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ENTRANCE LAW, EXIT SYSTEM AND LÉVY SYSTEM OF
TIME CHANGED PROCESSES

ZHEN-QING CHEN, MASATOSHI FUKUSHIMA, AND JIANGANG YING

Abstract. Let (X, X̂) be a pair of Borel standard processes on a Lusin
space E that are in weak duality with respect to some σ-finite measure
m that has full support on E. Let F be a finely closed subset of E.

In this paper, we obtain the characterization of a Lévy system of the
time changed process of X by a positive continuous additive functional

(PCAF in abbreviation) of X having support F , under the assumption

that every m-semipolar set of X is m-polar for X. The characterization
of the Lévy system is in terms of Feller measures, which are intrinsic

quantities for the part process of X killed upon leaving E \ F . Along
the way, various relations between the entrance law, exit system, Feller
measures and the distribution of the starting and ending point of ex-

cursions of X away from F are studied. We also show that the time
changed process of X is a special standard process having a weak dual

and that the µ-semipolar set of Y is µ-polar for Y , where µ is the Revuz
measure for the PCAF used in the time change.

1. Introduction

Given a Markov process X on a state space E and a subset F of E, we may
associate the minimal process X0 on E0 = E\F and the time changed process
Y on F ; X0 and Y are obtained from X by killing upon leaving E0, and with
the time substitution by the inverse of the local time on F , respectively. There
is yet another associated process that has attracted the interest of researchers
for many years: the excursions of X away from the set F .

Intuitively, the joint distribution of the starting and ending points of ex-
cursions should contribute to the jumping measure of Y, as has been verified
by explicit computations for the reflecting Brownian motion on a smooth Eu-
clidean domain by P. Hsu [25]. In §5 of this paper, we shall show that this
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is indeed the case in great generality. One can also naturally guess that the
entrance law governing the excursions ought to be determined uniquely by
the dual of the minimal process X0. When F is just a one point set, this was
recently confirmed by M. Fukushima and H. Tanaka [18] for a symmetric dif-
fusion X and by P. J. Fitzsimmons and R. K. Getoor [13] for a general Markov
process X. In §3 of the present paper, we shall establish this identification
when F is a general finely closed set for a Markov process X possessing its
dual.

The stated results in §3 and §5 of the present paper will lead us in §5 to
the characterization of the jumping and killing measures of Y by means of
the Feller measures, which are the intrinsic quantities for X0 and its dual
process. The Feller measure was introduced by W. Feller [6] in his study
of boundary theory for Markov chains. Such a characterization has been
obtained previously by Y. LeJan [30] for a Hunt process associated with a non-
symmetric Dirichlet form under some restrictive condition and quite recently
by our joint paper [4] for the most general symmetric Markov processes. The
following is a more detailed introduction of the present paper.

Let X = {Xt,Px} be a standard process on a Lusin space E that has a
weak dual standard process X̂ = {X̂t, P̂x} with respect to a σ-finite measure
m having full support on E. We assume for X that

(A.1) every m-semipolar set is m-polar.

Fix a subset F of E satisfying

(A.2) F is q.e. finely closed,
(A.3) Px(σF <∞) > 0 for m0-a.e. x ∈ E0,, where E0 := E\F , m0 := m|E0

and σF := inf{t > 0 : Xt ∈ F}, the hitting time of F by X.

There are two important stochastic objects relevant to the set F : Maison-
neuve’s exit system for the homogeneous random set

M(ω) := {t ∈ [0, ζ(ω)) : Xt(ω) ∈ F or Xt−(ω) ∈ F},

and the trace process Y on F obtained from X by a time change with re-
spect to a positive continuous additive functional (PCAF in abbreviation)
having support F. The aim of the present paper is to describe some basic
characteristics in these two objects in terms of the specific quantities related
to the minimal processes X0 and X̂0, which are the subprocesses of X and
X̂, respectively, killed upon leaving E0.

By the specific quantities, we mean an X0-entrance law {µft , t ≥ 0} on E0

that is characterized by

Ĥf ·m0 =
∫ ∞

0

µft dt for every f ∈ B+(F ),
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the Feller measure U and the supplementary Feller measure V that are defined
by

U(f, g) := L(0)(Ĥf ·m0,Hg), V (f) := L(0)(Ĥf ·m0, 1−H1), f, g ∈ B+(F ).

Here for x ∈ E0,

Hf(x) := Ex [f(XσF );σF <∞] and Ĥf(x) := Êx

[
f(X̂σF );σF <∞

]
,

and L(0) is the X0-energy functional of an excessive measure and an excessive
function for X0. We emphasize that those quantities are well computable in
many examples. The entrance law {µft , t ≥ 0} can be expressed in terms of
the joint distribution of the hitting time and hitting place of F of the dual
process X̂ (see (3.7) below). When X is the d-dimensional Brownian motion
and F is a compact smooth hypersurface, concrete expressions of the Feller
measures U and V are derived in [16, Example 2.1] and [4, Example 2.12],
respectively.

The exit system (P∗x,K+J) defined in §3 for the set M(ω) will describe the
behaviors of the sample path Xt(ω) for t belonging to the time set [0, ζ(ω)) \
M(ω), which is a disjoint union of excursion intervals away from the set F.
In particular, P∗x for x ∈ F may be considered as a σ-finite measure on the
space of paths continuously entering from x so that

Q∗t (x,B) = E∗x [1B(Xt); t < σF ]

is an X0-entrance law governing the excursions. In Theorem 3.3, we shall
establish an identity linking Q∗t (·, B), B ∈ B(E0), to the above mentioned
X0-entrance law µft (B).

Theorem 3.3 can be regarded as an extension of a part of a recent paper
[18], where F is a one-point set. P. Fitzsimmons and R. Getoor [13] has shown
a similar formula to Theorem 3.3 for a general right process X and for any
excessive measure m of it with F being a one-point set.

Theorem 3.3, which relates the X0-entrance law µft to the exit system, is
a key of the present paper in the sense that all subsequent theorems will be
deduced from it. In Theorem 3.4, the Feller measures U and V are represented
as joint distributions of the starting and ending points of excursions in terms
of the exit system. In Theorem 4.1, the Feller-Neveu measure Θf,g(du) is
represented by a joint distribution of the starting point, ending point and the
length of excursions. The Feller measure and the Feller-Neveu measure were
first introduced by W. Feller [6] and J. Neveu [34], respectively, for a Markov
process on a denumerable state space with a finite number of ideal boundary
points. When F is just a one point set, Θ(du) is nothing but the Lévy measure
of the inverse local time at the point (see [18, Theorem 2.2] and [13]).

As a consequence of Theorem 3.4, the Feller measures are identified in
Corollary 3.5 with (generalized) Revuz measures of certain homogeneous ran-
dom measures involving the starting and ending points of excursions. On the
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other hand, the latter quantities will be identified in Theorem 5.5 of §5 with
the jumping and killing measures J̌ , κ̌ of the time changed process Y on F
obtained from X by a PCAF having support F . Combining Corollary 3.5
with Theorem 5.5, we shall get in Theorem 5.6 the following identifications

J̌ = U + J |F×F and κ̌ = V + κ|F ,

where J and κ are the jumping measure and killing measure of X, respec-
tively. To be more precise, we shall consider in §5 the totality SF of smooth
measures whose quasi support coincide with F q.e.. We take an arbitrary but
fixed µ ∈ SF and consider the PCAF A having Revuz measure µ. Then the
time changed process Y of X by the inverse of A can be seen to be a right
process on F possessing a weak dual right process with respect to µ and still
satisfying condition (A.1). Therefore we can verify that both X and Y are
special standard processes and admit their Lévy systems (under the original
topologies) for quasi every starting points. The above mentioned jumping
and killing measures of them are well defined in terms of their Lévy systems.
In particular, the identifications in Theorem 5.6 holds independently of the
choice of µ ∈ SF .

Theorem 5.6 is a generalization of the corresponding part of §2 of our recent
joint paper [4], where a general irreducible m-symmetric Markov process X
on a Lusin space E and a quasi closed subset F of E with positive capacity
are considered. The method employed in [4] is to identify the jumping and
killing measure appearing in the Beurling-Deny representation of the quasi-
regular Dirichlet form on L2(F ;µ) of the time changed process Y by making
full use of the stochastic calculus on martingale additive functionals of X in
the Dirichlet form setting.

Under some extra condition, LeJan has obtained in §3 of [30] the same
results as §2 of [4] for a Hunt process X associated with a non-symmetric
sectorial regular Dirichlet form and for a closed set F. Along with [29], nice
potential theoretic methods were systematically utilized in [30] under the con-
dition that the Dirichlet space is continuously embedded into L2(E;m). This
condition however excludes many interesting examples such as the reflecting
Brownian motion on the unit disk while F is the unit circle. Our Theorem
5.6 also extends the corresponding part of §3 of [30] because the Hunt process
associated with a non-symmetric sectorial Dirichlet form is known to satisfy
the present condition (A.1) (cf. [29], [38], [9]).

When X is an m-symmetric conservative diffusion and F is a closed set,
Corollary 3.5 can be readily obtained by a direct computation, as was done
in §3 of the paper by M. Fukushima, P. He and J. Ying [16]. The proof of
Theorem 5.5 will be carried out by extending a time change argument in the
proof of [16, Theorem 5.1]. In this sense, the present paper can be viewed as
an extension of [16] and of a part of [18] methodologically.
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Here we mention a close relevance of the present work to an article of M.
Motoo [33], where the Lévy system (Ň , Ȟ) of the time changed process Y on
a closed set F of a Hunt process X was studied under some strong analytic
conditions on the resolvent of X0. The excursions of X away from F were
studied using jump times of the inverse local time and also a variant Ψ of the
Feller kernel on F was introduced. It was then shown in [33] that

∫ t

0

Ňf(Ys)dȞs ≥
∫ t

0

Ψf(Ys)ds, t > 0, f ∈ B+(F ),

with the equality holding if and only if X admits no jump from F to F. See
M. Blumenthal [1] for an interpretation of Motoo’s results by making use of
an exit system.

There are many papers on the subject of excursions and exit systems of
Markov processes; see [8], [21], [23], [25], [26], [27], [31], to name a few. For
example, [23], [8] and [27] studied the excursion laws using the exit system,
under the strong duality assumption (which assumes the existence of tran-
sition density functions) or the classical duality assumption (which assumes
the existence of potential kernels). In contrast, in the present paper we de-
fine Feller measures independently of the exit system, and then relate these
measures to the joint distributions of the starting and ending points of the
excursions defined via exit system.

In the next section, we collect some basic facts for standard processes in
weak duality from articles [15], [24], [12], [36] and develop them in a convenient
way for later uses. Subsections §2.2, §2.3 and §2.4 contain some new results
proven under the condition (A.1). In §2.2, we show that the above mentioned
homogeneous random set M(ω) is actually a closed subset of [0,∞). It will
be shown in §2.3 that the quasi support of a smooth measure coincides with
the support of the associated PCAF, extending the corresponding part of [17]
for m-symmetric Markov processes. Subsection §2.4 deals with the existence
of the associated Lévy system under the original topology.

Our study originated in the work of J. L. Doob [5], where the Douglas
integral representation of the Dirichlet integral of a harmonic function on a
unit disk was generalized to a general Green space with Martin boundary using
Naim’s kernel. In subsequent works by M. Fukushima [14] and H. Kunita [28],
Naim’s kernel was replaced by a Feller kernel (a density function of a Feller
measure). In these works, what was given a priori is a minimal processX0, and
what was searched for was its possible extensions together with their intrinsic
boundaries. In a series of papers [16], [4] and the present one, we assume
instead that a process on E and a subset F of E are given in advance and
the behaviors of X around F are investigated in relation to Feller measures
defined by the absorbed process X0 and its dual process.
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2. Markov processes in weak duality

Let E be a Lusin space (i.e., a space that is homeomorphic to a Borel
subset of a compact metric space) and B(E) be the Borel σ-algebra on E.
Let X = (Ω,M,Mt, Xt, Px, x ∈ E) be a standard process on E. Here, a
standard process on the Lusin space E is a normal, right continuous strong
Markov process which is quasi-left continuous on (0, ζ), where ζ is the lifetime
of the process.

The shift operators {θt, t ≥ 0} satisfy Xs◦θt = Xs+t identically for s, t ≥ 0.
Adjoined to the state space E is an extra point ∂ /∈ E; the process X retires
to ∂ at its “lifetime”

ζ := inf{t ≥ 0 : Xt = ∂}.
Denote E ∪ {∂} by E∂ . The transition semigroup {Pt, t ≥ 0} of the process
X is defined by

Ptf(x) := Ex[f(Xt)] = Ex[f(Xt); t < ζ].

(Here and in the sequel, unless mentioned otherwise, we use the convention
that a function defined on E takes the value 0 at the cemetery point ∂.)

A standard process is said to be Borel if Ptf is Borel measurable for each
bounded Borel function f. The family of all nearly Borel subsets of E with
respect to the process X will be denoted by Bn(E). We shall start with a
Borel standard process X. But a right process or a standard process obtained
from X by some transformations such as restriction to an X-invariant set, a
killing, a time change may no longer be Borel; however these processes have
the following weaker measurability:

(2.1) Pt maps bounded nearly Borel functions into nearly Borel functions.

Let m be a σ-finite measure on (E,B(E)) with supp[m] = E. Throughout
this paper except for §2.1 (vi), (vii) and §2.4, we assume that X is a Borel
standard process and there is another Borel standard process

X̂ = (Ω, M̂, M̂t, X̂t, P̂x, x ∈ E)

that is in weak duality with X with respect to the measure m in the sense
that

(2.2)
∫
E

g(x)P̂tf(x)m(dx) =
∫
E

f(x)Ptg(x)m(dx), f, g ∈ B+(E).



LÉVY SYSTEM OF TIME CHANGED PROCESSES 275

Here P̂t is the transition semigroup of X̂. For α ≥ 0, the α-resolvents of X
and X̂ will be denoted by Gα and Ĝα, respectively. The point ∂ will play
the role of the cemetery for X and X̂. The quantities relative to X̂ will be
denoted with a hat ̂ and designated by the prefix co-.

We know (cf. [2, (I.9.15)]) that almost surely the left limit of Xt exists
in E for t < ζ. So without loss of generality, we assume that Xt(ω) has left
limits in E for every t ∈ (0, ζ(ω)) for each ω ∈ Ω.

Under the weak duality assumption, the measure m is an excessive measure
of X, that is, m is a σ-finite Borel measure on B(E) such that mPt ≤ m
for all t > 0. Here mPt denotes the measure µ defined by

∫
E
f(x)µ(dx) =∫

E
Ptf(x)m(dx) for any Borel function f ≥ 0 on E. Since X is a standard

process, we have limt→0mPt = m setwise.

2.1. Exceptional sets and fine topology. In this subsection, we list
some known basic statements about exceptional sets and fine topology related
to X and X̂ which have been presented in [15, §2] and in [24, §6].

The hitting time of B ⊂ E∂ is defined by σB = inf{t > 0, Xt ∈ B} with
the convention that inf ∅ =∞.

A subset B ⊂ E is said to be m-polar if there exists a nearly Borel set B̃
containing B such that

Pm(σB̃ <∞) = 0.

The set B̃ above can in fact be chosen to be a Borel subset of E. It is known
that any m-polar set is m-negligible. In the sequel, a statement is said to hold
quasi-everywhere (q.e. in abbreviation) if it holds except on an m-polar set.

For two subsets B1, B2 of E, we write B1 ⊂ B2 q.e. if B1 \ B2 is m-
polar. Thus B1 = B2 q.e. if their symmetric difference is m-polar, and in
this case we call them q.e. equivalent. A subset of E is called q.e. finely open
(respectively, q.e. finely closed) if it is q.e. equivalent to a nearly Borel finely
open (respectively, closed) set. A subset of E is called m-semipolar if it is
q.e. equivalent to a semipolar set. An m-semipolar set is therefore a union of
a semipolar set and an m-polar set.

A function u defined q.e. on E is called finely continuous q.e. if there exists
an m-polar set N ∈ Bn such that E \N is finely open and u is nearly Borel
measurable and finely continuous on E \N.

For F ∈ Bn, we put for f ∈ B+(E), x ∈ E,

P 0
t f(x) = Ex [f(Xt); t < σF ] for t > 0,

Hf(x) = Ex [f(XσF );σF <∞] , Hαf(x) = Ex

[
e−ασF f(XσF )

]
, α > 0.

In the following, we will use (u, v) to denote the inner product of u, v in
L2(E,m), that is, (u, v) :=

∫
E
u(x)v(x)m(dx). For a set A, we use 1A to
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denote its indicator function, that is,

1A(x) :=

{
1 if x ∈ A,
0 if x /∈ A.

The following facts are known.

(i) When F is Borel, the following hold for f, g ∈ B+(E):

(2.3) (P̂ 0
t f, g) = (f, P 0

t g) for t > 0,

(2.4) (ĤαĜαf, g) = (f, HαGαg) for every α > 0.

(ii) m-polarity and m-co-polarity are equivalent.

Clearly the identities (2.3) and (2.4) extend to F ∈ Bn. We note here that,
although F ∈ Bn is not necessarily co-nearly Borel measurable, there are
Borel sets B1, B2 such that B1 ⊂ F ⊂ B2 and B2 \ B1 is m-polar and hence
m-co-polar, so that the left hand sides of the above identities make sense.

(iii) If u is finely continuous q.e. on E and u ≥ 0 m-a.e. on a finely open
set G ∈ Bn, then u ≥ 0 q.e. on G.

A set E1 ∈ Bn is called X-invariant if for every x ∈ E1

Px (Xt ∈ E1 for every t ∈ [0, ζ) and Xt− ∈ E1 for every t ∈ (0, ζ)) = 1.

The restriction of X to an X-invariant set E1 is a standard process on E1.
We say that a set N is properly exceptional if N ∈ Bn, m(N) = 0 and E \N
is X-invariant. A properly exceptional set is m-inessential in the sense of [24]
but the converse is not true.

(iv) A set N is m-polar if and only if N is contained in a properly excep-
tional set Ñ . The set Ñ can be taken to be Borel.

A function u is q.e. finely continuous on E if and only if there exists a
Borel properly exceptional set N such that u is Borel measurable and finely
continuous on E \N.

The assertions (i), (ii) and (iii) were proved in [15]. The first assertion of
(iv) was proved in [15] and in [24, (6.12)] with Ñ being taken to be an m-
inessential set, but the proof of [17, Theorem 4.1.1] extends to give the above
stronger assertion by making use of [24, (15.7)].

(v) The following two conditions are equivalent:

(2.5) Every m-semipolar set is m-polar.

A function is q.e. finely continuous if and only if(2.6)
it is q.e. co-finely continuous.
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In [15], condition (2.6) was proved to be equivalent to the condition that
every semipolar set is m-polar, which is obviously equivalent to (2.5).

Finally, for later use in §5 for a time changed process, we add to our list
two statements shown in [24] for a pair of right processes (X, X̂) in weak
duality with respect to m (the standardness is not needed here).

(vi) For B ∈ Bn(E), B is m-semipolar if and only if

Pm(Xt ∈ B for uncountably many t) = 0.

If B is m-semipolar, then

Px(Xt ∈ B for uncountably many t) = 0 for q.e. x ∈ E.

The second assertion in the above statement is immediate from [2, (II.3.4)].

(vii) m-semipolarity and m-co-semipolarity are equivalent.

2.2. Closedness of a homogeneous random set. From now on, X and
X̂ are two Borel standard processes X, X̂ in weak duality with respect to m
with an additional assumption that for the process X,

(A.1) every m-semipolar set is m-polar.

Remark 2.1. Since m-polar is m-semipolar and m-co-polar is m-co-semi-
polar, by (vii), the assumption (A.1) amounts to saying that m-polarity, m-
semipolarity, m-co-polarity and m-co-semipolarity are all the same.

In this subsection, we formulate a lemma that is important in the next
section. A point x ∈ E is called regular for a set F ∈ Bn if Px(σF = 0) = 1.
The set of all regular points for F is denoted by F r.

We consider the random subset M(ω) of [0, ζ) defined by

(2.7) M(ω) := {t ∈ [0, ζ(ω)) : Xt(ω) ∈ F or Xt−(ω) ∈ F}, ω ∈ Ω,

with the convention that X0−(ω) = X0(ω).

Lemma 2.2. Let F ∈ Bn be q.e. finely closed. Then the random set
M(ω) defined by (2.7) is a relatively closed subset of [0, ζ(ω)) Px-a.s. for q.e.
x ∈ E.

Proof. Since F r ⊂ F q.e. by assumption and F \F r is semipolar and hence
m-polar by (A.1), we can choose a properly exceptional set N containing the
symmetric difference of F and F r by (vi). We then have for F1 = F \N

F r1 = F1 and Px (σF = σF1) = 1 for x ∈ E \N.

Moreover, for x ∈ E \N , Px-a.s.,

M(ω) = M1(ω) := {t ∈ [0, ζ(ω)) : Xt(ω) ∈ F1 or Xt−(ω) ∈ F1}.
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In view of the right continuity of the 1-excessive function f1(x) = Ex[e−σF ]
along the path Xt, it is clear that the set M(ω) is righthand closed Px-a.s.
for x ∈ E \N.

To show the lefthand closedness, we proceed as follows. Under the weak
duality condition, it can be shown using an associated stationary process as
in [24, (9.6)] (cf. [32, §6], [40]) that

t 7→ f(Xt−) is left-continuous on (0, ζ) for each q.e. co-finely continuous f,

Pm-a.s. and consequently Px-a.s. for q.e. x ∈ E by (iii), (iv) of §2.1.
Define fn(x) = Ex [e−nσF ] for x ∈ E. Note that fn is n-excessive for the

process X, and hence it is finely continuous. According to the assumption
(A.1) and (v) of §2.1, fn is q.e. co-finely continuous on E. Thus we have for
q.e. x ∈ E, Px-a.s.,

t 7→ fn(Xt−) is left-continuous and(2.8)

t 7→ fn(Xt) is right continuous having left limit.

In particular, as t 7→ Xt can have at most countably many discontinuous
points, we have for q.e. x ∈ E, Px-a.s.

lim
s↑t

fn(Xs) = lim
s↑t

fn(Xs−) = fn(Xt−) for every t ∈ (0, ζ).

Since fn(x) decreases to 1F r (x) = 1F (x) as n ↑ ∞ for x ∈ E \ N , hence by
(2.8) for q.e. x ∈ E \N ,Px-a.s. and for t < ζ,

lim sup
s↑t

1F (Xs−) ≤ lim
n→∞

lim sup
s↑t

fn(Xs−)

= lim
n→∞

fn(Xt−)

= 1F (Xt−)

and similarly,
lim sup
s↑t

1F (Xs) ≤ 1F (Xt−),

for q.e. x ∈ E \ E. Hence for q.e. x ∈ E, Px-a.s., if tn ∈ M(ω) and tn ↑ t
with t < ζ, then Xt− ∈ F and so t ∈M(ω). This shows that M(ω)∩ [0, ζ(ω))
is a closed subset of [0, ζ(ω)) and so M(ω) is closed. �

2.3. Smooth measures and positive continuous additive function-
als. We continue to consider a pair of Borel standard processes (X, X̂) that
are in weak duality with respect to m under the assumption (A.1).

Let µ be a Borel measure on E charging no m-polar set. A set F ⊂ E is
said to be a quasi-support of µ if the next two conditions are satisfied:

(2.9) F is q.e. finely closed and µ(E \ F ) = 0.

(2.10) If F̃ is another set with property (2.9), then F ⊂ F̃ q.e.
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The quasi support of µ is unique up to q.e. equivalence. Since a closed
set is finely closed, the quasi-support of µ, if it exists, is contained in the
topological support of µ q.e. Analogously to [17, Theorem 4.6.2], we have the
following criterion of the quasi support.

We denote by D the space of all non-negative functions u on E such that
u = f1 − f2 for some bounded 1-excessive functions f1, f2 on E with respect
to X.

Proposition 2.3. The following conditions are equivalent to each other
for any Borel measure µ on E charging no m-polar set and for any q.e. finely
closed set F ⊂ E:

(i) F is a quasi support of µ.
(ii) For every function u in D, u = 0 µ-a.e. on E if and only if u = 0

q.e. on F .
(iii) For any q.e. finely continuous function u, u = 0 µ-a.e. on E if and

only if u = 0 q.e. on F .

Proof. (i)→(iii): Suppose condition (i) holds. Then “if” part of (iii) is
trivially true. Let u be a q.e. finely continuous function that vanishes µ-a.e.
on E. Then, F̃ := {x ∈ E : u(x) = 0} is q.e finely closed having µ(F̃ ) = 0
and hence F ⊂ F̃ q.e.. Therefore u = 0 q.e. on F , proving the “only if” part
of (iii).

(iii)→(ii): This is true trivially.
(ii)→(i): Suppose condition (ii) holds. Define

Nµ :=
{
u ∈ D :

∫
E

|u|dµ = 0
}

and DF c = {u ∈ D : u = 0 q.e. on F}.

Then condition (ii) can be rephrased as Nµ = DF c . Assume this holds and
define

vF (x) := Ex

[∫ σF

0

e−s1E(Xs)ds
]

= 1−Ex

[
e−σF∧ζ

]
for x ∈ E.

Note that vF (x) = G11(x) − H1G11(x) is in D and vF = 0 q.e. on F ; in
other words, vF ∈ DF c . So vF ∈ Nµ and hence

∫
E
vF (x)µ(dx) = 0. Since

F c is q.e. finely open, by the definition of vF , vF > 0 q.e. on F c. Therefore
µ(E \ F ) = 0. Consider another q.e. finely closed set F1 with µ(E \ F1) = 0.
Since vF1 = 0 q.e. on F1, vF1 belongs to Nµ = DF c . Since vF1 > 0 q.e. on
F c1 , it follows that F ⊂ F1 q.e. and hence F is a quasi support of µ, proving
(i). �

Corollary 2.4. Any q.e. finely closed set F admits a bounded Borel
measure charging no m-polar set whose quasi support equals F q.e.
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Proof. Let F be a q.e. finely closed set. Take a strictly positive bounded
m-integrable function f on E and put

µ(B) =
∫
E

f(x)H11B(x)m(dx) = Ef ·m
[
e−σF 1B(XσF )

]
, B ∈ B(E).

Clearly µ is a finite measure charging no m-polar set with µ(E \ F ) = 0. If
u ∈ D vanishes µ-a.e., then

(f,H1u) =
∫
E

u(y)µ(dy) = 0,

and so H1u = 0 m-a.e. on E. Since H1u ∈ B and is finely continuous, H1u = 0
q.e. on E by (iii). In particular, u = H1u = 0 q.e. on F. Hence µ satisfies
condition (ii) of Corollary 2.3. �

For a Borel measure charging no m-polar set, its co-quasi support is well
defined by replacing “q.e. finely closed” in (2.8) by “q.e. co-finely closed”.

Corollary 2.5. Let µ be a Borel measure on E charging no m-polar set.
Then the quasi support of µ and the co-quasi support of µ are q.e. equivalent.

Proof. This follows from (v) in §2.1 and Proposition 2.3 (iii). �

We call a functional A = {At(ω), t ≥ 0, ω ∈ Ω}, a positive continuous
additive functional (PCAF in abbreviation) of X if the following conditions
are satisfied:

(1) A is adapted to the minimum augmented admissible filtration {Ft}t≥0

generated by X.
(2) There exist a set Λ ∈ F∞ and a properly exceptional set N ⊂ E such

that

Px(Λ) = 1 for every x ∈ E \N, and θtΛ ⊂ Λ for t > 0,

and, moreover, for each ω ∈ Ω, t 7→ A·(ω) is non-negative finite
continuous on [0, ζ(ω)), A0(ω) = 0, At(ω) = Aζ(ω)(ω) for every t ≥
ζ(ω), and for every t, s > 0,

At+s(ω) = As(ω) +At(θsω).

The sets Λ and N are called the defining set and the exceptional set of A,
respectively. A PCAF for which N = ∅ is called a PCAF in the strict sense.
In short, a PCAF is a PCAF in the strict sense of the restricted standard
process X|E\N for some properly exceptional set N. Two PCAF’s A and Ã

are regarded to be equivalent if Px(At = Ãt) = 1 for q.e. x ∈ E for each
t > 0. The latter is equivalent to

Px(At = Ãt for every t ≥ 0) = 1 for q.e. x ∈ E.
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If A is a PCAF of X, then the Revuz measure of A (with respect to the
excessive measure m) is the positive measure µ defined for B(E)-measurable
f ≥ 0 by the monotone limit

(2.11)
∫
E

f(x)µ(dx) =↑ lim
t↓0

1
t
Em

[∫ t

0

f(Xs)dAs

]
.

Here ↑ limt↓0 means the quantity is increasing as t ↓ 0. Obviously the Re-
vuz measure is uniquely determined by the equivalence class of PCAF’s and
charges no m-polar set.

The family of all PCAF’s of X is denoted by A+
c . For A ∈ A+

c , the associ-
ated α-potential UαAf is defined for α ≥ 0, f ∈ B(E), by

(2.12) UαAf(x) = Ex

[∫ ∞
0

e−αtf(Xt)dAt

]
, x ∈ E \N,

where N is an exceptional set for A. The next fundamental Revuz formula
valid under the present weak duality setting (see [24, (9.3)]) will be utilized
in §3 and §5:

(2.13) (f, UαAg) = 〈Ĝαf, g · µ〉, f, g ∈ B+(E),

where µ is the Revuz measure of A.
The support of A ∈ A+

c is defined by

(2.14) F̌ = {x ∈ E \N : Px(inf{t > 0 : At(ω) > 0} = 0) = 1},

where N is an exceptional set for A. The support F̌ is nearly Borel measurable
and finely closed with respect to the process X|E\N ; moreover (cf. [2, p. 215])

(2.15) At =
∫ t

0

1F̌ (Xs)dAs, Px-a.s. for x ∈ E \N.

The support F̌ is uniquely determined up to q.e. for equivalent PCAF’s.

Proposition 2.6. The support F̌ of A ∈ A+
c is a quasi support of the

Revuz measure µA of A.

Proof. F̌ is q.e. finely closed as was noted above and µA(E \ F̌ ) = 0 in
view of (2.11) and (2.15). Therefore it suffices to verify the condition (iii) of
Proposition 2.3: if u is q.e. finely continuous and vanishes µA-a.e. on E, then
u = 0 q.e. on F̌ . But this can be shown in exactly the same way as in the
proof of [17, Theorem 5.1.5]. �

When X = X̂ and the associated Dirichlet form on L2(E;m) is regular,
the family (of equivalence classes of) A+

c was shown in [17] to be in one to
one correspondence with the class of smooth measures under (2.10). This has
been extended by Fitzsimmons-Getoor [12] to a general right process with
respect to its excessive measure m. A Borel measure µ on E is called smooth
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if it charges no m-polar set and there exists an increasing sequence of finely
open sets {En} such that µ(En) <∞ for all n and

(2.16) Pm( lim
n→∞

τEn < ζ) = 0,

where τEn := inf{t > 0 : Xt /∈ En}. The class of all smooth measures is
denoted by S. In [12], the smoothness of a measure µ is defined as above
but with a stronger requirement that m charges no m-semipolar set, which,
however, is equivalent to the above definition under the present assumption
(A.1).

The next proposition is a special case of [12, Theorem 3.11].

Proposition 2.7. The equivalence classes of A+
c and S are in one to

one correspondence by the Revuz relation (2.11).

By Proposition 2.6 and Proposition 2.7, we conclude that any smooth mea-
sure µ ∈ S admits a quasi support which equals the support of the correspond-
ing PCAF A.

An increasing sequence of q.e. finely open subsets {En, n ≥ 1} is called
an X-nest if condition (2.16) is satisfied. An X̂-nest can be defined anal-
ogously. An X-nest {En, n ≥ 1} appearing in the above definition of the
smooth measure µ will be said to be associated with µ.

Proposition 2.8.

(i) {En, n ≥ 1] is an X-nest if and only if it is an X̂-nest,
(ii) A Borel measure µ on E is a smooth measure for X if and only if it

is a smooth measure for X̂.
(iii) Let µ ∈ S and let A, Â be the PCAF’s of X, X̂, respectively, having

Revuz measure µ. Then for every α > 0, there exists an X-nest
{En} associated with µ such that the α-potential and the co-α-potential
UαAn1, Ûα

Ân
1 of An := 1En ·A, Ân := 1En ·Â are bounded on E for each

n. Here (1En ·A)t :=
∫ t

0
1En(Xs)dAs and (1En ·Â)t :=

∫ t
0

1En(X̂s)dÂs.

Proof. (i) Under the condition (A.1), it is known that a set A is q.e. finely
open for X if and only if it is q.e. finely open for X̂. Take f and g, two
strictly positive bounded functions on E so that f, g ∈ L1(E,m). Then Ĝ1f
and G1g are strictly positive on E q.e.. Let {En, n ≥ 1} be an X-nest. Define
Fn := E \ En. Then by (2.4), we have for every n ≥ 1∫
E

g(x)Êx

[
e−σ̂Fn Ĝ1f(X̂σ̂Fn

)
]
m(dx) =

∫
E

f(x)Ex

[
e−σFnG1g(XσFn

)
]
m(dx).

It follows from {En, n ≥ 1} being an X-nest that

lim
n→∞

∫
E

g(x)Êx

[
e−σ̂Fn Ĝ1f(X̂σ̂Fn

)
]
m(dx) = 0.
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Define T := limn→∞ σ̂Fn . By the quasi-left continuity of X̂ on [0, ζ̂), we have
from the above display and the Fatou lemma by letting n→∞ that∫

E

g(x)Êx

[
e−T Ĝ1f(X̂T ); T < ζ̂

]
m(dx) = 0.

It follows that Pm(T < ζ̂) = 0 and so {En, n ≥ 1} is an X̂-nest. Interchanging
the role of X and X̂, we see that every X̂-nest is an X-nest.

(ii) follows immediately from (i) and the definition of smooth measure.
(iii) First assume that µ(E) < ∞. Then by (2.13), UαA1(x), Ûα

Â
1(x) are

finite m-a.e. and hence q.e. on E. Define, for n ≥ 1,

En := {x ∈ E : UαA1(x) < n, Ûα
Â

1(x) < n}.

Clearly, {En, n ≥ 1} are q.e. finely open sets increasing to E q.e. and conse-
quently an X-nest. Furthermore, we have for each n ≥ 1,

UαAn1(x) = Ex

[
e−ασEnUαAn1(XσEn

)
]
≤ n for q.e. x ∈ E.

Similarly, Ûα
Ân

1 is dominated by n.
For a general smooth measure with an associated X-nest {G`}, the measure

µn = 1G` · µ is finite for each `, and admits an X-nest {E(`)
n } possessing the

above property for A` = 1G` ·A, Â` = 1G` · Â. Then

En =
n⋃
`=1

(G` ∩ E(`)
n ), n = 1, 2, · · · ,

is a desired X-nest associated with µ. �

2.4. Special standard process and Lévy system. We continue to
consider a pair of standard processes X, X̂ in weak duality with respect
to m under the assumption (A.1). But in this subsection, we do not as-
sume that X and X̂ are Borel and we allow their weaker measurability (2.1).
We call X µ-special standard if, for any sequence of stopping times Tn ↑ T ,
FµT = σ(

⋃∞
n=1 F

µ
Tn

), where {Fµt , t ≥ 0} denotes the augmented filtration gen-
erated by X under Pµ. X is said to be special standard if it is µ-special
standard for any initial law µ.

Lemma 2.9. Under the assumption (A.1), X is m-special standard. There
exists a properly exceptional set N such that the restricted process X|X\N is

special standard. The same is true for X̂.

Remark 2.10. This lemma is a consequence of Theorem 16.19 and The-
orem 16.21 and remarks preceding them in [24]. We remark here that this
lemma holds more generally for right processes X and X̂ possessing left limits
in E up to the lifetimes which are in weak duality with respect to m and the
first part of this lemma holds if every m-semipolar set is m-co-polar while the
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second part of this lemma holds if every m-co-semipolar set is m-polar. This
remark will be applied in §5 to a time changed processes of X and X̂.

Any right process is known to admit a Lévy system under the Ray topology
(see [36, (73.1)]). But we like to have a Lévy system under the original
topology.

Lemma 2.11. Suppose that X is a special standard process on E with
lifetime ζ. For this lemma, we use X0

t− and Xt− to denote the left limits
under the original topology on E and under the Ray topology, respectively.
Then for any x ∈ E, Px-a.s. on {ζ < ∞}, X0

ζ− exists in E if and only if
Xζ− ∈ E. In this case, these two limits are the same.

Proof. By [36, Remark (46.3)], we know that if Xζ− ∈ E exists in the Ray
topology, then X0

ζ− exists in E and coincides with Xζ−.
Note that (see [36, (47.6)]) under the Ray topology, X is a Hunt process.

By [36, Theorem (46.2)], the event {X0
t− does not exit in E} is predictably

meager. So in particular, we have a.s. on {X0
ζ− does not exit in E} that

Xζ− = Xζ = ∂.
So it remains to show that Px(A) = 0 for every x ∈ E, where

A := {ζ <∞ and X0
ζ− exists in E but differs from Xζ−}.

Define

ζp :=

{
ζ, if Xζ− = ∂ and ζ <∞,
∞, otherwise.

which is predictable by [36, (44.5)]. So there is an increasing sequence of
stopping times {Tn, n ≥ 1} such that Tn < ζp and limn→∞ Tn = ζp. According
to [36, Theorem (46.2)], the event

{X0
t− exists in E but differs from Xt−}

is also predictably meager. So A ⊂ {ζp < ∞}. Define h(x) := Px(A). Then
h is excessive on E. Define

Mt = Ex

[
1A
∣∣Ft] ,

which is a bounded martingale. From the Markov property of X, we have
Mt = h(Xt) for t < ζp. Since X is special standard, the filtration {Ft, t ≥ 0}
is quasi-left continuous by [36, (47.6)]. As ζp is predictable, Mt is continuous at
t = ζp. We know from [36, (42.1)] that P 0h(X−) is the predictable projection
of h(X), where {P t, t ≥ 0} denotes the (Ray) semigroup of X, while for
the martingale {Mt, t ≥ 0} its predictable projection is {Mt−, t ≥ 0} with
M0− := M0. Since P 0h = h on E and Xζp− = ∂, we conclude that

(2.17) lim
n→∞

MTn = lim
n→∞

MTn− = lim
n→∞

P 0h(XTn−) = P 0h(Xζp−) = 0
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on {ζp <∞}. This implies that

1A = 1{ζ<∞}Mζ = lim
n→∞

MTn1{ζp<∞} = 0 Px-a.s.

for every x ∈ E. This proves the lemma. �

By virtue of [36, (73.1), (47.10)] and Lemma 2.11, we can conclude as
follows:

Lemma 2.12. Any special standard process X on E has a Lévy system
(N,H). That is, N(x, dy) is a kernel on (E∂ ,B(E∂)) and H is a PCAF of
X in the strict sense with bounded 1-potential such that for any nonnegative
Borel function f on E ×E∂ that vanishes on the diagonal and is extended to
be zero elsewhere,

(2.18) Ex

∑
s≤t

f(Xs−, Xs)

 = Ex

[∫ t

0

∫
E∂

f(Xs, y)N(Xs, dy)dHs

]
for every x ∈ E and t ≥ 0, where Xζ− is defined by

(2.19) Xζ− :=

{
limt↑ζ Xt, if the limit limt↑ζ Xt exists in E,

∂, otherwise.

Lemma 2.13. Let X and X̂ be a pair of standard processes in weak duality
with respect to m under the assumption (A.1), and F be a q.e. finely closed
subset of E that is not m-polar. For this lemma, we adopt the same notation
as in Lemma 2.11, that is, we use X0

t− and Xt− to denote the left limits under
the original topology on E and under the Ray topology, respectively. Define
the debut time DF of F by

DF := inf{t ≥ 0 : Xt ∈ F}

and define
R0
F := inf{t ≥ 0 : Xt ∈ F or X0

t− ∈ F}.
Here in the definition of R0

F , X0
ζ− is defined in the same way as in (2.19).

Then for q.e. x ∈ E, DF = R0
F Px-a.s. Moreover, with η := sup{t > 0 : Xt ∈

F},

(2.20) Px(η < ζ and X0
ζ− ∈ F ) = 0 Px-a.s. for q.e. x ∈ F.

Proof. By Lemma 2.9, we may assume that X is special standard by re-
moving a properly exceptional set from E. Since F is q.e. finely closed and
F \ F r is a semipolar set of X and hence is m-polar by condition (A.1), after
removing a properly exceptional set, we may and do assume that F = F r.
Define u(x) = Exe

−σF , which is a 1-excessive function of X. By (18.5) of [36],
u is nearly Borel measurable under the Ray topology of X. In particular, we
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conclude that F = {x : u(x) = 1} is nearly Borel measurable under the Ray
topology. According to (12.14) of [20],

DF = RF Px-a.s. for every x ∈ E,

where RF is defined in the same way as R0
F but with Xt− in place of X0

t−.
It now follows from [36, (47.10)] and Lemma 2.11 that DF = R0

F Px-a.s. for
every x ∈ E. Since F = F r, we in fact have for every x ∈ E, Px-a.s.,

(2.21) inf{t > 0 : Xt ∈ F or X0
t− ∈ F} = σF := inf{t > 0 : Xt ∈ F}.

It follows, after applying the above to the time shift operator θs, that for
every rational s > 0 and with Px-a.s. for every x ∈ E,

(2.22) inf{t > s : Xt ∈ F or X0
t− ∈ F} = inf{t > s : Xt ∈ F}.

This proves (2.20). �

Using (2.21), we can identify the random homogeneous set M(ω) defined
by (2.7) with the one that typically appears in the literature for exit systems.

Proposition 2.14. Let X and X̂ be a pair of standard processes in weak
duality with respect to m under the assumption (A.1), and F be a q.e. finely
closed subset of E that is not m-polar. Then for q.e. x ∈ E, Px-a.s.

(2.23) M(ω) = [0, ζ(ω)) ∩ {t ≥ 0 : Xt(ω) ∈ F}.

Proof. By Lemma 2.2, we know that q.e. x ∈ E, Px-a.s.

M(ω) ⊃ [0, ζ(ω)) ∩ {t ≥ 0 : Xt(ω) ∈ F}.

So it suffices to show that M(ω) is contained in the right hand side of (2.23).
For this, just as in the proof of Lemma 2.13, we may and do assume that
F = F r. Note that in this proof, Xt− denotes the left limit of X in the
original topology of E. Let Ω0 be the collection of all ω so that (2.21) is true.
Fix ω ∈ Ω0. For 0 < t ∈ M(ω), let {tk, k ≥ 1} be a sequence of rational
numbers that strictly increases to t. It follows from (2.21) that for every
k ≥ 1,

inf{s > tk : Xs(ω) ∈ F} = inf{s > tk : Xs(ω) ∈ F or Xs−(ω) ∈ F} ∈ [tk, t].

Letting k → ∞ shows that t ∈ [0, ζ(ω)) ∩ {t ≥ 0 : Xt(ω) ∈ F}, which proves
(2.23). �

3. Entrance law, exit system and Feller measures

Let E, m be as in §2 and consider two Borel standard processes X =
(Xt, ζ,Px) and X̂ = (X̂t, ζ̂, P̂x) on E in weak duality with respect to the
measure m. We assume for X the condition (A.1) as in the last three subsec-
tions.
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We fix a set F ∈ Bn and put

E0 := E \ F, m0 := m|E0
, (u, v)0 :=

∫
E0

u(x)v(x)m0(dx).

We then assume:
(A.2) F is q.e. finely closed.
(A.3) Px(σF <∞) > 0, for m0-a.e. x ∈ E0.

Let X0 = (X0
t , ζ

0,Px)x∈E0 be the subprocess of X killed upon leaving F ,
that is, with ζ0 = ζ ∧ σF ,

X0
t :=

{
Xt if t ∈ [0, ζ0),
∂, if t ≥ ζ0,

where ∂ is an extra point added to E0. Denote by P 0
t , G

0
α the transition func-

tion and the resolvent of X0. In particular, P 0
t f(x) = Ex [f(Xt); t < σF ] , x ∈

E0, f ∈ B(E0), and we have from (2.3)

(3.1) (P̂ 0
t f, g)0 = (f, P 0

t g)0, (Ĝ0
αf, g)0 = (f, G0

αg)0, f, g ∈ B+(E0).

The assumptions (A.1) and (A.2) imply that F and F r are q.e. equivalent
as was observed in the proof of Lemma 2.2.

The assumption (A.3) together with (3.1) implies as in [17, Lemma 1.6.5]
that G0

0+f(x) < ∞ for some strictly positive f ∈ Bb(E0) m-a.e. on E0 and
hence q.e. on E0 by (iii) in §2.1.

Furthermore, by Lemma 2.2, the random set M(ω) defined for F by (2.7)
is a relatively closed subset of [0, ζ(ω)), and moreover, if tn ∈ M(ω) increase
to t < ζ, then Xt−(ω) ∈ F, Px-a.s. for q.e. x ∈ E.

Therefore, by (iv) in §2.1, there exists a properly exceptional set N ⊂ E
such that, denoting E \ N, F \ N, E0 \ N and the restriction X|E\N by
E, F, E and X, respectively, again, we can assume from the beginning that
the following properties hold.

(I) F = F r.
(II) X0 is transient: there is a strictly positive f ∈ Bb(E0) on E0 such

that G0
0+f(x) <∞ for every x ∈ E0.

(III) M(ω) is relatively closed in [0, ζ(ω)), and furthermore, if tn ∈ M(ω)
increase to t < ζ, then Xt−(ω) ∈ F, Px-a.s. for every x ∈ E.

As in §2, we consider, for f ∈ B+(E), α > 0 and x ∈ E,

Hf(x) = Ex [f(XσF );σF <∞] and Hαf(x) = Ex

[
e−ασF (XσF )

]
,

together with the corresponding notations Ĥ, Ĥα for X̂.
Since

(3.2) P̂ 0
t Ĥf(x) = Êx

[
f(X̂σF ); t < σF

]
≤ Ĥf(x), x ∈ E0,

we see from (3.1) that the measure Ĥf ·m0 is X0-excessive for any f ∈ B+
b (E).
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In accordance with [22, Prop. 3.6] (see also [16, Lemma 2.1]), the energy
functional L(0)(η, u) of an X0-excessive measure η on E0 and an X0-excessive
function u on E0 (with respect to X0) is well defined by

L(0)(η, u) :=↑ lim
t↓0

1
t
〈η − ηP 0

t , u〉.

We can then define a bimeasure U on E × E by
(3.3)

U(f ⊗ g) := L(0)(Ĥf ·m0,Hg) =↑ lim
t↓0

1
t
(Ĥf, Hg − P 0

t Hg), f, g ∈ B+
b (E).

We call U the Feller measure. Actually U charges on F̂ ×F , where F̂ denotes
the co-fine closure of F. We also define the supplementary Feller measure V
by

(3.4) V (f) = L(Ĥf ·m0, q) for f ∈ B+
b (E),

where q(x) := 1−H1(x) = Px(σF =∞). The measure V charges on F̂ .
We call a family of σ-finite measures {νt, T > 0} on E0 an X0-entrance

law if
νt p

0
s = νt+s for t, s > 0.

The next lemma is an extension of Lemma 2.2 of [18].

Lemma 3.1.

(i) For any f ∈ B+
b (E), there exists a unique X0-entrance law µft such

that

(3.5) Ĥf ·m0 =
∫ ∞

0

µft dt.

.
(ii) Denote by µ#f

α the Laplace transform of µft . Then, for any v ∈ B+(E0),

(3.6)
∫ ∞
t

〈µfs , v〉ds = (Ĥf, P 0
t v)0 for every t > 0,

and

(3.7) 〈µ#f
α , v〉 = (Ĥαf, v)0.

(iii) For any f ∈ B+
b (E) and X0-excessive function v on E0, 〈µft , v〉 is

right continuous, decreasing in t > 0 and

L(0)(Ĥf ·m0, v) =↑ lim
t↓0
〈µft , v〉.

In particular,

(3.8) U(f, g) =↑ lim
t↓0
〈µft ,Hg〉 and V (f) =↑ lim

t↓0
〈µft , q〉.
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Proof. The proof of this lemma is analogous to the proof of Lemma 2.2 of
[18], but we spell out its proof for completeness.

(i) By (3.1) and (3.2),

lim
t→∞
〈(Ĥf ·m0)P 0

t , v〉 = lim
t→∞

(P̂ 0
t Ĥf, v)0 = 0 for v ∈ L1(E0,m0),

that is, Ĥf · m0 is purely excessive. Since X0 is transient (see (II)), the
assertion follows from [22, Th. 5.21] (see also [7]).

(ii) For v ∈ L1(E0;m0), we have∫ ∞
t

〈µft , v〉dt =
∫ ∞

0

〈µft+s, v〉dt =
∫ ∞

0

〈µfs , P 0
t v〉ds

= (Ĥf ·m0, P
0
t v〉 = (Ĥf, P 0

t v)0,

and

〈µft , v〉 = − d

dt
(Ĥf, P 0

t v)0, a.e. t.

Hence

〈µ#f
α , v〉 = −

∫ ∞
0

e−αt
d

dt
(Ĥf, P 0

t v)0dt

=
[
−e−αt(Ĥf, P 0

t v)0

]∞
0
− α

∫ ∞
0

e−αt(Ĥf, P 0
t v)0dt

= (Ĥf, v)0 − α(Ĥf, G0
αv)0

= (Ĥf − αĜ0
αĤf, v)0 = (Ĥαf, v)0.

(iii) If v is X0-excessive, then 〈µt+s, v〉 = 〈µt, P 0
t v〉 ↑ 〈µt, v〉 as s ↓ 0. For

v ∈ L1(E0;m0), we get from (i) and (ii) that

〈Ĥf ·m0 − (Ĥf ·m0)P 0
t , v〉 =

∫ t

0

〈µfs , v〉ds,

which extends to any X0-excessive v and leads us to the desired identity. �

Recall the random set M(ω) defined by (2.7) for F. It is a relatively closed
subset of [0, ζ(ω)) almost surely by (III) of §3. Let I denote the left endpoints
for each component of the relatively open set [0, ζ(ω))\M(ω). This set consists
of the “excursion intervals” away from F of the sample path X(ω). Clearly
M is homogeneous on (0,∞), i.e., for every s ≥ 0,

(M − s) ∩ (0,∞) = (M ◦ θs) ∩ (0,∞),

and so is I.
Define

R(ω) = inf{s > 0 : s ∈M(ω)}.
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Since X and X̂ is a pair of standard processes in weak duality, we have by
(2.21) above or by [24, Proposition 15.7] that for q.e. x ∈ E, Px-almost surely

σF := inf{t > 0 : Xt ∈ F}(3.9)

= inf{t ∈ (0, ζ) : Xt ∈ F or Xt− ∈ F},
and so

R = σF Px-a.s. for q.e. x ∈ E.
By enlarging the properly exceptional set N ⊂ E appearing in the paragraph
preceding (I)–(III), we may assume that (3.9) holds Px-a.s. for every x ∈ E.
This, combined with the property (I), implies the identity

F = {x ∈ E : Px(R = 0) = 1}.
Let (P∗x,K+J) be an exit system in the sense of Maisonneuve [31, (4.11)].

That is, K is a PCAF of X carried on F , dJt =
∑
s∈I:Xs∈E\F εs(dt), and P∗

is a kernel from E to Ω such that

(3.10) Ex

[∑
s∈I

Zs · Γ ◦ θs

]
= Ex

[∫ ∞
0

Zs ·P∗Xs(Γ)d(Ks + Js)
]
, x ∈ E,

for any positive optional process Zs and positive r.v. Γ. Here εs(dt) is the unit
atomic measure on R concentrated at the point {s}. Note that, for x ∈ E0,
P∗x is defined to be Px. P∗x also satisfies

P∗x(ζ ∧R = 0) = 0 and E∗x
[
1− e−R

]
≤ 1 for x ∈ E.

Remark 3.2. In Maisonneuve [31], the exit system is constructed for a
conservative strong Markov process X that satisfies the condition that its
excessive functions are nearly Borel and right continuous along the sample
paths of X. In our setting, the Borel standard process X may have finite
lifetime. However, the results of Maisonneuve [31] are applicable here since
we can regard the cemetery point ∂ as the absorbing state of X. �

Denote by Q∗t (x, ·), x ∈ F, the entrance law with respect to P∗x defined by
[31, (6.2)]:

(3.11) Q∗t g(x) := E∗x [g(Xt); t < R] for t > 0, x ∈ E, g ∈ B+(E).

Note that Q∗t g(x) = P 0
t g(x) for x ∈ E0.

On account of Lemma 2.9 and Lemma 2.12, X is an m-special standard
process and has a Lévy system (N,H) in the following sense: N(x, dy) is a
kernel on (E∂ ,B(E∂)) and H is a PCAF H of X with bounded 1-potential
such that for any nonnegative Borel function f on E × E∂ that vanishes on
the diagonal and is extended to be zero elsewhere,

Ex

∑
s≤t

f(Xs−, Xs)

 = Ex

[∫ t

0

∫
E∂

f(Xs, y)N(Xs, dy)dHs

]
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for q.e. x ∈ E and t ≥ 0, where Xζ− is defined by (2.19). The Revuz measure
of H with respect to the excessive measure m will be denoted by µH .

Theorem 3.3. For any Borel subset B ⊂ E0 and f ∈ Bb(F ),
(3.12)

µft (B) =
∫
F

f(x)Q∗t (x,B)µK(dx) +
∫
F×(E\F )

f(x)P 0
t 1B(y)N(x, dy)µH(dx),

where µK is the Revuz measure of the PCAF K with respect to the measure
m.

Proof. Put

Q∗αg(x) =
∫ ∞

0

e−αtQ∗t g(x)dt, g ∈ Bb(E).

By virtue of the identity (3.8), we have for any v ∈ Bb(E) vanishing on F and
for every x ∈ E,

HαGαv(x) = Gαv(x)−G0
αv(x)

= Ex

[∫ ∞
R

e−αtv(Xt)1Mc(t)dt
]

= Ex

[∑
s∈I

∫ s+R◦θs

s

e−αtv(Xt)dt

]

= Ex

[∑
s∈I

e−αs
∫ R

0

e−αtv(Xt)dt ◦ θs

]

= Ex

[∫ ∞
0

e−αsE∗Xs

[∫ R

0

e−αtv(Xt)dt

]
d(Ks + Js)

]
.

Therefore we have for any f ∈ B+
b (E),

(3.13) (f,HαGαv) = Ef ·m

[∫ ∞
0

e−αsQ∗αv(Xs)d(Ks + Js)
]
.

On the other hand, owing to the fundamental Revuz formula (2.13), we
obtain

(3.14) Ef ·m

[∫ ∞
0

e−αsQ∗αv(Xs)dKs

]
= 〈Q∗αv · µK , Ĝαf〉.

Furthermore, since Q∗α(x, ·) = G0
α(x, ·) for x ∈ E0, we have
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Ef ·m

[∫ ∞
0

e−αsQ∗αv(Xs)dJs

]
(3.15)

= Ef ·m

 ∑
s∈I,Xs∈E\F

e−αsG0
αv(Xs)


= Ef ·m

[∑
s

e−αs1F (Xs−)1E\F (Xs)G0
αv(Xs)

]

= Ef ·m

[∫ ∞
0

e−αs1F (Xs)
∫
E\F

N(Xs, dz)G0
αv(z)dHs

]

= 〈1F ·
∫
E\F

N(·, dz)G0
αv(z) · µH , Ĝαf〉.

Here in the last equality we used (2.13) again.
Applying the duality relation (2.4), we get from (3.13), (3.14) and (3.15)

(ĤαĜαf, v) = 〈Q∗αv · µK + 1F (·)
∫
E\F

N(·, dz)G0
αv(z) · µH , Ĝαf〉.

Since this identity holds for an arbitrary f ∈ Bb(E), we obtain for any β > 0,
f ∈ C+

b (E) ∩ F and v ∈ L1(E0,m),

(3.16) (ĤαĜβf, v) = 〈Q∗αv · µK + 1F (·)
∫
E\F

N(·, dz)G0
αv(z) · µH , Ĝβf〉.

Multiplying β on both sides of (3.16) with f = 1 and then letting β →∞, we
have by the monotone convergence theorem,

〈Q∗αv·µK+1F ·
∫
E\F

N(·, dz)G0
αv(z)·µH , 1〉 = 〈Ĥα1, v〉 ≤

∫
E0

v(x)m(dx) <∞.

Now multiplying both sides of (3.16) by β and letting β → ∞ in the above
equation, we have by the bounded convergence theorem,

(Ĥαf, v) = 〈Q∗αv · µK + 1F (·)
∫
E\F

N(·, dz)G0
αv(z) · µH , f〉.

This combined with (3.7) proves the desired identity (3.12) since the above
display is nothing but the Laplace transform of (3.12). �

Theorem 3.3 allows us to make the connection between Feller measures U
and V with the exit system (P∗x,K + J).

Theorem 3.4. The Feller measure U is carried by F × F and

U(dx, dy) = µK(dx)P∗x(XσF ∈ dy)(3.17)

+ µH(dx)
∣∣
F

∫
E\F

N(x, dz)Pz(XσF ∈ dy).
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The supplementary Feller measure V is carried by F and

V (dx) = µK(dx)P∗x(ζ > 0, σF =∞)(3.18)

+ µH(dx)
∣∣
F

∫
E\F

N(x, dz)Pz(σF =∞).

Proof. It follows from (3.8), (3.12) and the definition of Q∗t (x, dy) that for
any f, g ∈ B+(E),∫
F×F

f(x)g(y)U(dx, dy) = lim
t↓0
〈µft , Hg〉

= lim
t↓0

[∫
F×E0

f(x)Hg(y)Q∗t (x, dy)µK(dx)

+
∫
F×E0

f(x)P 0
t Hg(y)N(x, dy)µH(dx)

]
= lim

t↓0

∫
F

f(x)E∗x[Hg(Xt); t < R]µK(dx) +
∫
F×E0

f(x)Hg(y)N(x, dy)µH(dx)

= lim
t↓0

∫
F

f(x)E∗x[g(XσF ) ◦ θt; t < R]µK(dx)

+
∫
F×E0

f(x)Hg(y)N(x, dy)µH(dx)

= lim
t↓0

∫
F

f(x)E∗x[g(XσF ); t < R]µK(dx) +
∫
F×E0

f(x)Hg(y)N(x, dy)µH(dx)

=
∫
F

f(x)E∗x[g(XσF )]µK(dx) +
∫
F×E0

f(x)Ey[g(XσF )]N(x, dy)µH(dx).

In the third through the last equalities, we used the strong Markov property
for the excursion measure P∗ (see Theorem 5.1 of [31]). Identity (3.17) now
follows.

The proof for (3.18) is similar to that for (3.17). For completeness, we spell
out the details. Note that for x ∈ E0, q(x) = 1 − H1(x) = Px(σF = ∞).
Thus by (3.8), for any f ∈ B+(E),∫
F

f(x)V (dx) = lim
t↓0
〈µft , q〉

= lim
t↓0

[∫
F×E0

f(x)q(y)Q∗t (x, dy)µK(dx) +
∫
F×E0

f(x)P 0
t q(y)N(x, dy)µH(dx)

]
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= lim
t↓0

∫
F

f(x)E∗x[q(Xt); t < R]µK(dx) +
∫
F×E0

f(x)q(y)N(x, dy)µH(dx)

= lim
t↓0

∫
F

f(x)E∗x[1{σF=∞} ◦ θt; t < ζ ∧R]µK(dx)

+
∫
F×E0

f(x)q(y)N(x, dy)µH(dx)

=
∫
F

f(x)P∗x(ζ > 0, σF =∞)µK(dx)

+
∫
F×E0

f(x)Py(σF =∞)N(x, dy)µH(dx).

This establishes (3.18). Since µK charges on F , we conclude from the expres-
sions (3.17) and (3.18) that the measures U and V charge on F × F and F ,
respectively. �

The next corollary relates the Feller measures to the distributions of end
places of excursions:

Corollary 3.5. For every Ψ ∈ B+(E ×E \ d) and f ∈ B+(E) that are
extended to be zero off E × E \ d and E, respectively, we have

(3.19)
∫
F×F

Ψ(x, y)U(dx, dy) = lim
t↓0

1
t
Em

 ∑
s∈I, s≤t

Ψ(Xs−, XσF ◦ θs)


and

(3.20)
∫
F

f(ξ)V (dξ) = lim
t↓0

1
t
Em

 ∑
s∈I, s≤t

f(Xs−)1{ζ>0, σF=∞} ◦ θs

 .
Proof. Take any positive measurable functions f, g on E and put

Zs = f(Xs−)1(0,t](s) Λ = g(XσF ).

By the formula (3.10), we then have
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lim
t↓0

1
t
Em

 ∑
s∈I∩[0,ζ), s≤t

f(Xs−)g(XσF ◦ θs)


= lim

t↓0

1
t
Em

[∫ t

0

f(Xs−)E∗Xs [g(XσF )]dKs

]

+ lim
t↓0

1
t
Em

 ∑
s∈I,Xs∈E\F, s≤t

f(Xs−)EXs [g(XσF )]


=
∫
E

f(x)E∗x[g(XσF )]µK(dx) + lim
t↓0

1
t
Em

∑
s≤t

(1F f)(Xs−)1E\F (Xs)Hg(Xs)


=
∫
E

f(x)E∗x[g(XσF )]µK(dx)

+ lim
t↓0

1
t
Em

[∫ t

0

(1F f)(Xs)
∫
E0

Hg(z)N(Xs, dz)dHs

]
=
∫
F×F

f(x)g(y)P∗x(XσF ∈ dy)µK(dx) +
∫
F×E0

f(x)Hg(z)N(x, dz)µH(dx),

which, together with (3.17), leads us to (3.19) for Ψ = f ⊗ g. A monotone
class argument establishes (3.19) for general Ψ ≥ 0 on F × F .

Again by (3.10),

lim
t↓0

1
t
Em

 ∑
s∈I s≤t

f(Xs−)1{σF=∞} ◦ θs


= lim

t↓0

1
t
Em

 ∑
s∈I s≤t

f(Xs−)1{ζ>0. σF=∞} ◦ θs


= lim

t↓0

1
t
Em

[∫ t

0

f(Xs−)P∗Xs(ζ > 0, σF =∞)dKs

]

+ lim
t↓0

1
t
Em

 ∑
s∈I,Xs∈E\F, s≤t

f(Xs−)PXs(σF =∞)


=
∫
F

f(x)P∗x(ζ > 0, σF =∞)µK(dx)

+ lim
t↓0

1
t
Em

[∫ t

0

(1F f)(Xs)
∫
E0

Py(σF =∞)N(Xs, dy)dHs

]
=
∫
F

f(x)P∗x(ζ > 0, σF =∞)µK(dx)

+
∫
F×E0

f(x)Py(σF =∞)N(x, dy)µH(dy),
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which, together with (3.18), leads us to (3.20). �

Corollary 3.5 will be used in §5.

4. Feller-Neveu measure

This section is a continuation of the preceding one. For α > 0, we define
the α-order Feller measure Uα by

(4.1) Uα(f, g) = α(Ĥαf, Hg), f, g ∈ B+
b (E).

We then have as in [16, §2]

(4.2) lim
α→∞

Uα(f, g) = U(f, g).

The notions Uα and U go back to [6]. The next theorem is a consequence of
Theorem 3.3.

Theorem 4.1. For each fixed f, g ∈ B+
b (F ), define

(4.3) Θf,g((s, t]) := 〈µfs ,Hg − P 0
t−sHg〉, 0 < s ≤ t.

This uniquely extends to a measure Θf,g on (0,∞) defined by

Θf,g(du) =
∫
F

f(x)E∗x[g(XσF );σF ∈ du]µK(dx)(4.4)

+
∫
F×(E\F )

f(x)Ey [g(XσF );σF ∈ du]N(x, dy)µH(dx).

There exist Borel sets Bn increasing to E such that Θf,1Bn (du) is σ-finite on
[0,∞) for each n. Furthermore,

(4.5) Uα(f, g) =
∫ ∞

0

(1− e−αu)Θf,g(du), α > 0.

Remark 4.2. (i) The measure Θf,g governs the distribution of the excur-
sion length.

(ii) When m(E) <∞, we see that 〈µft ,Hg〉 is finite by (3.7), right contin-
uous, decreasing in t by Lemma 3.1 (iii), and

Θf,g((s, t]) = 〈µfs ,Hg〉 − 〈µft ,Hg〉, 0 < s < t,

which therefore extends to a unique σ-finite measure on (0,∞). In the follow-
ing proof for the general case, we shall proceed differently. Such a measure
that is related to Uα(f, g) via (4.5) first appeared in [34], and we therefore we
call it the Feller-Neveu measure.

(iii) Letting α→∞ in (4.5), we obtain

U(f, g) = Θf,g([0,∞)),

which combined with (4.4) gives another proof of the first half of Theorem
3.4.
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Proof. Clearly the measure Θf,g(du) given by (4.4) is well-defined. By
making use of Theorem 3.3, we first show that Θf,g((s, t]) defined by (4.3) is
the charge of the measure Θf,g of (4.4) on the interval (s, t];

Θf,g((s, t]) =
∫
F

f(x)E∗x [g(XσF ); s < σF ≤ t]µK(dx)(4.6)

+
∫
F×E0

f(x)Ey [g(XσF ); s < σF ≤ t]N(x, dy)µH(dx),

for 0 < s < t.
Clearly from the definition (4.3),

Θf,g((s, t]) = 〈µfs ,E·[g(XσF );σF ≤ t− s]〉,

which combined with (3.12) leads us to

Θf,g((s, t]) = 〈µfs ,E·[g(XσF );σF ≤ t− s]〉

=
∫
F

f(x)Ey [g(XσF );σF ≤ t− s]Q∗s(x, dy)µK(dx)

+
∫
F×E0

f(x)E0
y [EXs [g(XσF );σF ≤ t− s]]N(x, dy)µH(dx)

=
∫
F

f(x)E∗x [EXs [g(XσF );σF ≤ t− s] ; s < R]µK(dx)

+
∫
F×E0

f(x)Ey [g(XσF ); s < σF ≤ t]N(x, dy)µH(dx)

=
∫
F

f(x)E∗x [g(XσF ); s < σF ≤ t]µK(dx)

+
∫
F×E0

f(x)Ey [g(XσF ); s < σF ≤ t]N(x, dy)µH(dx).

A comparison of the right hand sides of (3.12) and (4.6) gives

Θf,g((s, t]) ≤ 〈µfs , g〉, 0 < s ≤ t.

Since µfs is σ-finite, Θf,g extends to a unique measure on [0,∞) satisfying the
equation (4.4) with the stated σ-finiteness property.

We finally prove the relation (4.5). By letting t→∞ in (4.3), we get from
(3.2) the identity

Θf,g((s,∞)) := 〈µfs ,Hg〉, 0 < s.
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Without loss of generality, we may assume that Θf,g(du) is σ-finite on [0,∞).
Then by the Fubini theorem and (3.7),∫ ∞

0

(1− e−αu)Θf,g(du) = α

∫ ∞
0

(∫ u

0

e−αsds

)
Θf,g(du)

= α

∫ ∞
0

e−αs
(∫ ∞

s+

Θf,g(du)
)
ds = α

∫ ∞
0

e−αsΘf,g(s,∞)ds

= α

∫ ∞
0

e−αs〈µfs ,Hg〉ds = α〈Ĥαf,Hg〉 = Uα(f, g). �

5. Lévy system of time change process and Feller measures

We continue to work with Borel standard processes X = (Xt, ζ,Px) and
X̂ = (X̂t, ζ̂, P̂x) on E in weak duality with respect to m satisfying condition
(A.1) and a set F ∈ Bn satisfying the conditions (A.2) and (A.3) formulated
in §3.

Recall the family S of all smooth measures on E for X introduced in §2.3.
Let

(5.1) SF = {µ ∈ S : the quasi support of µ = F q.e.}.

SF is non-empty by Corollary 2.4. We take and fix a µ ∈ SF . There exists
a PCAF At of X with Revuz measure µ by virtue of Proposition 2.7. The
support of At coincides with F q.e. on account of Proposition 2.6.

In the same way as in the proof of [17, Lemma 5.1.11], one can then show
that

Px (σF = inf{t > 0 : At > 0}) = 1, q.e. x ∈ E.
Hence, by restricting ourselves to elements outside a certain properly excep-
tional set including that for A, we can assume from the beginning that not
only properties (I), (II) and (III) of §3 hold, but also the following property:

(IV) A is a PCAF of X in the strict sense and

Px (σF = inf{t > 0 : At > 0}) = 1 for every x ∈ E.

Note that (I) and (IV) imply that F is just the support of A.
We consider the right continuous inverse τt of A defined by

τt = inf{s ≥ 0 : As > t} with inf ∅ :=∞,

and the time changed process Y = (Yt, ζ̌,Px)x∈F defined by

Yt =

{
Xτt for 0 ≤ t < ζ̌ := A∞;
∂ for t ≥ ζ̌.

It is known (cf. [36, (65.9)]) that Y is a right process with state space F . We
denote F ∪ {∂} by F∂ .
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Consider again the random set defined by (2.7):

M(ω) = {t ∈ [0, ζ(ω)) : Xt(ω) ∈ F or Xt−(ω) ∈ F},
which is relatively closed in [0, ζ(ω)) by (III) in §3 almost surely. Let I de-
note the set of left endpoints of those components of the relatively open set
[0, ζ(ω)) \M(ω).

We define, for t > σF ,

L(t) := sup[0, t] ∩M
and, for t ≥ 0,

(5.2) R(t) := inf(t,∞) ∩M = inf{s > t : s ∈M}
with the convention that inf ∅ = ∞. When t > σF , we call (L(t), R(t)) the
excursion straddling on t. Clearly t 7→ R(t) is right continuous and increasing.
In view of (3.9), we can see that for every x ∈ E, Px-a.s.,

(5.3) R(t) = σF ◦ θt + t for every t.

So Px-a.s.,
R(t) ◦ θs + s = R(t+ s) for every t, s,≥ 0.

We also note that
(a) for t ∈M , t = R(t−), and
(b) for t > σF , R(t−) < R(t) if and only if t ∈ I; and in this case

t = R(t−) = L(t).
On account of (IV), for each fixed t > 0 and x ∈ E, Px-a.s.,

τAt = inf{s : As > At} = inf{s > t : As−t ◦ θt > 0} = σF ◦ θt + t,

and so, by (5.3), R(t) = τAt . By the right continuity of t 7→ τAt and t 7→ R(t),
we conclude from the above by applying first to rational t > 0 that for every
x ∈ E, Px-a.s.,

(5.4) R(t) = τAt for every t ≥ 0.

This means that t 7→ At is constant on each connected component of [0, ζ(ω))\
M(ω). Since At is continuous in t and Yt ∈ F, 0 ≤ t < ζ̌, the next lemma
follows immediately from (5.4) and property (III).

Lemma 5.1. The following properties hold Px -a.s. for every x ∈ E:
(i) YAt = XR(t) for every t > 0.
(ii) The left limit Yt− exists and in F for any t ∈ (0, ζ̌) and YAt− =

XR(t−)−.

We now prove that the time changed process Y is actually µ-special stan-
dard. We prepare a lemma.

Lemma 5.2. The right process Y has a right process Ŷ in weak duality
with respect to the measure µ.
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Proof. On account of Remark 2.1, the process X̂ also satisfies the condition
(A.1). Moreover, by Proposition 2.8, µ ∈ SF is also a smooth measure for X̂.
Hence a PCAF Â of X̂ exists with µ as Revuz measure by Proposition 2.7.
Since the co-quasi support of µ is q.e. equivalent to F by Corollary 2.5, the
support F̂ of Â with respect to X̂ equals F q.e. by virtue of Proposition 2.6
applied to X̂. Let Ŷ be the time changed process of X̂ with respect to Â. Ŷ
is a right process whose state space equals F̂ . We shall show that Y and Ŷ
are in weak duality with respect to the measure µ.

For α > 0, we introduce the α-energy functional of an α-co-excessive func-
tion u and an α-excessive function v with respect to X by

Lα(u, v) = lim
β→∞

β(u, v − βGα+βv),

which, by the weak duality, also equals

lim
β→∞

β(u− βĜα+βu, v).

Recall the α-potential operator UαA associated with A defined by (2.12). The
α-co-potential operator Ûα

Â
associated with Â is defined analogously. Due to

the fundamental Revuz formula (2.13) and the equation

UαAg − U
α+β
A g − βGα+βU

α
Ag = 0,

we have

(5.5) Lα(Ûα
Â
f, UαAg) = 〈Ûα

Â
f, g〉µ for f, g ∈ B+(E),

where 〈f, g〉µ denotes the integral
∫
f(x)g(x)µ(dx). Similarly we see that the

left hand side of (5.5) is equal to 〈f, UαAg〉µ and consequently

(5.6) 〈Ûα
Â
f, g〉µ = 〈f, UαAg〉µ for f, g ∈ B+(F ).

Next we put for p > 0

Uαp,Ag(x) = Ex

[∫ ∞
0

e−αt−pAtg(Xt)dAt

]
,

and observe the equation

Uαp,Ag − UαAg + pUαAU
α
p,Ag = 0.

An analogous quantity and equation can be associated with Â.

For the moment, we assume that µ(F ) < ∞ and UαA1, Ûα
Â

1 are bounded
on E. Note that under this assumption, by linearity, identity (5.6) holds for
any f, g ∈ Bb(F ). Now taking f, g ∈ B+

b (F ) and replacing f and g in the
equation (5.6) by

f − pÛα
p,Â
f and g − pUαp,Ag
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respectively, we arrive at

(5.7) 〈Ûα
p,Â
f, g〉µ = 〈f, Uαp,Ag〉µ for f, g ∈ B+

b (E).

Now for a general µ ∈ SF , we can take an associated X-nest {En} satisfying
condition (iii) of Proposition 2.8. We then let

µn = 1En · µ, Ant =
∫ t

0

1En(Xs)dAs, Ânt =
∫ t

0

1En(X̂s)dÂs

to get the equation (5.7) holding for µn, An, Ân. Replacing f, g in the resulting
equation by 1E` · f, 1E` · g, respectively, and letting first n → ∞ and then
` → ∞, we see the validity of (5.7) for general µ. Finally, by letting α ↓ 0,
we obtain the duality relation of the p-resolvents of Y and Ŷ with respect to
µ. �

It follows from Lemma 5.2 that the measure µ is Y -excessive. In the sequel,
the µ-polar sets and µ-semipolar sets for the process Y will be called µY -polar
and µY -semipolar, respectively, in order to distinguish them from the m-polar
and m-semipolar sets for X.

Lemma 5.3.

(i) A subset B ⊂ F is m-polar if and only if it is µY -polar; a subset
B ⊂ F is m-co-polar if and only if it is µY -co-polar.

(ii) Every µY -semipolar set is µY -polar, and every µY -co-semipolar set is
µY -co-polar

(iii) The µY -polarity, µY -semipolarity, µY -co-polarity and µY -co-semipo-
larity are all the same.

Proof. (i) This part in fact has been (implicitly) established in Fitzsim-
mons [10, Proposition 4]. Although the statement in [10] assumes that X is
symmetric, its proof does not rely on the symmetry of X and uses only the
property that X is a standard process and the condition that m-semipolar is
m-polar. Fitzsimmons’ argument uses Hunt’s balayage theorem. For reader’s
convenience, we present below a slightly different proof, without using Hunt’s
deep result.

If B ⊂ F is m-polar, by (iv) of §2.1, it is contained in a Borel properly
X-exceptional set N . Since E \ N is X-invariant and Y is a time change of
X living on F , F \ N is Y -invariant. Since the smooth measure µ does not
charge on m-polar set, we have µ(N) = 0. Thus N ∩ F is a µY -polar set
by (iv) of §2.1, and so is B. This shows that any m-polar subset of F is a
µY -polar set.

Conversely, if there were a nearly Borel (of X) set B ⊂ F that is µY polar
but not m-polar, there would exist a compact subset K of B such that K
is not m-polar by [36, p. 57]. Define σK := inf{t > 0 : Xt ∈ K} and
f(x) := Px(σK <∞). Then f is an excessive function of X.
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In view of (I) of §3, (5.3) and (5.4), we then have, Px-a.s. on {σK < ∞},
for x ∈ E,

σK = R(σK) = τAσK and YAσK = XσK ∈ K.

So if we define σYK := inf{t > 0 : Yt ∈ K}, then

f(x) = Px(σK <∞) = PY
x (σYK <∞), x ∈ F.

Here, to distinguish it from Px for the process X, PY
x denotes the law of the

process Y starting from x. Since K is µY -polar,
∫
F
f(x)µ(dx) = 0. On the

other hand, by the Revuz identity (2.11),

↑ lim
t↓0

1
t
Em

[∫ t

0

f(Xt)dAt

]
=
∫
F

f(x)µ(dx) = 0,

and consequently,

(5.8) 0 = Em

[∫ ∞
0

f(Xt)dAt

]
≥ Em [Λ(ω);σK <∞] ,

where Λ(ω) is the random variable defined by

Λ(ω) := EXσK (ω)(ω)

[∫ ∞
0

f(Xs)dAs

]
.

Denote by Kr the set of all regular points of K for X. Then XσK ∈ Kr

Pm-a.s. on {σK < ∞} because K \ Kr is semipolar for the process X and
hence m-polar by (A.1) in §2.2. Since f > 0 on Kr, the set {f > 0} is finely
open, Kr ⊂ F r = F by (I) in §3 and F is the support of the PCAF A by
(IV) in §5, we see that Λ > 0 Pm-a.s. on {σK < ∞}. This contradicts the
inequality (5.8) and our assumption that K is not m-polar. Thus we have
shown that every µY -polar subset of F must be m-polar.

Applying the above argument to the dual processes X̂ and Ŷ , we obtain
that every µY -co-polar subset of F is m-co-polar. This completes the proof
of (i).

(ii) Assume that B ⊂ F is a µY -semipolar set for the process Y . Then by
(vi) of §2.1,

Py(Yt ∈ B for uncountably many t) = 0

for Y -q.e. y ∈ F and hence by (i) for q.e. y ∈ F . On the other hand, if we
define the time sets

R(X) := {t : Xt ∈ B} and R(Y ) := {t : Yt ∈ B},

then it follows from [2, V(3.8)] that for x ∈ E, Px-a.s.,

R(Y ) ⊂ R(X) and R(X) \R(Y ) is at most countable.
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Therefore, by the strong Markov property of X,

Pm(Xt ∈ B for uncountably many t)

= Em

[
PXσF

(Xt ∈ B for uncountably many t)
]

= Em

[
PXσF

(Yt ∈ B for uncountably many t)
]

= 0.

This implies that B is m-semipolar by virtue of (vi) of §2.1. So B is m-polar,
and hence, by (i), is µY -polar.

Applying the above argument to the dual process Ŷ , we see that every
µY -co-semipolar set is µY -co-polar.

(iii) By (ii) of §2.1, a set B ⊂ F is m-polar if and only if it is m-co-polar.
Thus we have that, by (i), a subset of F is µY -polar if and only if it is µY -co-
polar. This together with (ii) establishes (iii) of this lemma. �

Proposition 5.4. The process Y is a µ-special standard process on F

having another µ-special standard process Ŷ on F in weak dual with respect to
the measure µ. Moreover, the semigroup of Y maps bounded nearly Borel mea-
surable functions (with respect to Y ) on F into bounded nearly Borel measur-
able functions (with respect to Y ) on F , and the semigroup of Ŷ maps bounded
nearly Borel measurable functions (with respect to Ŷ ) on F into bounded nearly
Borel measurable functions (with respect to Ŷ ) on F .

Proof. On account of Remark 2.10, the first assertion follows from Lemma
5.1, Lemma 5.2 and Lemma 5.3(iii). The second assertion follows from the
fact that Y and Ŷ are time changes of the Borel standard processes X and
X̂, respectively. �

Combining Proposition 5.4 with Lemma 2.12, we can conclude that the time
changed process Y on F admits a Lévy system (Ň , Ȟ). That is, Ň(x, dy) is a
kernel on (F∂ ,B(F∂)) and Ȟ is a PCAF of Y with bounded 1-potential such
that for any nonnegative Borel function f on F × F∂ that vanishes on the
diagonal and is extended to be zero elsewhere,

(5.9) Ex

∑
s≤t

f(Ys−, Ys)

 = Ex

[∫ t

0

∫
F∂\N

f(Xs, y)Ň(Xs, dy)dȞs

]

for q.e. (or equivalently µY -q.e.) x ∈ F and t ≥ 0. Here, ζ̌ is the lifetime of
Y and Yζ̌− is defined by

(5.10) Yζ̌− :=

{
limt↑ζ̌ Yt, if the limit limt↑ζ̌ Yt exists in F,

∂, otherwise.



304 ZHEN-QING CHEN, MASATOSHI FUKUSHIMA, AND JIANGANG YING

The Revuz measure of Ȟ with respect to the Y -excessive measure µ will
be denoted by µ̌Ȟ . Define

(5.11) J̌(dx, dy) := Ň(x, dy)µ̌Ȟ(dx) and κ̌ := Ň(x, {∂})µ̌Ȟ(dx).

We call J̌ and κ̌ the jumping measure and the killing measure of Y , respec-
tively.

By (5.9), we have then the formula for the jumping and killing measures:

(5.12)
∫
F×F\d

Ψ(x, y)J̌(dx, dy) =↑ lim
t↓0

1
t
Eµ

 ∑
0<s≤t

Ψ(Ys−, Ys)

 ,
for any Ψ ∈ B+(F × F ) that vanishes along the diagonal and is extended to
zero elsewhere, and any f ∈ B+(F ) that is extended to be zero off F ,

(5.13)
∫
F

f(x)κ̌(dx) =↑ lim
t↓0

1
t
Eµ

[
f(Yζ̌−); ζ̌ ≤ t

]
,

We note that, since Λ(ω, dt) = Ψ(Ys−, Ys)εs(dt) is a homogeneous random
measure for Y , the jumping measure J̌ is well-defined by (5.12) for any right
process Y with left limits up to the lifetime and for any Y -excessive measure
µ.

The following theorem relates the jumping and killing measures of Y to
the excursions for the process of X away from F .

Theorem 5.5. For any Ψ ∈ B+(F×F ) vanishing along d and f ∈ B+(F ),

(5.14)
∫
F×F

Ψ(x, y)J̌(dx, dy) =↑ lim
s↓0

1
s
Em

 ∑
t≤s, t∈M,R(t)<∞

Ψ(Xt−, XR(t))


and

(5.15)
∫
F

f(x)κ̌(dx) =↑ lim
s↓0

1
s
Em

 ∑
t≤s, t∈I∪{ζ}

1{σF=∞} ◦ θt f(Xt−)

 .
Proof. We note that for t ∈ M , t = R(t−) and so (5.14) can be rewritten

as∫
F×F

Ψ(x, y)J̌(dx, dy) =↑ lim
s↓0

1
s
Em

 ∑
t≤s, t∈M,R(t)<∞

Ψ(XR(t−)−, XR(t))

 .
The proof of this theorem is similar to the proofs of [16, Theorem 5.1] and [4,
Theorem 4.2] but we present a proof for completeness. Let A be the PCAF
of X with Revuz measure µ.
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We take any Ψ as in the statement of the lemma and extend it to E∂ ×E∂
by setting its value outside F × F to be zero. From the formula (5.12), we
have

∫
F×F

Ψ(ξ, η)J̌(dξ, dη) =↑ lim
α↑∞

αEµ

[ ∑
0<t<∞

e−αtΨ(Yt−, Yt)

]
.

We now make a change of variable, replacing t with At. By virtue of Lemma
5.1, we then obtain

∫
F×F

Ψ(ξ, η)J̌(dξ, dη) =↑ lim
α↑∞

αEµ

 ∑
t∈M,R(t)<∞

e−αAtΨ
(
XR(t−)−, XR(t)

)
=↑ lim

α↑∞

∫
F

αEx [Σα]µ(dx),

where

Σα :=
∑

t∈M,R(t)<∞

e−αAtΨ(XR(t−)−, XR(t)).

It follows from (2.11) and [36, (32.6)] that∫
F×F

Ψ(ξ, η)J̌(dξ, dη) =↑ lim
α↑∞

α

∫
F

Ex[Σα]µ(dx)(5.16)

=↑ lim
α↑∞

α

(
↑ lim
s↓0

1
s
Em

[∫ s

0

EXu [Σα]dAu

])
=↑ lim

s↓0

1
s

(
sup
α>0

αEm

[∫ s

0

Σα ◦ θu dAu
])

.

Now

αEm

[∫ s

0

Σα ◦ θu dAu
]

= αEm

∫ s

0

∑
t∈M◦θu, R(t+u)<∞

e−α(At+u−Au)Ψ(XR(t+u−)−, XR(t+u))dAu


= αEm

∫ s

0

eαAudAµu
∑

t>u, t∈M,R(t)<∞

e−αAtΨ(XR(t−)−, XR(t))
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= Em

 ∑
t∈M,R(t)<∞

e−αAtΨ(XR(t−)−, XR(t))
∫ s

0

1{t>u}deαAu


= Em

 ∑
t∈M,R(t)<∞

e−αAtΨ(XR(t−)−, XR(t)) · (eαAs∧t − 1)


= I−α,s + I+

α,s,

where

I−α,s = Em

 ∑
t≤s, t∈M,R(t)<∞

(1− e−αAt)Ψ(XR(t−)−, XR(t))

 ,
I+
α,s = Em

(eαAs − 1)
∑

t>s, t∈M,R(t)<∞

e−αAtΨ(XR(t−)−, XR(t))

 .
It follows from (5.16) that

(5.17)
∫
F×F

Ψ(ξ, η)J̌(dξ, dη) = lim
s↓0

1
s

[
sup
α

(I−α,s + I+
α,s)
]
.

Note that, since Ψ vanishes along the diagonal d, we can insert in the
summand of I−α,s the condition that σF < t, which is equivalent to At > 0 in
view of the property (IV) in §5.

From (5.17), we can then conclude that
(5.18)∫
F×F

Ψ(ξ, η)J̌(dξ, dη) ≥ ↑ lim
s↓0

1
s

Em

 ∑
t≤s, t∈M,R(t)<∞

Ψ(XR(t−)−, XR(t))

 ,
because we see that I−α,s increases to the right hand side of (5.18) as α→∞
by taking the above note into account. If the right hand side of (5.18) is
infinite, then the desired equality holds true trivially.

Without loss of generality, we may and do assume that the right hand side
of (5.18) is finite. In order to obtain the converse inequality to (5.18), observe
that we may take a strictly positive m-integrable function f on E because m is
σ-finite. By weak duality G1f is then strictly positive on E and m-integrable.
Define for n ≥ 1,

En =
{
x ∈ E : G1f(x) >

1
n

}
, mn = m|En , and τn = inf {t ≥ 0 : Xt /∈ En} .

Then mn(En) <∞ and limn→∞ τn = ζ, Px-a.s. for every x ∈ E.
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Let Xn := (Xn
t , τn,Px)x∈En be the subprocess of X killed upon leaving

En; that is,

Xn
t =

{
Xt, for t < τn,

∂, for t ≥ τn.

Since Xn is in weak duality under the measure mn with the subprocess of X̂
killed upon leaving En (see §2), mn is Xn-excessive. We then define, for any
u ≥ 0 and n ≥ 1,

Σnα,u :=
∑

u<t<∞,t∈M,R(t)<τn

e−αAtΨ(Xn
R(t−)−, X

n
R(t))

=
∑

u<t<∞,t∈M,R(t)<τn

e−αAtΨ(XR(t−)−, XR(t)).

Note that Emn [(eαAs − 1)Σnα,s] increases to I+
α,s as n → ∞. It can be easily

verified that

eαAs · Σnα,s = Σnα,0 ◦ θns ,

where θns is the shift operator for the process Xn: Xn
t ◦ θns = Xn

s+t.
We next take a truncation function χN (x) = x ∧N, x ∈ R and set

I+
α,s,n,N = Emn

[
χN (eαAs · Σnα,s)− χN (Σnα,s)

]
.

Since 0 ≤ χN (b) − χN (a) ↑ b − a, N ↑ ∞ for a < b, we see that I+
α,s,n,N

increases to I+
α,s when we let N ↑ ∞ and then n ↑ ∞.

Since the measure mn is Xn-excessive and finite, we have

I+
α,s,n,N = Emn

[
EXns [χN (Σnα,0)]

]
−Emn [χN (Σnα,s)]

≤ Emn [χN (Σnα,0)]−Emn [χN (Σnα,s)]

= Emn [χN (Σnα,0)− χN (Σnα,s)]

≤ Emn [Σnα,0 − Σnα,s]

≤ Em

 ∑
0<t≤s,t∈M,R(t)<∞

e−αAsΨ(XR(t−)−, XR(t))

 .
The last expectation in the above display is finite under the present assump-
tion, since

I−α,s + I+
α,s,n,N ≤ Em

 ∑
0<t≤s,t∈M,R(t)<∞

Ψ(XR(t−)−, XR(t))

 .
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Therefore we have from (5.17)∫
F×F

Ψ(ξ, η)J̌(dξ, dη) = lim
s↓0

1
s

sup
α

(
I−α,s + lim

n→∞
lim
N→∞

I+
α,s,n,N

)
≤ lim

s↓0

1
s
Em

 ∑
0<t≤s,t∈M,R(t)<∞

Ψ(XR(t−)−, XR(t))

 ,
which, together with (5.18), completes the proof for (5.14).

Next we show that for any f ∈ B+(F ),

(5.19)
∫
F

f(x)κ̌(dx) =↑ lim
s↓0

1
s
Em

 ∑
t≤s, t∈M∪{ζ}

1{σF=∞} ◦ θt f(Xt−)

 .
Since the lifetime ζ̌ of Y is A∞, τA∞ = ∞ and τA∞− = η = inf{t : At =
A∞} = sup{t : Xt ∈ F}, we have

Yζ̌− = XτA∞−− = Xη−,

and we have by (5.13) and the Revuz identity (2.11),∫
F

f(x)κ̌(dx) = ↑ lim
t↓0

1
t
Eµ[f(Yζ̌−); ζ̌ ≤ t]

= ↑ lim
α↑∞

αEµ[e−αζ̌f(Yζ̌−)] = ↑ lim
α↑∞

αEµ[e−αA∞f(Xη−)]

=↑ lim
α↑∞

α

(
↑ lim
s↓0

1
s
Em

[∫ s

0

(
e−αA∞f(Xη−)

)
◦ θudAu

])
=↑ lim

s↓0

1
s

(
↑ lim
α↑∞

αEm

[∫ s∧η

0

eαAue−αA∞f(Xη−)dAu

])
=↑ lim

s↓0

1
s

(
↑ lim
α↑∞

Em

[
(eαAs∧η − 1)e−αA∞f(Xη−)

])
=↑ lim

s↓0

1
s
Em [f(Xη−); As∧η = A∞]

=↑ lim
s↓0

1
s
Em [f(Xη−); η ≤ s] = I + II,

where
I =↑ lim

s↓0

1
s
Em [f(Xη−); η < ζ, η ≤ s]

and
II =↑ lim

s↓0

1
s
Em [f(Xη−); η = ζ ≤ s] .

Now

I =↑ lim
s↓0

1
s
Em

 ∑
t≤s, t∈M

1{ζ>0,σF=∞} ◦ θt f(Xt−)

 ,
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while

II =↑ lim
s↓0

1
s
Em

[
1{Xζ−∈F}f(Xζ−); η = ζ ≤ s

]
.

On the other hand, for every s > 0, by (2.20)

Em

[
1{Xζ−∈F}f(Xζ−); η < ζ ≤ s

]
= 0.

Hence

II =↑ lim
s↓0

1
s
Em

[
1{Xζ−∈F}f(Xζ−); ζ ≤ s

]
.

This combined with the expression for I proves (5.19).
Note that for t ∈M \ I with σF ◦ θt =∞, we have t = R(t−) = R(t) =∞

and so (5.15) follows. �

In §3, we have considered the Lévy system (N,H) of X and the Revuz
measure µH of H. We define the jumping measure J and the killing measure
κ of X by

(5.20) J(dx, dy) := µH(dx)N(x, dy) and κ(dx) := N(x, {∂})µH(dx),

respectively. Combining Corollary 3.5 with Theorem 5.5, we can establish the
following identification of the jumping measure J̌ and the killing measure κ̌
of the time changed process Y.

Theorem 5.6. We have

(5.21) J̌ = U + J |F×F ,

and

(5.22) κ̌(dx) = V (dx) + κ(dx)|F ,

where U and V are the Feller measure and supplement Feller measure defined
by (3.3) and (3.4), respectively.

Proof. The sum in the right hand side of the identity in Theorem 5.5 can
be divided into two parts: t ∈ I where t = R(t−) < R(t) = t + σF ◦ θt, and
t ∈M \ I where t = R(t−) = R(t). Thus for Ψ ≥ 0 on F ×F vanishing along
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the diagonal d and off F × F ,

lim
s↓0

1
s
Em

 ∑
t≤s, t∈M,R(t)<∞

Ψ(XR(t−)−, XR(t))


= lim

s↓0

1
s
Em

 ∑
t≤s, t∈I,R(t)<∞

Ψ(Xt−, XσF ◦ θt)


+ lim

s↓0

1
s
Em

 ∑
t≤s,Xt−,Xt∈F

Ψ(Xt−, Xt).


=
∫
F×F

Ψ(x, y)U(dx, dy) +
∫
F×F

Ψ(x, y)J(dx, dy).

In the last equality, (3.19) and the Lévy system for X are used. This proves
(5.21).

By (3.20) and the Lévy system for X, for any f ≥ 0 that vanishes on E∂\F ,

lim
s↓0

1
s
Em

 ∑
t≤s, t∈I∪{ζ}

1{σF=∞} ◦ θtf(Xt−)


= lim

s↓0

1
s
Em

 ∑
t≤s, t∈I

f(Xt−)1{ζ>0, σF=∞} ◦ θt


+ lim

s↓0

1
s
Em

[
1{Xζ−∈F}f(Xζ−); ζ ≤ s

]
.

=
∫
F

f(x)V (dx) +
∫
F

f(x)κ(dx).

In view of (5.15), this establishes the identity κ̌(dx) = V (dx) + κ(dx)|F . �

This theorem extends a recent result of the authors [4] from symmetric
Markov processes X to non-symmetric Markov processes having a weak dual.
It in particular shows that the jumping and killing measures of Y are inde-
pendent of the choice of µ ∈ SF . In fact, this independence of µ ∈ SF can
also be deduced from Theorem 5.5. One can also apply results from [11] and
[19] to see this independence at the sample path level; it is shown in [19]
that two PCAF’s having the same fine support are time changes of each other
by a strictly increasing PCAF, while [11, Theorem 6.2] shows that the cor-
respondence between PCAF and its Revuz measure is invariant under time
change.

From the jumping measure J̌ and κ̌, one can easily deduce a Lévy system
for Y .
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Boston, MA, 1990. MR 1093669 (92i:60135)



312 ZHEN-QING CHEN, MASATOSHI FUKUSHIMA, AND JIANGANG YING

[23] R. K. Getoor and M. J. Sharpe, Excursions of dual processes, Adv. in Math. 45 (1982),
259–309. MR 673804 (84h:60129)

[24] , Naturality, standardness, and weak duality for Markov processes, Z. Wahrsch.
Verw. Gebiete 67 (1984), 1–62. MR 756804 (86f:60093)

[25] P. Hsu, On excursions of reflecting Brownian motion, Trans. Amer. Math. Soc. 296

(1986), 239–264. MR 837810 (87k:60182)
[26] P. A. Jacobs, Excursions of a Markov process induced by continuous additive func-

tionals, Z. Wahrsch. Verw. Gebiete 44 (1978), 325–336. MR 509205 (80a:60099)
[27] H. Kaspi, Excursion laws of Markov processes in classical duality, Ann. Probab. 13

(1985), 492–518. MR 781419 (86h:60139)

[28] H. Kunita, General boundary conditions for multi-dimensional diffusion processes., J.
Math. Kyoto Univ. 10 (1970), 273–335. MR 0270445 (42 #5333)

[29] Y. Le Jan, Balayage et formes de Dirichlet, Z. Wahrsch. Verw. Gebiete 37 (1976/77),
297–319. MR 571671 (81k:60082)
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[40] M. Weil, Propriétés de continuité fine des fonctions coexcessives, Z. Wahrschein-

lichkeitstheorie und Verw. Gebiete 12 (1969), 75–86. MR 0256466 (41 #1122)

Zhen-Qing Chen, Department of Mathematics, University of Washington, Seat-

tle, WA 98195, USA

E-mail address: zchen@math.washington.edu

Masatoshi Fukushima, Department of Mathematics, Kansai University, Suita,

Osaka 564-8680, Japan

E-mail address: fuku2@mx5.canvas.ne.jp

Jiangang Ying, Department of Mathematics, Fudan University, Shanghai, China

E-mail address: jgying@fudan.edu.cn


