (ν − 2)/ν (ν = 2/(1− κ)). (3.15)

Then (3.12) reads

||φ||2L2ν/(ν−2) ≤ S Ě(φ,φ), φ ∈ F̌e (3.16)

which can be converted by a Hölder inequality into a Nash type inequality

||φ||2(1+
2
ν )

2 ≤ N Ě(φ,φ)||φ||
4
ν
1 , φ ∈ F̌e, (3.17)

with N = S. Then, by a Nash argument adopted by [CKS 87],

||p̌t||1→∞ ≤
(
H

t

) ν
2

, t > 0, (3.18)

for H = ν
2 S yielding (3.14).

Conversely, suppose that µ is a smooth Radon measure with support F
and that the transition function p̌t of the time changed process M̌ satisfies the
ultracontractivity (3.18). Then, by Carlen-Kusuoka-Stroock[CKS 87](see also
[SC 02]), we have the Nash type inequality (3.17) with

N = 2
(
1 +

ν

2

)1+ ν
2 ·H.

On the other hand, the Nash type inequality (3.17) implies the Sobolev inequal-
ity (3.16) with

S = 24 e2
ν

ν − 2
N,

by virtue of Bakry,Coulhon,Ledoux and Saloff-Coste[BCLS 95, Cor.4.4,Cor.7.3].
Combining these two bounds, we get the following converse to Theorem 3.2.

Theorem 3.3. Suppose that µ is a smooth Radon measure with support F
and that the transition function p̌t of the time changed process M̌ on F with
respect to the PCAF with Revuz measure µ satisfies the bound (3.13) for some
κ ∈ (0, 1), H > 0. Then
(i) The Sobolev inequality (3.12) holds for some positive constant S with

S ≤ 48 e2
1

κ

(
2− κ

1− κ

) 2−κ
1−κ

·H. (3.19)

(ii) µ admits an isoperimetric constant Θκ(µ) with a bound

(4/κ)−κ S ≤ Θκ(µ) ≤ S (3.20)

by the constant S of (i).
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The second assertion of Theorem 3.3 follows from Corollary 3.1 and the
identity

Sη(µ) = sup
φ∈F̌e

||φ||2Lη(µ)

Ě(φ,φ)
, η ∈ [2,∞). (3.21)

The inequalities ≥ and ≤ follow from (3.12) and Dirichlet principle (3.11) re-
spectively.

Takeda’s test (cf.[T 02],[C 02], [TU 02]) says that, under certain conditions
on M (absolute continuity of the transition function with respect to m etc.) and
on µ (a finite measure in the Kato class for instance), S2(µ) < 1 is necessary
and sufficient for the gaugeability of the PCAF At associated with µ in the sense
that

sup
x∈X

Ex(exp(Aζ−)) <∞.

Therefore, under these additional conditions, we have the following from Corol-
lary 3.1.

Theorem 3.4. If

Θκ(µ) <∞, ∃κ ∈ (0, 1) M = µ(X) <∞,

and if

M < (4 Θκ(µ))
− 1

1−κ ,

then A is gaugeable.

We note the obvious bound Θ1(µ) ≤M1−κ Θκ(µ).

4 d-bounds of measures on Rn and time changes
of symmetric stable processes

In this section, we let M = (Xt, Px) be the symmetric 2α-stable process on
Rn for 0 < α ≤ 1. The transition function of M is a convolution semigroup
{νt, t > 0} of symmetric probability measures on Rn with

ν̂t(x)

(
=

∫
Rn

ei(x,y)νt(dy)

)
= e−tc|x|2α ,

c being a fixed positive constant. For simplicity, we take c = 1. In case that
α = 1, M is the n-dimensional Brownian motion with variance of µt being equal
to 2t.

The Dirichlet form (E ,F) of M on L2(Rn) is given by
E(u, u) =

∫
Rn

û(x)¯̂v(x)|x|2αdx

F = {u ∈ L2(Rn) :

∫
Rn

|û(x)|2|x|2αdx <∞}.
(4.1)

In what follows, we assume that

0 < α ≤ 1, 2α < n
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so that M is transient. The extended Dirichlet space (Fe, E) of M can then be
identified with the Riesz potential space L̇α,2(Rn) described below. The Riesz
potential of a measure ν on Rn is defined by

Iα ∗ ν(x) = γα

∫
Rn

|x− y|−(n−α)ν(dy), γα =
Γ((n− α)/2))

πn/22αΓ(α/2)
.

When ν(x) is of the form f(x)dx, then Iα∗ν is denoted by Iα∗f. For f ∈ L2(Rn),
Iα ∗ f(x) is absolutely convergent for a.e. x ∈ Rn, and we may consider the
function space

L̇α,2(Rn) = {Iα ∗ f : f ∈ L2(Rn)}. (4.2)

For f ∈ L2(Rn), we know that Iα ∗ f ∈ L
n−2α
2n (Rn) by virtue of the Sobolev

embedding theorem (cf. [S 70, pp119]) and hence Iα ∗ f admits its Fourier
transform as a tempered distribution. On the other hand, the Fourier transform
of the kernel γα|x|−n+α as a tempered distribution is known to be equal to |x|−α.
Consequently we have the identity (cf. [L 72, Th. 0.13])

ˆIα ∗ f(x) = |x|−α · f̂(x) a.e. x ∈ Rn.

If Iα ∗ f = 0 for f ∈ L2(Rn), then the above identity implies that f̂ = 0 and
so f = 0. Therefore the next inner product is well introduced on the space
L̇α,2(Rn):

(u, v)L̇α,2(Rn) = (f, g)L2(Rn) u = Iα ∗ f, v = Iα ∗ g, f, g ∈ L2(Rn). (4.3)

The Riesz potential space equipped with the inner product (4.3) is thus a real
Hilbert space. The capacity Ċα,2 associated with this space is defined for a
compact set K ⊂ Rn by

Ċα,2(K) = inf{||f ||2L2(Rn) : f ∈ L2
+(Rn), Iα ∗ f(x) ≥ 1 ∀x ∈ K}, (4.4)

and extended to all subsets of Rn as a Choquet capacity.

Lemma 4.1. (i)

Fe = L̇α,2(Rn), E(u, v) = (u, v)L̇α,2(Rn), u, v ∈ Fe.

(ii) For any compact set K ⊂ Rn,

Cap(K) = Ċα,2(K),

where Cap is defined by (2.2) for the present Dirichlet form. It holds furthermore
that

Ċα,2(K) = inf{||f ||2L2(Rn) : f ∈ B+
0 (Rn), Iα ∗ f(x) ≥ 1 x ∈ K}, (4.5)

where B+
0 (Rn) denotes the space of non-negative bounded measurable functions

on Rn vanishing outside some compact set.

Proof: (i) has been shown in [FOT 94, Example 1.5.2]. The proof of (ii) is given
essentially in the proof of [AH 96, Prop. 2.3.13].

We call a closed subset F of Rn a (semi global) d-set for 0 < d ≤ n if
there exists a positive measure µ supported by F satisfying, for some constants
0 < c1 ≤ c2,

c1r
d ≤ µ(B(x, r)) ∀x ∈ F,∀r ∈ (0, 1)
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µ(B(x, r)) ≤ c2r
d ∀x ∈ F, ∀r ∈ (0,∞),

where B(x, r) denotes the n-dimensional ball with center x and radius r. Such
a measure is called a d-measure. It is known that the restriction of the d-
dimensional Hausdorff measure to a d-set F is a d-measure (cf.[JW 84]).

For a d-measure µ, we will be concerned with its d-bound defined by

vd(µ) = sup
x∈Rn,r>0

µ(B(x, r))

rd
(∈ [c1, c2]). (4.6)

We consider a d-measure µ on a d set F with

n− 2α < d ≤ n.

Otherwise, Ċα,2(F ) = 0 and µ can not satisfy the isoperimetric inequality with
respect to the present Dirichlet form. Since

Ċα,2(B(x, r)) = ċα,2 r
n−2α, ċα,2 = Ċα,2(B(0, 1)),

we can immediately obtain a lower bound of the isoperimetric constant for µ by
its d-bound:

ċ−1
α,2 vd(µ)

n−2α
d ≤ Θn−2α

d
(µ). (4.7)

In order to obtain an inequality in the opposite direction, we prepare a
lemma.

Lemma 4.2. For a Radon measure µ, suppose there exist constants κ ∈ (0, 1)
and A > 0 such that

||Iα ∗ µK ||L2(Rn) ≤
√
A µ(K)1−

κ
2 (4.8)

for any compact set K ⊂ Rn. Here µK denotes IKµ. Then

Θκ(µ) ≤ A.

Proof: For f ∈ B+
0 (Rn), we put E = {x ∈ Rn : Iα ∗ f(x) ≥ 1}. Since E is

compact, we have from (4.8)

µ(E) ≤
∫
Rn

Iα ∗ f dµE ≤ ||f ||L2(Rn)||Iα ∗ µE ||L2(Rn) ≤
√
A||f ||L2(R2)µ(E)1−

κ
2 ,

and
µ(E)κ ≤ A||f ||2L2(Rn).

Taking the infimum for those functions f ∈ B+
0 (Rn) such that I ∗ f ≥ 1 on a

compact set K, we get from (4.5)

µ(K)κ ≤ A Ċα,2(K).

Theorem 4.1. For any Radon measure µ with finite d-bound, it holds that

Θn−2α
d

(µ) ≤ c(n, α, d) vd(µ)
n−2α

d (4.9)

for

c(n, α, d) =
4d2 γ2α vn (n− α)2

(n− 2α)2{d− (n− 2α)}2
, (4.10)

where vn is the volume of the n dimensional unit ball.
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Proof: By Lemma 4.2, it suffices to show that µ satisfies the Riesz potential
bound (4.8) with

κ =
n− 2α

d
, A = c(n, α, d) vd(µ)

n−2α
d (4.11)

for c(n, α, d) of (4.10).
Actually the inequality (4.8) holding for some positive constant A was es-

sentially shown in the proof of [AH 96, Th. 7.2.2]. By making the computation
employed there more detailed, we aim at deriving an expression of the constant
A as explicitly as (4.10).

We first rewrite Iα ∗ µK as

Iα ∗ µK(x) = (n− α)γα

∫ ∞

0

µK(B(x, r))

rn−α
· dr
r

and use the Minkowski inequality to get

||Iα ∗ µK ||2 ≤ (n− α)γα

∫ ∞

0

||µK(B(·, r))||2
rn−α

· dr
r
. (4.12)

We have on the one hand,

||µK(·.r))||22 =

∫
Rn

µ(K ∩B(x, r))2dx

≤ µ(K)

∫
Rn

∫
K

I{|x−y|<r}(y)dµ(y)dx

= µ(K)

∫
K

∫
Rn

I{|x−y|<r}(x)dxdµ(y)

= µ(K)

∫
K

|B(y, r)|dµ(y) = vnr
nµ(K)2,

and on the other hand,

||µK(B(·, r))||22 ≤ sup
x
µ(B(x, r))

∫
Rn

µ(K ∩B(x, r))dx

≤ vd(µ)r
dvnr

nµ(K).

Splitting the interval (0,∞) of integration on the right hand side of (4.12)
into two intervals [R,∞) and (0, R), and substituting the preceding two bounds
respectively, we get

||Iα ∗ µK ||2 ≤ γα(n− α)(J1(R) + J2(R)) (4.13)

with

J1(R) =
√
vn µ(K)

2

n− 2α

1

R
n−2α

2

,

J2(R) =
√
vnvd(µ)

√
µ(K)

2

d− (n− 2α)
R

d−(n−2α)
2 .

Take R = η µ(K)1/d. Then

J1 =
√
vn

2

n− 2α
η−

n−2α
2 · µ(K)

2d−(n−2α)
2d ,
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J2 =
√
vnvd(µ)

2

d− (n− 2α)
η

d−(n−2α)
2 · µ(K)

2d−(n−2α)
2d .

We then choose η minimizing the sum of the above two expressions, namely,
η = vd(µ)

−1/d. Thus we obtain from (4.13)

||Iα ∗ µK ||2 ≤ B vd(µ)
n−2α

2d µ(K)
2d−(n−2α)

2d

with

B =
2d γα

√
vn (n− α)

(n− 2α) {d− (n− 2α)}
,

which equals the square root of the constant c(n, α, d) of (4.10).

As an example, take n = 3, α = 1, d = 2. Then c(3, 1, 2) =
64

3π3
and hence

any 2-measure µ on R3 have the isoperimetric bound

Θ1/2(µ)

v2(µ)1/2
≤ 64

3π3
≈ 0.688

with respect to the Newtonian capacity Ċ1,2 on R3. For the 2-dimensional
Lebesgue measure µ0 on a plane F ⊂ R3, it is known (cf. [M 85, pp116]) that

Θ1/2(µ0)

v2(µ0)1/2
=

1

8
= 0.125.

By setting κ = n−2α
d in Corollary 3.1 and using (4.7) and (4.9), we get the

bound of the Sobolev constant S = S 2d
n−2α

(µ) for µ in terms of its d-bound

vd(µ):

ċ−1
α,2 vd(µ)

n−2α
d ≤ S ≤ (4d/(n− 2α))

n−2α
d c(n, α, d) vd(µ)

n−2α
d (4.14)

for the constant c(n, α, d) of (4.10).

By setting κ = n−2α
d in Theorem 3.1 and Theorem 3.2, we have

Theorem 4.2. Suppose µ is a d-measure on Rn with n − 2α < d ≤ n. Then
we have the following for S satisfying the bounds (4.14):
(i)

||u||2
L

2d
n−2α (Rn;µ)

≤ S E(u, u) ∀u ∈ L̇α,2(Rn). (4.15)

(ii) Let M̌ be the time changed process on the support F of µ of M by the PCAF
with Revuz measure µ. Then its transition function p̌t satisfies

p̌t(x, y) ≤
(
H

t

) d
d−(n−2α)

, t > 0, (4.16)

for µ× µ-a.e. (x, y) ∈ F × F , where H is some positive constant with

H ≤ d

d− (n− 2α)
S. (4.17)
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Actually inequality (4.15) together with the bounds

c3 vd(µ)
n−2α

d ≤ S ≤ c4 vd(µ)
n−2α

d

holding for some positive constants c3, c4 independent of µ goes back to the work
of Adams [A 73] (see also [M 85, 1.4.1]). Here we have made these contants c3
and c4 more explicit in (4.14).

We can also derive from Theorem 3.3 the following converse to Theorem 4.2.

Theorem 4.3. Suppose that µ is a smooth Radon measure on Rn with support
F and that the transition function p̃t of the time changed process M̃ on F with
respect to the PCAF with Revuz measure µ satisfies the bound (4.16) for some
d ∈ (n− 2α, n] and H > 0. Then
(i) The inequality (4.15) holds for some positive constant S with

S ≤ 48de2

n− 2α

(
2d− (n− 2α)

d− (n− 2α)

) 2d−(n−2α)
d−(n−2α)

·H. (4.18)

(ii) µ is a d-measure whose d-bound vd(µ) satisfies

n− 2α

4d

(
S

c(n, α, d)

) d
n−2α

≤ vd(µ) ≤ (ċα,2 S)
d

n−2α (4.19)

for the constant S of (i) and for c(n, α, d) of (4.10).

Any d-measure µ is not only smooth but in the Kato class. Since the present
process M on Rn satisfies all conditions imposed by Takeda [T 02] (see also
[C 02],[TU 02]), we see, for a finite d-measure µ, that S2(µ) < 1 is a necessary
and sufficient condition for the gaugeability

sup
x∈Rn

Ex(exp(A∞)) <∞ (4.20)

of the PCAF A with Revuz measure µ. By setting κ = n−2α
d in Theorem 3.4,

we get the next theorem from Theorem 4.1.

Theorem 4.4. Let µ be a d-measure on Rn for n − 2α < d ≤ n. Suppose
M = µ(X) is finite. If

M < (4 c(n, α, d))−
1

d−(n−2α) vd(µ)
− n−2α

d−(n−2α) (4.21)

for c(n, α, d) of (4.10), then A is gaugeable.

5 Relasionship to Besov spaces over d-sets

We continue to work under the setting of §4. We first note that, from the trace
iniquality (4.15) for the Riesz potential space, we can get the same inequality
for the Bessel potential space. The Bessel convolution kernel Gα(x), x ∈ Rn, is
a positive integrable function with Fourier transform given by

Ĝα(x) = (1 + |x|2)−α
2 . (5.1)
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The Bessel potential space is defined by{
Lα,2(Rn) = {Gα ∗ f : f ∈ L2(Rn)}

(u, v)Lα,2(Rn) = (f, g)L2(Rn), u = Gα ∗ f, v = Gα ∗ g, f, g ∈ L2(Rn),

(5.2)
and hence

Lα,2(Rn) = {u ∈ L2(Rn) :

∫
Rn

|û(x)|2(1 + |x|2)αdx <∞}

(u, v)Lα,2(Rn) =

∫
Rn

û(x)¯̂v(x)(1 + |x|2)αdx.
(5.3)

A comparison with (4.1) gives

F = Lα,2(Rn), E(u, u) ≤ (u, u)Lα,2(Rn), u ∈ F . (5.4)

Hence, Theorem 4.2 immediately implies the next theorem.

Theorem 5.1. For 0 < 2α ≤ n, n− 2α < d ≤ n, let µ be a d-measure. Then
the following inequality holds for a constant S satisfying the bound (4.14) in
terms of the d-bound of µ:

||u||2
L

2d
n−2α (Rn;µ)

≤ S · (u, u)Lα,2(Rn) ∀u ∈ Lα,2(Rn). (5.5)

Let d and α be as in Theorem 5.1 and µ be the restriction of the d-dimensional
Hausdorff measure on a d-set F. Define δ by

α = δ +
n− d

2
(5.6)

so that

0 < δ ≤ 1, 2δ < d,
2d

n− 2α
=

2d

d− 2δ
,

d

d− (n− 2α)
=

d

2δ
.

We consider the Besov space B2,2
δ (F ) over F defined by

(φ,ψ)B2,2
δ (F ) =

∫
F×F\d

(φ(x)− φ(y))(ψ(x)− ψ(y))

|x− y|d+2δ
µ(dx)µ(dy)

B2,2
δ (F ) = {φ ∈ L2(F ;µ) : (φ,φ)B2,2

δ (F ) <∞}.
(5.7)

B2,2
δ (F ) is a Dirichlet form on L2(F ;µ) equipped with the norm

||φ;B2,2
δ (F )||2 = (φ,φ)L2(F ;µ) + (φ,φ)B2,2

δ (F ).

Since the Bessel potential space Lα,2(Rn) is known to be identical with the
Besov space B2,2

α (Rn) on Rn, a simple part of the Jonsson-Wallin trace theorem
([JW 84, Chap. V]) reads

B2,2
δ (F ) = Lα,2(Rn)|F (5.8)

both the restriction and extension operators involved being continuous. This
combined with the imbedding (5.5) readily leads us to the Sobolev inequality
for the Besov space B2,2

δ (F ):

||u||
L

2d
d−2δ (F ;µ)

≤ C ||u;B2,2
δ (F )||, u ∈ B2,2

δ (F ), (5.9)
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holding for some positive constant C. The inequality (5.9) has been also ob-
tained in [FU 02] without using the imbedding (5.5) but by deriving a bound
of the measure µ in terms of the capacity for the space B2,2

δ (F ) from a metric
property of the Bessel capacity on Rn.

Denote by MF the Hunt process on F associated with the regular Dirichlet
form (5.7). (5.9) implies that its transition function pFt satisfies a short time
ultracontractivity (cf. [D 89])

pFt (x, y) ≤ C t−
d
2δ , 0 < t < 1,

for some positive constant C. In this sense, the process MF behaves similarly
to the time changed process M̌ on F considered in Theorem 4.2.

The trace (F̌ , Ě) on L2(F ;µ) of the present Dirichlet space (F , E) of the
symmetric 2α-stable processM is transient because so is the latter (see [FOT 94,
Th. 6.2.3]). To the contrary, the Besov space (B2,2

δ (F ), (·, ·)B2,2
δ (F )) on L

2(F ;µ)

is recurrent when µ(F ) is finite.
In view of (5.4), (5.8) and the Dirichlet principle (3.11), we have the following

continuous imbedding:

Theorem 5.2.

B2,2
δ (F ) ⊂ F̌e, Ě(φ,φ) ≤ C ||φ;B2,2

δ (F )||2, ∀φ ∈ B2,2
δ (F ),

for some positive constant C.

Nevertheless, the preceding observation tells us that 0-order Dirichlet forms
Ě and (·, ·)B2,2

δ (F ) are not necessarily equivalent.
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