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Abstract
For a Dirichlet form (E,F) on L2(E;m), let G(E) = {Xu; u ∈ Fe} be the Gaussian field
indexed by the extended Dirichlet space Fe. We first solve the equilibrium problem for a
regular recurrent Dirichlet form E of finding for a closed set B a probability measure μB

concentrated on B whose recurrent potential RμB ∈ Fe is constant q.e. on B (called a
Robin constant). We next assume that E is the complex plane C and E is a regular recurrent
strongly local Dirichlet form. For the closed disk B̄(x, r) = {z ∈ C : |z − x| ≤ r},
let μx,r and f (x, r) be its equilibrium measure and Robin constant. Denote the Gaussian
random variable XRμx.r ∈ G(E) by Y x,r and let, for a given constant γ > 0, μr(A,ω) =∫

A
exp(γ Y x,r−(1/2)γ 2f (x, r))dx. Under a certain condition on the growth rate of f (x, r),

we prove the convergence in probability ofμr(A, ω) to a randommeasureμ(A,ω) as r ↓ 0.
The possible range of γ to admit a non-trivial limit will then be examined in the cases that
(E .F) equals ( 12DC, H 1(C)) and (a, H 1(C)), where a corresponds to the uniformly elliptic
partial differential operator of divergence form.

Keywords Gaussian field · Dirichlet form · Equilibrium potential ·
Gaussian multiplicative chaos.

Mathematics Subject Classification (2010) Primary 31C25 · 60G60 · Secondary 60J45 ·
60G57

1 Introduction

Let E be a locally compact separable metric space, m a positive Radon measure on E with
full support and E a regular Dirichlet form on L2(E;m). (Fe, E) denotes the extended
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Dirichlet space of F . There are two stochastic objects associated with E . One is an m-
symmetric Markov processM = ({Xt }t≥0, {Px}x∈E) on E possessing nice properties called
a Hunt process whose transition function {Pt ; t > 0} generates the strongly continuous con-
traction semigroup on L2(E;m) associated with E . Another is the centered Gaussian field
G(E) = {Xu; u ∈ Fe} indexed by Fe defined on a probability space (�,B,P) with covari-
ance E[XuXv] = E(u, v), u, v ∈ Fe. We like to study the structures and the properties of
the Gaussian field G(E) by developing and using the probabilistic potential theory for the
regular Dirichlet form E formulated in terms of the Hunt processM.

Under the condition that E is transient, the potential theory for E as well as its probabilis-
tic counterpart had been well developed by [3, 6, 12, 30] when M. Röckner [28] utilized this
theory to establish the equivalence between the Markov property of the Gaussian fieldG(E)

and the locality of the Dirichlet form E . See Theorem 2.3 below and [21]. In a recent paper
[14] by the present authors, such an equivalence is extended to irreducible recurrent Dirich-
let forms E by making use of a newly introduced notion of recurrent potentials Rμ ∈ Fe

of finite signed measures μ on E relative to an arbitrarily chosen admissible (compact) set
F ⊂ E. In Section 2.3 of the present paper, we shall also present an alternative proof of a
part of [14, Th.4.4] by means of reduction arguments to transient cases.

The primary purposes of the present paper are twofold. The first purpose is to develop in
Section 3 the probabilistic potential theory of the regular Dirichlet form E further by solving
the equilibrium problem for recurrent Dirichlet form E an electrostatic problem to find, for
a set B ⊂ E, a probability measure μB concentrated on B whose potential RμB equals a
constant (called the Robin constant) q.e. on B.

The second purpose concerns the special case that the underlying space E of the form E
is the complex plane C or its subdomain, and we adopt in Section 4 the equilibrium mea-
sures μB and its potential RμB in constructing the Gaussian multiplicative chaos (GMC) a
random measure on E created by exponentiating the Gaussian field G(E). Recently GMCs
have been investigated intensively in the context of the Gaussian free field (GFF) related
to mathematical physics under the name Liouville (quantum gravity) measure (cf. [2, 8, 19,
27, 29]).

The equilibrium problem for the logarithmic potential Uμ(x) = 1
π

∫
C
log 1

|x−y|μ(dy),
x ∈ C, on C was solved by De La Valée Poussin [31, §2] for any non-polar bounded closed
set B ⊂ C by finding a unique measure μB minimizing the logarithmic energy 〈μ, Uμ〉
among all probability measures μ concentrated on B. Its probabilistic refinement was later
presented in the book [26] by S.C.Port and C.J.Stone published in 1978 along with the
identification of μB with the hitting distribution of the planar Brownian motion (Xt ,Px)

from infinity to B:

μB(C) = lim|x|→∞Px(XσB
∈ C), σB = inf{t > 0 : Xt ∈ B}, C ∈ B(C).

When B is the closure of the open disk B(r) = {y ∈ C : |y| < r}, μB is simply the
uniform probability measure on ∂B(r), while UμB(y) = 1

π
log 1

|y|∨r
, y ∈ C, so that the

logarithmic energy 〈μB,UμB〉 = 1
π
log 1

r
is negative for r > 1 and the Dirichlet integral

of UμB diverges. In this sense, a direct use of the logarithmic potential of a positive finite
measure is inconvenient for our purpose. See [13, §5.2] and Section 2.4 (III) below for one
way out of such a trouble.

Since then, no substatial progress seems to have been made about the equilibrium prob-
lem for continuous time recurrent Markov processes except for the paper [24]. In Section 3,
we incorporate the idea in this paper into a general setting of a regular recurrent Dirichlet

M. Fukushima, Y. Oshima286



form E on L2(E;m) under certain conditions on the resolvent of the associated Hunt pro-
cess M = (Xt ,Px) on E in the following manner. For an arbitrarily fixed admissible set
F ⊂ E, let {Rμ : μ ∈ M0} be the family of recurrent potentials relative to F defined in
§2.3. For any A ∈ B(E) with m(A) > 0, let B be the quasi-support of 1A · m. (B = A

whenever A is open and every point of ∂A is regular for A). Then

μB(C) = 1

m(F)
P1F ·m(XσB

∈ C), C ∈ B(E)

is the unique probability measure inM0 concentrated on B such that its recurrent potential
RμB relative to F takes a constant value c(B) = m(F)−2(1F , RE\B1F )m q.e. on B, where
RE\B denotes the 0-order resolvent of the part ofM onE\B. Furthermore,μB is the unique
measure minimizing E(Rμ, Rμ) = 〈μ, Rμ〉 among all probability measures μ ∈ M0
concentrated on B and the minimum value equals the Robin constant c(B).

When E is a bounded domain D ⊂ C and (E,F) is the transient Dirichlet form
( 12DD,H 1

0 (D)) on L2(D) associated with the absorbing Brownian motion (ABM) on D, B.
Duplantier and S. Sheffield [8] employed the uniform probability measure on the shrink-
ing circle and the corresponding Gaussian random variable in G(E) to construct a Liouville
random measure. Sheffield [29] also suggests analogous constructions in the cases of the
recurrent Dirichlet forms ( 12DC, H 1(C)) and ( 12DH, H 1(H)) associated with the BM on C

and the reflecting BM on the upper-half plane H, respectively. In Section 4, we shall con-
struct GMCs in more general planar cases by means of the equilibrium measure and the
Robin constant in place of the uniform probability measure and the variance of the corre-
sponding Gaussian random variable, respecively. There have been several methods used in
constructing GMCs in transient cases. Among them, the method due to N. Berestycki [2]
based on the Cameron-Martin formulae for the Gaussian field (see Section 2.4) works in
recurrent cases as well, and we shall invoke it in our construction.

More specifically, we consider in Section 4 a regular recurrent strongly local Dirichlet
form (E,F) on L2(C, dx) with the associated diffusion M on C satisfying certain condi-
tions including a Gaussian bound of the transition function. We fix an arbitrary S > 2,
choose the annulus F = B(S + 1) \ B(S) as an admissible set and consider the family
{Rμ ∈ Fe;μ ∈ M0} of recurrent potentials relative to F . For each disk B(x, ε) = {y ∈
C : |y − x| < ε} with x ∈ B(S − 1), ε ∈ (0, 1), denote by μx,ε ∈ M0 and f (x, ε) the
equilibrium measure and the Robin constant for the set B(x, ε) relative to F , respectively.

Take any measure σ on B(S − 1) absolutely continuous with respect to the Lebesgue
measure with a strictly positive bounded density. Let G(E) = {Xu : u ∈ Fe} be the cen-
tered Gaussian field defined on a probability space (�,B,P) with covariance E[XuXv] =
E(u, v) and let Y x,ε = XRμx,ε . For a fixed γ > 0, we put

με(A,ω) =
∫

A

exp

[

γ Y x,ε − γ 2

2
f (x, ε)

]

σ(dx), A ∈ B(B(S − 1)). (1.1)

Under certain condition on the growth rate of the Robin constant f (x, ε) as ε ↓ 0, we derive
the convergence in probability of the random measure με(·, ω) as ε ↓ 0 to a non-degenerate
random measure μ(·, ω) on B(S−1) relative to a metric ρ on the space of all finite positive
measures on B(S − 1) compatible with the weak convergence (Theorem 4.13). We call
μ(·, ω) the Gaussian multiplicative chaos (GMC) on B(S − 1) for the given Dirichlet form
(E,F).

In Section 5, we examine the possible range of the parameter γ > 0 to ensure the
above mentioned convergence to a non-degenerate randommeasure in three examples where
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(E,F) equals ( 12DC, H 1(C)), ( 12DH, H 1(H)) and (a, H 1(C)). Here the form a is defined
by

a(u, v) =
2∑

i,j=1

∫

C

aij (x)
∂u(x)
∂xi

∂v(x)
∂xj

dx (1.2)

with measurable coefficients aij (x), x ∈ C, satisfying

aij (x) = aji(x), 1 ≤ i, j ≤ 2, λ|ξ |2 ≤
2∑

i,j=1
aij (x)ξiξj ≤ �|ξ |2, ξ ∈ R

2, x ∈ C,

(1.3)
for some constants 0 < λ ≤ �. In the first and second examples, the possible range of γ is
shown to be equal to (0, 2

√
π). In the third example with aij ∈ C2(C), 1 ≤ i, j ≤ 2, it is

shown to be equal to

(

0, 2
√

2πλ2�

2�2−λ2

)

, which reduces to (0, 2
√

π) when aij (x) = 1
2δij as

in the first example.
In Secton 6.1, we consider a general regular transient strongly local Dirichlet form (E,F)

on L2(D, dx) for a domain D ⊂ C and make an analogous consideration to Section 4 in
constructing the associated GMC μ(·, ω) on a bounded subdomain D0 of D by means of a
counterpart of Eq. 1.1. The possible range of γ in the case that (E,F) = ( 12DD,H 1

0 (D)) for
a bounded domain D ⊂ C is also shown to be equal to (0, 2

√
π). In Section 6.2, we further

study in this case transformations of GMC by conformal maps of the domain D based on
the conformal invariance of renormalized equilibrium potentials.

The systematic study of multiplicative chaos for Gaussian fields was initiated by J.-P.
Kahane [19]. Specifically, given a kernelK(x, y)with a logarithmic singularity on diagonal,
the associated random measure was constructed in [19] using an approximation of K by
sums of non-singular positive definite kernels, which is well applicable to massive GFF’s.
For massless GFF’s, alternative approximations of K by its convolutions with mollifiers or
measures of shrinking supports have been successfully utilized ([27], [2]).

We start with a Dirichlet form (E,F) instead of a kernel K and construct the associated
random measure by using directly the well defined equilibrium measures with shrinking
supports. In transient cases like ( 12DD, H 1

0 (D)) for a bounded domain D ⊂ C, the Green
function plays the role of the above mentioned kernel K , while, in recurrent cases like
( 12DC, H 1(C)), no Green function is available. But see [13, §5.2] where yet another way of
constructing a random measure is indicated.

We conjecture that the right endpoint of the possible range of γ examined in Section 5
and Exampe 6.3 is the critical value in the sense that the random measure μ degenerates for
that value of γ .

2 Basic properties of Gaussian fieldG(E)

In this section, we discuss two basic properties of G(E); the Markov property and the
Cameron-Martin formula. But the first one will not be used in the rest of this paper.

2.1 A pseudoMarkov property ofG(E)

According to [7] or [17], we have the following: given a set � equipped with C(λ, μ) ∈
R, λ, μ ∈ �, such that C(λ, μ) = C(μ, λ) and {C(λi, λj )} is non-negative definite for

M. Fukushima, Y. Oshima288



any finite {λi} ⊂ �, there exists uniquely Gaussian distributed random variables G(�) =
{Xλ; λ ∈ �} defined on a probability space (�,B,P) with

E[Xλ ·Xμ] = C(λ, μ), E[Xλ] = 0, ∀λ,μ ∈ �,

whose finite linear combinations are Gaussian. G(�) is called the Gaussian system with
index set �. When � is an Euclidean space Rd (resp. a function space), we may call G(�)

a Gaussian process (resp. Gaussian field).
We recall that, in the study of the Markov property of Gaussian processes, the following

useful notion and criterion were presented in H.P. McKean [23] and L.D. Pitt [25, Lem.2.1,
Lem.2.2], respectively: for sub σ -algebras F , G, � of B, � is said to be a splitting σ -
algebra for F and G if

P(A ∩ B|�) = P(A|�) · P(B|�), ∀A ∈ F , ∀B ∈ G. (2.1)

If F = σ(Xλ, λ ∈ �1) and G = σ(Xλ, λ ∈ �2) for �1, �2 ⊂ � and if � ⊂ F , then
Eq. 2.1 is equivalent to the condition that

σ {E[Xλ | F ]; λ ∈ �2} ⊂ �. (2.2)

We may think of F (resp. G) as the future (resp. past) events. As is well known, Eq. 2.1 is
also equivalent to the condition that P(B | G) = P(B | �), for any B ∈ F .

Throughout this paper, we are concerned with the Gaussian field with index set being a
general extended Dirichlet space. Once for all, let E be a locally compact separable metric
space, m an everywhere dense positive Radon measure on E and (E,F) a Dirichlet form
on L2(E;m).

Let Fe be the collection of all m-measurable functions u on E such that |u| <∞ m-a.e.
and there exists an E-Cauchy sequence un ∈ F , n ≥ 1, with limn→∞ un = u m-a.e. E
then extends from F to Fe as a non-negative symmetric bilinear form. (Fe, E) is called the
extended Dirichlet space of the Dirichlet form (E,F) ([15, 30]). LetG(E) = {Xu : u ∈ Fe}
be the Gaussian field defined on a probability space (�,B,P) indexed by the functions of
the space Fe and possessing the covariance E[XuXv] = E(u, v), u, v ∈ Fe.

We now assume that the Dirichlet form (E .F) is regular. A function u ∈ Fe is called E-
harmonic on an open set G ⊂ E if E(u, v) = 0 for any v ∈ F ∩ Cc(E) with supp[v] ⊂ G,
where Cc(E) is the family of continuous functions on E with compact support. Following
A.Beurling and J.Deny [3], the complement of the largest open set where u is harmonic will
be called the spectrum of u and denoted by s(u). See [6, p 166] and [15, p 99]. For any set
A ⊂ E, we define the sub σ -algebra σ(A) of B by

σ(A) = σ {Xu : u ∈ Fe, s(u) ⊂ A}. (2.3)

For any closed set B ⊂ E, let Fe,E\B be a linear subspace of Fe defined by

Fe,E\B = {u ∈ Fe : ũ = 0 q.e. on B}, (2.4)

where ũ denotes a quasi-continuous version of u. By [15; Theorem 2.3.3], s(u) ⊂ B if and
only if

E(u, v) = 0, ∀v ∈ Fe,E\B . (2.5)

Let M = (Xt ,Px) be the Hunt process on E associated with the regular Dirichlet form
(E,F). B(E) will denote the totality of Borel subsets of E. For any B ∈ B(E), the hitting
distributionHB(x, ·) ofM = (Xt ,Px) forB is defined byHBf (x) = Ex[f (XσB

)], x ∈ E,

for any bounded Borel functions f on E where σB = inf{t > 0 : Xt ∈ B}. In view of
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[15, Th.4.6.5] or [5, Th.3.4.8], it holds for any closed set B and any u ∈ Fe that HB |̃u|(x) <

∞ for q.e. x ∈ E and HBũ is a quasi-continuous element of Fe satisfying Eq. 2.5. Hence

s(HBũ) ⊂ B, for any closed set B ⊂ Eand for any u ∈ Fe. (2.6)

Lemma 2.1 The Gaussian field G(E) = {Xu : u ∈ Fe} enjoys the following property: For
any closed set B ⊂ E and any u ∈ Fe,

Xu−HBũ isindependentof σ(B), (2.7)

and

E[Xu

∣
∣ σ(B)] = XHBũ. (2.8)

Proof. Take any v ∈ Fe with s(v) ⊂ B. Since u−HBũ ∈ Fe,E\B , E(u−HBũ, v) = 0
by Eq. 2.5. Hence E

[
(Xu −XHBũ)Xv

] = 0 so that Eq. 2.7 holds as all random variables
involved are centered Gaussian. Consequently E

[
Xu −XHBũ

∣
∣σ(B)

] = E
[
Xu −XHBũ

] =
0, and so Eq. 2.8 is valid by Eq. 2.6. �

Equation 2.8 is a fundamental identity of the Gaussian field G(E). It follows from Eq. 2.8
and the criterion Eq. 2.2 that, for any set A ⊂ E,

σ {XHAũ : u ∈ Fe, s(u) ⊂ E \ A}is a splitting σ -algebra for σ(E \ A) and σ(A). (2.9)

We may call Eq. 2.9 a pseudo Markov property of the Gaussian field G(E).
The Gaussian field G(E) is said to possess the Markov property with respect to a set

A ⊂ E if

σ(∂A)is a splitting σ -algebra for σ(E \ A) and σ(A). (2.10)

We say that G(E) has theMarkov property if it possesses the Markov property with respect
to any subset A of E.

2.2 Characterization of Markov property ofG(E) for transient E

Let us assume that the regular Dirichlet form E is transient, or equivalently, that there exists
a bounded m-integrable function h strictly positive m-a.e. on E sstisfying

(|u|, h) ≤
√
E(u, u) for any u ∈ F . (2.11)

This inequality is extended to any u ∈ Fe and Fe becomes a real Hilbert space with inner
product E . The function h in Eq. 2.11 is called a reference function (cf. [15, Th.1.5.1]).

A positive Radon measure μ on E is called a measure of finite 0-order energy and we
write as μ ∈ S(0)

0 if there exists a positive constant C such that

〈|u|, μ〉 ≤ C
√
E(u, u) for all u ∈ F ∩ Cc(E). (2.12)

We let M0 = {μ = ν1 − ν2 : νi ∈ S(0)
0 , i = 1, 2}. Any μ ∈ M0 then admits a unique

function Uμ ∈ Fe satisfying the Poisson equation

E(Uμ, u) = 〈μ, ũ〉 for any u ∈ Fe. (2.13)

Uμ is called the potential of the measure μ ∈ M0. For a Borel set B ⊂ E and a signed
Radon meausre μ on E, define

μB(A) =
∫

E

μ(dx)HB(x,A), ∀A ∈ B(E). (2.14)
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Lemma 2.2 (i) For any closed set B ⊂ E and for any μ ∈M0, μB ∈M0 and

HB(Ũμ) = UμB . (2.15)

(ii) s(Uμ) = supp(|μ|) for μ ∈M0.
(iii) (Spectral synthesis) For any u ∈ Fe, there exists a sequence μn ∈M0, n ≥ 1, such

that supp[|μn|] ⊂ s(u), n ≥ 1, and Uμn is E-convergent to u.

Proof. (i). The map u �→ HBũ defines a projection from Fe to the orthogonal
complement of Fe,E\B . Hence

〈μB, v〉 = 〈μ, HBv〉 = E(Uμ, HBv) = E(HBŨμ, v), μ ∈M0, v ∈ F ∩ Cc(E),

and 〈μB, |v|〉 ≤
√
〈μ, Ũμ〉 √E(v, v), μ ∈ S(0)

0 , v ∈ F∩Cc(E), fromwhich the assertions
follow.

(ii). The space C(S) of continuous functions on a locally compact Hausdorff space S

vanishing at infinity admits as its dual space the space of finite signed measures on S normed
by their total variations. (ii) follows from this and the Poisson Eq. 2.13 holding for u ∈
Fe ∩ Cc(E) with supp[u] ⊂ E0 for each relatively compact open set E0 ⊂ E. .

(iii). Since vh · m ∈ M0 for the reference function h and for any v ∈ Cc(E), Eq. 2.13
also implies that, for any u ∈ Fe, there exists a sequence {Uνn : νn ∈ M0} which is E-
convergent to u. Let μn = (νn)B, n ≥ 1, for B = s(u). Then s(Uμn) ⊂ B by (ii) and
{Uμn} is E-convergent to HBũ as n → ∞ by Eq. 2.15. Since E(u − HBũ, v) = 0 for
any v ∈ Fe,E\B by Eq. 2.5 and Eq. 2.6 and u − HBũ ∈ Fe,E\B , we get HBũ = u by the
transience of E . �

Lemma 2.2 (iii) is a 0-order version of [15, Th. 2.3.2]. We like to take this opportunity
to mention that the phrase ‘E1-convergent limit’ on the 6-th line in the proof of this theorem
of [15] is better to be replaced by ‘Eα-weakly convergent limit’. A regular Dirichlet form E
is said to be local if E(u, v) = 0 whenever u, v ∈ F and supp[u · m] and supp[v · m] are
disjoint compact set. The following theorem was established by M. Röckner [28]. We give
its straightforward proof for completeness.

Theorem 2.3 Suppose E is transient. Then the Gaussian field G(E) enjoys the Markov
property if and only if the form E is local.

Proof. In view of Eqs. 2.2 and 2.8, G(E) has the Markov property if and only if, for any
A ⊂ E,

σ(XHAũ : u ∈ Fe, s(u) ⊂ E \ A) ⊂ σ(∂A). (2.16)

Assume that E is local. Then the Hunt process M associated with E is of continuous
sample paths (cf. [15, Th.4.5.1]). Therefore the balayage μA of μ ∈M0 with supp(|μ|) ⊂
E \ A has the support concentrated on ∂A so that, by Lemma 2.2 (i), (ii), s(HAUμ) =
supp(|μA|) ⊂ ∂A.

On account of the spectral synthesis Lemma 2.2 (iii), there exists for any u ∈ Fe with
s(u) ⊂ E \ A a sequence μn ∈ M0, n ≥ 1, such that supp[|μn|] ⊂ E \ A, n ≥ 1, and
Uμn is E-convergent to u. Then s(HAUμn) ⊂ ∂A and HAUμn is E-convergent to HAu as
n→∞ so that s(HAu) ⊂ ∂A, yielding the Markov property Eq. 2.16 of G(E).

Conversely assume that G(E) satisfies the Markov property Eq. 2.16. Let G ⊂ E be an
open set and u be any function in Fe with s(u) ⊂ E \G. Then XHGũ ∈ σ(∂G). Now take
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any open subset A of G with A ⊂ G and let B = G \A. Then σ(G) ⊃ σ(B) ⊃ σ(∂G). As
XHGũ = E[Xu

∣
∣σ(G)] by Eq. 2.8, this means that XHGũ = E[Xu

∣
∣σ(B)] = XHBũ and hence

E[(XHGũ −XHBũ)
2] = 0, that is, E

(
HGũ−HBũ,HGũ−HBũ

) = 0.

and so HGũ = HBũ.
By virtue of Lemma 2.2 (i), (ii) and the Eq. 2.13, we have, for any μ ∈ M0 with

supp(|μ|) ⊂ E \G, 〈μG, f 〉 = 〈μB, f 〉 for any f ∈ F ∩Cc(E). In particular, if the support
of f is contained in A, then 〈μG, f 〉 = 0 so that

〈μ, HGf 〉 = 0 for any μ ∈M0 with supp[|μ|] ⊂ E \G.

This implies that HGf = 0 q.e. on E \ G, and consequently HG(x, ·) is concentrated on
B for q.e. x ∈ E \ G. Since this holds for any open subset A of G such that A ⊂ G,
HG(x, ·) is concentrated on ∂G for q.e. x ∈ E \ G. Then the local property of E follows
from [15, Lem.4.5.1]. �

2.3 Characterization of Markov property ofG(E) for recurrent E

Let us assume that the regular Dirichlet form E is irreducible recurrent. In particular, the
constant function 1 is in Fe and E(1, 1) = 0.

We make an additional assumption that the transition function {Pt ; t > 0} of the
associated Hunt processM satisfies the following absolute continuity condition:

(AC) there exists a certain Borel properly exceptional set N ⊂ E such that
Pt (x, ·) is absolutely continuous with resepct to m for each t > 0 and x ∈ E \N,

This condition is much milder than the one admitting no exceptional set N . For instance, it
is fulfilled when the form E satisfies a Sobolev type inequality (cf. [15, Th.2.7]).

Under the assumption (AC), the resolvent kernel {Rα, α > 0} of M admits a density
function rα(x, y), x, y ∈ E\N, with respect to m such that it is strictly positive, symmetric
Borel measurable, α-excessive relative to M in each variable, and it satisfies the resolvent
equation. A set F ⊂ E \N is called an admissible set if

{
F is compact, m(F ) > 0 and for some c > 0 and 1

2 < a < 1,

m({y ∈ F : r1(x, y) > c}) > am(F) for every x ∈ F .
(2.17)

It has been shown by [14, Lem.3.1] that, for any Borel set B ⊂ E \ N with m(B) > 0,
there exists an admissible set F contained in B. For a fixed admissible set F , we denote its
indicator function 1F by g and consider the perturbed form

Eg(u, v) = E(u, v)+
∫

E

uvgdm, u, v ∈ Fg = F ∩ L2(E; g ·m),

which is a regular transient Dirichlet form on L2(E;m). Its extended Dirichlet space Fg
e

equals Fe ∩ L2(E; g · m). Let Sg,(0)
0 be the space of positive Radon measures on E with

finite 0-order energy relative to the form Eg . Define

M0={μ=μ1 − μ2 : μi ∈ S
g,(0)
0 , μi(E) <∞, i=1, 2}, M00={μ ∈M0 : μ(E)=0}.

(2.18)
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By virtue of [14, Th.3.5], there exists for any μ ∈ M0 a quasi continuous function
Rμ ∈ Fg

e uniquely up to q.e. equivalence such that

E(Rμ, u) =
〈

μ, ũ− 1

m(F)
〈g ·m, u〉

〉

∀u ∈ Fg
e , and 〈g ·m, Rμ〉 = 0. (2.19)

The first equation in the above determines Rμ ∈ Fg
e up to an additive constant (see (H)

below), while the second identity is its normalization. In particular, we have the symmetry

〈μ,Rν〉 = 〈Rμ, ν〉(= E(Rμ,Rν)), μ, ν ∈M0. (2.20)

We call {Rμ : μ ∈M0} the family of recurrent potentials relative to an admissible set F .
Contrarily to the transient case, the classM0 of measures and potentials Rμ, μ ∈M0,

depend on the choice of an admissible set F , making relevent arguments more involved.
But the first equation in Eq. 2.19 has enabled us to derive in [15, Cor.4.8.2] and [14, Th.3.7]
a nice property of E that the quotient space Ḟe of Fe by the space of constant functions is a
real Hilbert space with inner product E .

Theorem 2.4 (1) Suppose that E is an irreducible recurrent regular Dirichlet form satis-
fying the condition (AC). If E is local, then G(E) has the Markov property with respect to
any open set.

(2) Suppose that E is an irreducible recurrent regular Dirichlet form. If G(E) has the
Markov property with respect to any open set, then E is local.

Remark 2.5 The first statement (1) of Theorem 2.4 has been proved in [14, Th.4.4] by using
some detailed properties of recurrent potentials {Rμ} specified in the above.

The second statement (2) of Theorem 2.4 has been asserted also in [14, Th.4.4] under the
assumption (AC) for E . We now give its proof without assuming (AC) by using a reduction
argument to Theorem 2.3 for transient cases.

We would like to take this opportunity to mention that the proof of the implication (ii)⇒
(iii) of [14, Th.4.4] contains a flaw: the spaceM0 of measures there should be replaced by
M00 and hence that proof works only under the additional condition that ‘for any open set
G ⊂ E with m(E \G) > 0, ∂G is of positive capacity’.

Theorem 2.4 (2) will be proved by using the following lemma.
Assume that the regular Dirichlet form E is irreducnible recurrent. Let E0 be any open

subset of E with m(E \ E0) > 0 and E (0) be the part of E on the set E0.
The Gaussian field G(E (0)) associated with E (0) is the sub-field of G(E) obtained just

by the restriction of the index set Fe to Fe,E0 .

Lemma 2.6 If G(E) has the Markov property with respect to any open set, then so does
G(E (0)).

Proof. Put E \ E0 = B0. For A ⊂ E0, define

σ(A) = {Xu : u ∈ Fe, s(u) ⊂ A}, σ (0)(A) = {Xu : u ∈ Fe,E0 , s(0)(u) ⊂ A}.
Take any open set G ⊂ E0 with B = G ⊂ E0 and any u ∈ Fe,E0 with s(0)(u) ⊂ E0 \G.
By Eq. 2.8, E[Xu

∣
∣σ(B ∪ B0)] = XHB∪B0 ũ.

Define H
(0)
B f (x) = Ex[f (XσB

); σB < σB0 ]. Since ũ = 0 q.e. on B0,

HB∪B0 ũ(x) = Ex

[
ũ(XσB∪B0

)
]
= Ex

[
ũ(XσB∧σB0

)
]
= H

(0)
B ũ(x),
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and so

E[Xu

∣
∣σ(B ∪ B0)] = X

H
(0)
B ũ

. (2.21)

As s(0)(H
(0)
B ũ) ⊂ B, X

H
(0)
B ũ

∈ σ (0)(B). Hence we get from Eq. 2.21,

E[Xu

∣
∣σ (0)(B)] = X

H
(0)
B ũ

. (2.22)

By the Markov property of G(E) and Eq. 2.21, X
H

(0)
B ũ

∈ σ(∂B ∪ ∂B0). This means that

s(H
(0)
B ũ) ⊂ ∂B ∪ ∂B0, namely, E(H

(0)
B ũ, ϕ) = 0 for any ϕ ∈ F ∩ Cc(E) with supp[ϕ] ⊂

E \ (∂B ∪ ∂B0). In particular, s(0)(H
(0)
B ũ) ⊂ ∂B so that X

H
(0)
B ũ

⊂ σ (0)(∂B).

Therefore, Eq. 2.22 implies the Markov property of G(E0) relative to G for the part E0

of E on E0. �
Proof of Theorem 2.4 (2). Assume that G(E) has the Markov property with respect to

any open set. For any open set E0 ⊂ E with m(E \ E0) > 0, the part E (0) of E on E0
is a transient Dirichlet form and the associated Gaussian field G(E (0)) enjoys the Markov
property with resepct to any open subset of E0 by Lemma 2.7. By the proof of the ‘only if’
part of Theorem 2.3, the form E (0) is local.

Take two open sets Ei
0 ⊂ E, i = 1, 2, such that, Bi = E \ Ei

0, i = 1, 2, are compact,
of positive m measure and mutually disjoint. Choose ε > 0 in such a way that the closures
of ε-neighborhoods Bi,ε of Bi are disjoint. Since the parts of the form E on E1

0 and E2
0 are

local, we see from [15, Lem.4.5.1, Th.4.5.1] that the sample path Xt of the Hunt process
M = (Xt ,Px) associated with E is almost surely continuous on [0, σ ] where σ = σB1,ε ∨
σB2,ε ∈ (0,∞).

Define σ0 = 0, σ1 = σ, σn = σn−1 + σ ◦ θσn−1 , n ≥ 1. Then

Px(Xt is not continuous on [0, σn]) ≤
n−1∑

k=0
Px(Xt is not continuous on [σk, σk+1])

=
n−1∑

k=0
Ex

[
PXσk

(Xt is not continuous on [0, σ ])
]
= 0, x ∈ E,

Hence the sample path of M is continuous a.s. on [0, σ̂ ) where σ̂ = limn→∞ σn.
Suppose σ̂ < ∞, then σ ◦ σ̂ = 0. On the other hand, due to the quasi-left continuity of

the Hunt processM, Xσ̂ ∈ B1,ε ∪ B2,ε and so σ ◦ σ̂ > 0, a contradiction. Therefore M is a
diffusion and hence E is local. �

2.4 Cameron-Martin formulae forG(E)

Theorem 2.7 Let (E,F) be a general (not necesarily regular) Dirichlet form on L2(E;m)

with the extended Dirichlet space Fe and let G(E) = {Xu; u ∈ Fe} be the Gaussian field
defined on a probability space (�,B,P) with covariance E[XuXv] = E(u, v), u, v ∈ Fe.
Then, for any v1, v2, · · · , vn ∈ Fe, any u ∈ Fe and any bounded Borel function H on Rn,

E
[
H(Xv1 + E(u, v1), · · · , Xvn + E(u, vn))

] = e−
1
2E(u,u)

E

[
eXuH(Xv1 , · · · , Xvn)

]
.

(2.23)

This Cameron-Martin formula can be readily proved by using the characteristic function.
Another simple proof is being provided in the first half of “Alternative proof of Theorem
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11.4.1” of M.B.Marcus and J. Rosen [22, p.518], which indeed works by assuming that u

equals one of {vi, 1 ≤ i ≤ n} (otherwise it suffices to add a new index vn+1 = u).
We now assume that E is regular and derive from Eq. 2.23 those identities formulated in

terms of signed measures on E of finite energy in four cases separately.
(I) Transient case. In view of the Poisson Eq. 2.13, the map ν ∈ M0 �→ Uν ∈ Fe

is injective. For ν ∈ M0, we write XUν as Zν and regard {Zν : ν ∈ M0} as a Gaussian
field indexed by M0 with covariance 〈μ, Ũν〉, μ, ν ∈ M0. {Zν : ν ∈ M0} can be thus
identified with a subfield of G(E). The formula Eq. 2.23 is then rewritten as follows:
For any ν1, ν2, · · · , νn ∈M0, any u ∈ Fe and any bounded Borel function H on Rn

E
[
H(Zν1 + 〈̃u, ν1〉, · · · , Zνn + 〈̃u, νn〉)

] = e−
1
2E(u,u)

E

[
eXuH(Zν1 , · · · , Zνn)

]
. (2.24)

(II) Irreducible recurrent case fulfilling condition (AC). In this case, choose any
admissible set F and consider the family {Rμ : μ ∈M0} of recurrent potentials relative to
F . The spacesM0 andM00 of measures are defined by Eq. 2.18. We write XRν as Zν for
ν ∈M0, In view of the generalized Poisson Eq. 2.19, the map μ ∈M00 �→ Rμ ∈ Fg

e ⊂
Fe is injective so that {Zν : ν ∈M00} can be identified with a Gaussian sub-field of G(E)

and Eq. 2.24 holds true forM00 in place ofM0.
The map μ ∈ M0 �→ Rμ ∈ Fg

e ⊂ Fe is not injective. Nevertheless, we have from
Eq. 2.20 and Eq. 2.23 the following formula similar to Eq. 2.24: For any ν1, ν2, · · · , νn ∈
M0, any μ ∈M0 and any bounded Borel function H on Rn

E
[
H(Zν1 + 〈μ, Rν1〉, · · · , Zνn + 〈μ, Rνn〉)

] = e−
1
2 〈μ,Rμ〉

E

[
eZμH(Zν1 , · · · , Zνn)

]
.

(2.25)
(III) The case that (E,F) = ( 12DC, H 1(C)). This is the Dirichlet form on L2(C)

associated with the planar Brownian motion. DC is the Dirichlet integral on C. Fe is the
Beppo Levi space BL(C) = {u ∈ L2

loc(C) : |∇u| ∈ L2(C)}. G(E) satisfies the formula
Eq. 2.23 for this choice of (Fe, E).

Let
◦
M0 (C) be the space of compactly supported finite signed measures on C with finite

logarithmic energy and let
◦
M00 (C) = {μ ∈ ◦

M0 (C) : μ(C) = 0}. The logarithmic poten-

tial Uμ of μ ∈ ◦
M0 (C) is defined by Uμ(x) = 1

π

∫

C

log
1

|x− y|μ(dy). By the Poisson

equation in [13, Th.2.6], μ �→ Uμ defines an injective map from
◦
M00 (C) into BL(C).

For μ ∈ ◦
M00 (C), we write XUμ ∈ G(E) as Zμ. Then {Zμ : μ ∈ ◦

M00 (C)} is a Gaus-

sian field indexed by
◦
M00 (C) with covariance 〈μ, Ũν〉, μ, ν ∈ ◦

M00 (C). This field is
designated in [13] asG(C), which can be identified with a sub-field ofG(E). The Cameron-

Martin formula Eq. 2.24 holds for
◦
M00 (C), BL(C) and 1

2DC in place of M0, Fe and E ,
respectively.

(IV) The case that (E,F) = ( 12DR, H 1(R)). This is the Dirichlet form on L2(R)

associated with the standard Brownian motion on R. DR is the Dirichlet integral on R. Fe

is the Cameron-Martin space H 1
e (R) = {u : absolutely continuous on R, DR(u, u) < ∞}.

G(E) satisfies the formula Eq. 2.23 for this choice of (Fe, E).

Let
◦
M0 (R) be the space of compactly supported finite signed measures on R and let

◦
M00 (R) = {μ ∈ ◦

M0 (R) : μ(R) = 0}. The linear potential Uμ of μ ∈ ◦
M0 (R) is defined

by Uμ(x) = −
∫

R

|x − y| μ(dy), x ∈ R. By the Poisson equation in [13, Th.4.3],

μ �→ Uμ defines an injective map from
◦
M00 (R) into H 1

e (R). For μ ∈ ◦
M00 (R), we write
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XUμ ∈ G(E) as Zμ. Then {Zμ : μ ∈ ◦
M00 (R)} is a Gaussian field indexed by

◦
M00 (R)

with covariance 〈μ,Uν〉, μ, ν ∈ ◦
M00 (R). This field is designated in [13] as G(R), which

can be identified with a sub-field of G(E).

The Cameron-Martin formula Eq. 2.24 holds for
◦
M00 (R),H 1

e (R) and 1
2DR in place of

M0,Fe and E , respectively. In particular, if we take νx = (δx − δ0)/
√
2 ∈ ◦

M00 (R) for
x ∈ R and write Zνx as Bx , then E[BxBy] = 1

2 (|x| + |y| − |x − y|) so that {Bx : x ∈ R} is
the standard Brownian motion with time parameter x ∈ R ([13, §5.3]). For any u ∈ H 1

e (R),
the Gaussian random variable Xu ∈ G(E) can then be expressed as the Wiener integral∫

R

u′(x)dBx multiplied by 1/
√
2. Hence, given any x1, x2, · · · , xn ∈ R, any u ∈ H 1

e (R)

and any bounded Borel function H on R
n, the identity Eq. 2.24 for νxi

, 1 ≤ i ≤ n, and√
2u in place of νi, 1 ≤ i ≤ n, and u, repectively, reads

E
[
H(Bx1 + (u(x1)− u(0)), · · · , Bxn + (u(xn)− u(0)))

]

= e−
1
2DR(u,u)

E

[

exp

(∫

R

u′(x)dBx

)

H(Bx1 , · · · , Bxn)

]

, (2.26)

which is slightly more general than the original formula due to R.H.Cameron and
W.T.Martin [4].

3 Equilibrium potentials for recurrent Dirichlet forms

In this section, except for the last part below Lemma 3.8, we assume that (E,F) is a regular
recurrent Dirichlet form on L2(E;m) and satisfies the absolute continuity condition (AC).
We further make the following assumptions on the resolvent {Rα, α > 0} of the associated
Hunt process M = (Xt ,Px) on E:

(A.1) For any B ∈ B(E) with m(B) > 0, Rα(x, B) > 0 for all x ∈ E,

(A.2) Rαf is lower semi-continuous for any non-negative Borel function f on E.

Condition (A.1) implies the irreducibility of the Dirichlet form E .
For any bounded non-negative function w such that 〈m, w〉 > 0, consider the Dirichlet

form (Ew,F) on L2(E;m) given by

Ew(u, v) = E(u, v)+ (u, v)w·m, u, v ∈ F , (3.1)

which is regular transient and associated with the canonical subprocess M
w of M with

respect to the multiplicative functional e−At , t ≥ 0, for At =
∫ t

0w(Xs)ds, t ≥ 0. Its
extended Dirichlet space Fw

e coincides with Fe ∩ L2(E;w · m) and its resolvent Rw
α f is

expressed as

Rw
α f (x) = Ex

[∫ ∞

0
e−αt−At f (Xt )dt

]

, x ∈ E.

Let F be an admissible set, namely, a set satisfying Eq. 2.17, and B be any Borel set with
positive m-measure. Their indicator functions 1F and 1B will be occasionally designated
by g and h, respectively. The above notions for w = g (resp. w = h) are denoted by
Eg,Fg

e ,Mg, R
g
α (resp. Eh,Fh

e ,Mh, Rh
α). R

g

0 , Rh
0 are denoted by Rg,Rh, respectively.
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Lemma 3.1 (i) Rhg is bounded on E. For any bounded Borel function f on E vanishing
outside a compact set, Rgf is also bounded on E and moreover Rgf is an element of Fg

e

satisfying Eg(Rgf, v) = (f, v) for any v ∈ Fg
e .

(ii) It holds that

Rg(h · Rhg)(x) = Rgg(x)− Rhg(x)+ Rg(g · Rhg)(x), for q.e. x ∈ E. (3.2)

The left hand side and the three terms of the right hand side are bounded functions in Fg
e .

Proof. (i). (A.1), (A.2) imply that infx∈K R2h(x) = �(K) > 0 for any compact set
K ⊂ E, and consequently

Rh1K(x) ≤ 1

�(K)
RhR2h(x) ≤ 1

�(K)
RhRh

1h(x) ≤ 1

�(K)
Rhh(x) = 1

�(K)
, ∀x ∈ E.

(3.3)
The same bound holds for g in place of h and the boundedness assertions in (i) follow.

In view of [5, Th.2.1.12] or [14, Prop.2.5 (ii)], we see that, for a non-negative Borel
function f on E, Rwf ∈ Fw

e if and only if (f, Rwf ) < ∞ and in this case the Poisson
equation Ew(Rwf, v) = (f, v), v ∈ Fw

e , is valid. In particular, the last assertion in (i)
holds true.

(ii). First suppose B is compact. If we put u = Rg(g + g ·Rhg − h ·Rhg), then u ∈ Fg
e

by virtue of (i) and u satisfies the equation

Eg(u, v) = (g + g · Rhg − h · Rhg, v), v ∈ F ∩ Cc(E).

On the other hand, Rhg ∈ Fh
e ⊂ Fe so that Rhg ∈ Fe ∩ L2(E; g ·m) = Fg

e and

Eg(Rhg, v) = Eh(Rhg, v)+ (Rhg, v)(g−h)m = (g+gRhg−hRhg, v), v ∈ F ∩Cc(E).

Therfore u = Rhg, m-a.e., namely, Eq. 3.2 holds m-a.e.
For a general B ∈ B(E) with m(B) > 0, we put Bn = B ∩Un, hn = 1Bn, for relatively

compact open sets {Un} increasing to E. Then Eq. 3.2 holds m-a.e. for hn in place of h and
we have (Rgv, hnR

hng) = (v, Rgg − Rhng + Rg(g · Rhng)), v ∈ F ∩ Cc(E).
By noting the bound Eq. 3.3 and that Rhng decreases to Rhg as n → ∞, we let n → ∞
to get Eq. 3.2 holding m-a.e. together with the final statement of (ii). Since both hand sides
are quasi-continuous by [14, Prop.2.5 (ii)], we arrive at Eq. 3.2 holding q.e. �

Recall the Borel properly exceptional set N ⊂ E of M = (Xt ,Px) appearing in the
absolute continuity condition (AC). For B ∈ B(E \N) of positive m-measure, we consider
a quasi-support B̃ of the measure 1B · m, namely, the smallest quasi-closed set (up to the
quasi-equivalence) outside which this measure vanishes. It is quasi-equivalent to the support

of the corresponding PCAF Ct =
∫ t

0
1B(Xs)ds, t ≥ 0, of M

∣
∣
E\N ([5, Th.5.2.1]), so that

we can and will make a specific choice of B̃:

B̃ = {x ∈ E \N : Px(R = 0) = 1}, R(ω) = inf{t > 0 : Ct(ω) > 0}. (3.4)

B̃ is a Borel subset of E \ N ([14, §3.2]) and hence E \ N \ B̃ is finely open Borel set by
enlarging the Borel properly exceptional set N of M if necessary. We denote by RE\B̃ the
0-order resolvent kernel of the part process ofM

∣
∣
E\N on this set.

In what follows, we fix an admissible set F ⊂ E \ N and let {Rμ, μ ∈ M0} be the
family of recurrent potentials relative to F .

Given a Borel set B ⊂ E \ N with positive m-measure, B̃ denotes the quasi-support of
the measure 1B ·m.
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Definition 3.2 A probability measure μ ∈M0 concentrated on B̃ is called the equilibrium
measure for B̃ if Rμ is constant q.e. on B̃.

Define

μB̃(A) = 1

m(F)
P1F ·m(XσB̃

∈ A), A ∈ B(E). (3.5)

By virtue of Theorem 3.5.6 and (A.2.4) of [5], we see that μB̃ is a probability measure on
E concentrated on B̃.

Lemma 3.3 μB̃ belongs to the space S
g,(0)
0 of positive Radon measures of finite 0-order

energy relative to the form (Eg,F).

Proof. We first show that, for any non-negative Borel function u on E,

HB̃u(x) = H
g

B̃
u(x)+ RE\B̃ (gH

g

B̃
u)(x), (3.6)

where H
g

B̃
denotes the counterpart of HB̃ for the process Mg . In fact, by using the PCAF

Gt =
∫ t

0g(Xs)ds ofM, we have for any non-negative bounded Borel function u,

RE\B̃ (1F H
g

B̃
u)(x) = E

[∫ σB̃

0
g(Xt )EXt

[
e
−Gσ

B̃ u(XσB̃
)
]
dt

]

= Ex

[∫ σB̃

0
g(Xt )e

−Gσ
B̃
◦θt u(XσB̃

◦ θt )dt

]

= Ex

[∫ σB̃

0
g(Xt )e

−(Gσ
B̃
−Gt )u(XσB̃

)dt

]

= Ex

[
e
−Gσ

B̃ u(XσB̃
)
(
e
Gσ

B̃ − 1
)]
= HB̃u(x)−H

g

B̃
u(x).

For a general non-negative Borel function, it suffices to aproximate by u ∧ n.
We next show that

RE\B̃g(x)is bounded in x ∈ E \N . (3.7)

Indeed, since R = σB̃ a.s. ([5, Proposition A.3.6]), RE\B̃g(x) = Ex

[∫ σB̃

0 g(Xt )dt
]
is

dominated by Rhg(x) = Ex

[∫∞
0 e−Ct g(Xt )dt

]
which is bounded on E by Lemma 3.1.

It follows from Eqs. 3.5 and 3.6 that

〈μB̃, RgμB̃〉 = 1

m(F)

〈
g ·m,H

g

B̃
RgμB̃ + RE\B̃ (gH

g

B̃
RgμB̃)

〉

≤ 1

m(F)

(〈
g ·m, RgμB̃

〉
+
〈
g ·m, RE\B̃ (gRgμB̃)

〉)
.

Observe that 〈g ·m, RgμB̃〉 = 〈μB̃, Rgg〉 = 1 and
〈
g ·m, RE\B̃ (gRgμB̃)

〉
= 〈μB̃, Rg(g · RE\B̃g)〉 ≤ ‖RE\B̃g‖∞.

which is finite by Eq. 3.7. Hence μB̃ ∈ S
g,(0)
0 on account of [14, Prop.2.5 (ii)]. �

Theorem 3.4 (i) For any Borel set B ⊂ E \ N of positive m-measure, the probability
measure μB̃ defined by Eq. 3.5 is the unique equilibrium measure for the quasi-support B̃

of 1B ·m. RμB̃(x) takes a constant value c(B̃) q.e. on B̃ given by

c(B̃) = 1

m(F)2
(1F , RE\B̃1F )m, (3.8)
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and RμB̃ admits the expression

RμB̃ = c(B̃)− 1

m(F)
RE\B̃g, q.e. on E. (3.9)

(ii) μB̃ is the unique measure among

{μ ∈ Sg,(0)
0 : μ(B̃) = 1, μ(E \ B̃) = 0} (3.10)

minimizing E(Rμ,Rμ) = 〈μ, Rμ〉, and the minimum value equals c(B̃).

Proof. (i). According to [14, Th.3.5] about an explicit construction of the family {Rμ :
μ ∈M0} of recurrent potentials relative to the admissible set F , it holds that

Rf = HF Ř(g · Rgf )+ Rgf − 1

m(F)
〈m, f 〉, (3.11)

if a non-negative Borel function f on E satisfies f · m ∈ M0, or equivalently, if f is m-
integrable and (f, Rgf ) < ∞. Here Ř is an operator defined by [14, (3.16)]. We make a
special choice that f = ph · Rphg for any constant p ≥ 1 and h = 1B , which satisfies just
stated conditions in view of Lemma 3.1.

Notice that Řg = 0, Rgg = 1, Rph(ph) = 1, g · Rg(gRphg) = Ř1(gRphg) by [14,
(3.13)], and Ř1Řϕ = Řϕ − (Ř1ϕ −m(F)−1〈1F ·m, ϕ〉) by [14, (3.16)]. Eqs. 3.2 and 3.11
lead us to

R(ph · Rphg) = HF ŘRg(ph · Rphg)+ Rg(ph · Rphg)− 1

m(F)
〈m, ph · Rphg〉

= HF Ř
(
g(1− Rphg + Rg(g · Rphg))

)
+ 1− Rphg

+Rg(g · Rphg)− 1

m(F)
(g, Rph(ph))

= HF Řg −HF Ř(g · Rphg)+HF ŘŘ1R
phg − Rphg +HF Ř1(g · Rphg)

= −HF Ř(g · Rphg)+HF Ř(g · Rphg)−HF Ř1(g · Rphg)

+m(F)−1〈1F ·m, Rphg〉 − Rphg +HF Ř1(g · Rphg)

= −Rphg +m(F)−1〈mF ,Rphg〉. (3.12)

We let p →∞. Since R = σB̃ a.s. as was noted already, we have, for x ∈ E \N,

lim
p→∞Rphg(x) = lim

p→∞Ex

[∫ ∞

0
e−pCt g(Xt )dt

]

= Ex

[∫ σB

0
g(Xt )dt

]

+ lim
p→∞Ex

[

EXσ
B̃
[
∫ ∞

0
e−pCt g(Xt )dt]

]

= RE\B̃g(x),

Rphg(x) being bounded in x uniformly in p ≥ 1 by Lemma 3.1.
Take any v ∈ Cc(E). Then v · m ∈ M0 and Rv is quasi-continuous and bounded by

[14, Th.3.5 (iv)] and Lemma 3.1. Let τ(t) be the right continuous inverse of the PCAF Ct :
τ(t) = inf{s : Cs > t}. In particular, τ(0) = R = σB̃ . By using [14, Th.3.5 (ii)], we obtain

lim
p→∞(v, R(ph · Rphg)) = lim

p→∞(Rph(ph · Rv), g)

= lim
p→∞EmF

[∫ ∞

0
e−pCt Rv(Xt )d(pCt )

]

= lim
p→∞EmF

[∫ ∞

0
e−sRv(Xτ(s/p))ds

]

= 〈mF , HB̃Rv〉 = m(F)〈μB̃, Rv〉 = m(F)(RμB̃, v),
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for the probability measure μB̃ defined by Eq. 3.5. Since μB̃ ∈M0 by Lemma 3.3, the last
identity in the above is legitimated by Eq. 2.20.

Thus we have from Eq. 3.12 that

RμB̃ = − 1

m(F)
RE\B̃g + 1

m(F)2
(1F , RE\B̃g), q.e. on E. (3.13)

Since RE\B̃g = 0 on B̃, μB̃ satisfies the condition of the equilibrium measure of B̃ and, in
fact, its potential RμB̃ takes the constant value Eq. 3.8 q.e. on B̃ and Eq. 3.9 is valid.

To show the uniqueness of the equilibrium measure, assume that μ1, μ2 ∈ M0 are
probability measures supported by B̃ satisfying Rμi = Ci q.e. on B̃ for some constant Ci ,
for i = 1, 2. Since R(μ1 − μ2) = C1 − C2 q.e. on B̃, HB̃R(μ1 − μ2) = C1 − C2 q.e. on
E. Noting that μ1 − μ2 ∈M00, for any v ∈ Fe ∩ Cc(E), we have from Eq. 2.19,

0 = E(HB̃R(μ1 − μ2), v) = E(R(μ1 − μ2),HB̃v) = 〈μ1 − μ2, HB̃v〉 = 〈μ1 − μ2, v〉.
Therefore, μ1 = μ2 which implies the uniqueness of the equilibrium measure.

(ii). Take any μ from the class Eq. 3.10 and put ν = μ−μB̃ . Then 〈ν, Rν〉 = 〈μ,Rμ〉−
c(B̃) so that 〈μ, Rμ〉 ≥ c(B̃). The equality holds if and only if E(Rν,Rν) = 〈ν, Rν〉 = 0,
or equivalently, E(Rν, v) = 0 for any v ∈ Fe. As ν ∈M00, E(Rν, v) = 〈ν, ṽ〉, ∀v ∈ Fe,

by Eq. 2.19, which completes the proof. �
We call RμB̃ equilibrium potential for B̃ and c(B̃) of Eq. 3.8 the Robin constant for B̃

(relative to the admissible set F ).

Remark 3.5 In establishing Theorem 3.4, we need to take, instead of a Borel set B itself,
the quasi-support B̃ of 1B ·m.

(i). If B is closed, then B̃ ⊂ B and m(B \ B̃) = 0.
(ii). If B is open, then B ⊂ B̃ ⊂ B. In this case, B̃ = B if and only if every point of ∂B

is regular for B.

Here we present a comparison statement of Robin constants for different recurrent
Dirichlet forms. Let us consider two regular recurrent Dirichlet forms (E (i),F), i = 1, 2
on L2(E;m) both satisfying the condition (AC) with N = ∅ and conditions (A.1), (A.2) as
well. We assume that there exist some positive constants λ ≤ � with

λE (1)(u, u) ≤ E (2)(u, u) ≤ �E (1)(u, u) for all u ∈ F

The two Dirichlet forms then share common notions of ‘q.e.’ and ‘quasi-continuity’. For
any Borel set B ⊂ E with m(B) > 0, they have therefore a common quasi-support B̃ of
1B ·m up to q.e. equivalence. Let F ⊂ E be a common admissible set for E (1) and E (2).

Proposition 3.6 For any Borel set B ⊂ E, denote by c(i)(B̃) the Robin constant for B̃

relative to F with respect to the Dirichlet form E (i), i = 1, 2. Then

1

�
c(1)(B̃) ≤ c(2)(B̃) ≤ 1

λ
c(1)(B̃). (3.14)

Proof. Let {R(i)μ, μ ∈ M(i)
0 } be the family of recurent potentials relative to F with

respect to E (i), i = 1.2. Let μi(∈ M(i)
0 ) be the equilibrium measure of B̃ with respect

to E (i), i = 1, 2. Since R(1)μ1 = c(1)(B̃) q.e. on B̃ which is also supported by the
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probability measure μ2, we get by taking Eq. 2.19 into account, c(1)(B̃) = 〈μ2, R
(1)μ1〉 =

E (2)(R(2)μ2, R
(1)μ1). The righthand side is dominated by

E (2)(R(2)μ2, R
(2)μ2)

1/2 E (2)(R(1)μ1, R
(1)μ1)

1/2

≤ c(2)(B̃)1/2
√

� E (1)(R(1)μ1, R
(1)μ1)

1/2 ≤ √�c(1)(B̃)1/2c(2)(B̃)1/2.

Hence c(1)(B̃) ≤ �c(2)(B̃). The converse inequality follows similarly. �
For the sake of later use, let us state two formulae holding for recurrent potentials Rμ

relative to a fixed admissible set F . For F , define the probability measure m̃F on E by

m̃F (A) = 1

m(F)
m(A ∩ F), A ∈ B(E). (3.15)

Besides the family {Rμ;μ ∈M0} of recurent potentials relative to F , we consider a certain
linear space M̂0 of finite signed measures on E such that each μ ∈ M̂00 := {μ ∈ M̂0 :
μ(E) = 0} admits a unique function R̂μ ∈ Fe satisfying the Poisson equation E(R̂μ, v) =
〈μ, v〉 for all v ∈ Fe ∩ Cc(E). We assume that m̃F ∈ M̂0.

Lemma 3.7 If μ is a probability measure and μ ∈M0 ∩ M̂0, then, for q.e. x ∈ E,

Rμ(x) = R̂(μ− m̃F )(x)− 〈m̃F , R̂(μ− m̃F )〉 (3.16)

Proof. Since μ − m̃F ∈ M0 ∩ M̂0 with zero total mass, we have by the Poisson
equations (R − R̂)(μ− m̃F ) = c for some constant c. As Rm̃F = 0 by Eq. 2.19, Rμ(x) =
R̂(μ−m̃F )(x)+c. Integrating both sides by m̃F (dx), it holds that 〈m̃F , R̂(μ−m̃F )〉+c = 0,
yielding Eq. 3.16. �

Next let A be an open set with A ∩ F = ∅, (E,FA) be the part of the Dirichlet form
(E,F) on the set A and MA = (XA

t ,Px) be the part of the Hunt process M on A. MA is
then a transient Hunt process on A associated with the regular Dirichlet form (E,FA) on
L2(A;m). We denote by SA,(0)

0 the family of positive Radon measures on A of finite 0-

order energy relative to (E,FA) and by UAμ(∈ Fe,A) the 0-order potential of μ ∈ SA,(0)
0 .

We further put MA,(0)
0 = {μ = μ1 − μ2 : μ1, μ2 ∈ SA,(0)

0 }. We note that the inclusion
FA

e ⊂ Fg
e holds because (E,FA) can be also considered as the part of (E,Fg) on the setA.

The transition function P A
t ofMA satisfies the absolute continuity condition (AC) hold-

ing for any t > 0 and x ∈ A\N , N being the properly exceptional set ofM appearing there.
Hence the resolvent {RA

α , α > 0} ofMA admits the density function rA
α (x, y), x, y ∈ A\N,

that is e−αtP A
t -excessive in each variable. Define rA(x, y) = limα↓0 rA

α (x, y) and put
RAμ(x) = ∫

A
rA(x, y)μ(dy). Then, exactly in the same way as the proof of [14, Prop.2.5

(ii)], we can see that μ ∈ SA,(0)
0 if and only if 〈μ, RAμ〉 < ∞ and in this case RAμ is a

quasi-continuous version of the potential UAμ.
Since RAf ≤ Rgf for any non-negative Borel function f , one can prove the inclusion

{μ ∈ Sg,(0)
0 : supp[μ] ⊂ A} ⊂ SA,(0)

0 , (3.17)

in exactly the same way as the proof of [14, Prop.2.5 (i)].

Lemma 3.8 For any open setA withA∩F = ∅ and for any measureμ ∈M0 concentrated
on A, it holds that μ ∈MA,(0)

0 and

HE\ARμ = Rμ− RAμ. (3.18)
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Proof. In the proof of [14; Th.3.8], we have seen that μE\A ≡ μHE\A ∈ M0 for any
μ ∈M0. The first assertion is a consequence of Eq. 3.17. We show that

HE\ARμ = RμE\A. (3.19)

Let f be a bounded m-integrable function on E such that Rg|f | is bounded. Then, by
Eq. 2.17, 〈m̃F ,HE\ARμ〉 = 〈m̃F , Rμ〉 = 0 and further E(Rf,HE\ARμ) = (f,HE\ARμ),

whose left hand side equals E(HE\ARf,Rμ) = 〈μ,HE\ARf 〉 = 〈μE\A,Rf 〉 =
(f, RμE\A), arriving at Eq. 3.19.

Take any function v ∈ Fg
e . In view of [5, Th.3.4.8, Th.3.4.9], HE\Aṽ ∈ Fe is

E-orthogonal to FA
e and we get from Eq. 2.19 and Eq. 3.19

E(HE\ARμ+ RAμ, v) = E(RμE\A + RAμ, v)

= 〈μE\A, v〉 − 〈μE\A, 1〉〈m̃F , v〉 + 〈μ, v −HE\Av〉 = 〈μ, v〉 − 〈μ.1〉〈m̃F , v〉.

Hence, the function u = HE\ARμ+ RAμ is an element of Fg
e satisfying the first equation

in Eq. 2.19. Since it also satisfies the normalization 〈m̃F , u〉 = 〈m̃F , Rμ〉 = 0, we obtain
u = Rμ. �

In this section, we have considered the equilibriummeasure and the equilibrium potential
of a set for a recurrent Dirichlet form. For transient Dirichlet forms, these concepts have
been introduced in a somewhat different way (see [6, Ch.4] and [15, §2.1, §2.2]). To be more
precise, let (E,F) be a regular transient Dirichlet form on L2(E;m) and M = (Xt ,Px)

be the associated Hunt process on E. Let S(0)
0 be the family of positive Radon measures

on E of finite 0-order energy and Uμ ∈ Fe be the 0-order potential of μ ∈ S(0)
0 as were

introduced in Section 2.2.
We consider any Borel set B ⊂ E whose 0-order capacity Cap(0)(B) is positive and

finite. By the 0-order version of the second paragraph of [15, p 82] and [15, Th.4.3.3], there
exists then a unique measure μB ∈ S(0)

0 supported by B such that

ŨμB(x) = pB(x)for q.e. x ∈ E. where pB(x) = Px(σB <∞), x ∈ E.

Note that pB = 1 q.e. on B. μB (resp. UμB ) has been called the 0-order equilibrium
measure (resp. equilibrium potential) of B.

Assume further that the set B is closed. Then Cap(0)(B) = 〈μB, pB〉 equals the total
mass of μB and we can define the renormalized equilibrium measure μB of B by

μB(A) = μB(A)/Cap(0)(B), A ∈ B(E), (3.20)

which is a probability measure concentrated on B. Accordingly, the renormalized equi-

librium potential ŨμB(x) = pB(x)/Cap(0)(B), q.e. x ∈ E, takes a constant value
1/Cap(0)(B) q.e. on B so that this value can be regarded as the Robin constant for the closed
set B relative to the renornmalized equilibrium measure μB .

We notice that, if we further assume that the Dirichlet form E is strongly local, then μB

is concentrated on the boundary ∂B, because, for any function ϕ ∈ Fe∩Cc(E) with support
in the interior of B, 〈μB, ϕ〉 = E(pB, ϕ) = 0.
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4 GMCs via equilibrium potentials for recurrent forms

4.1 Properties of the family {μx,r , f (x, r)} for recurrent forms

Let E be either the whole plane C or the closure of the upper half-plane H and m be
the Lebesgue measure on E. We consider a strongly local regular recurrent Dirichlet form
(E,F) on L2(E;m) and an associated diffusion processM = (Xt ,Px) on E.
For x ∈ C, s > 0, we let B(x, s) = {y ∈ C : |y− x| < s} and B(s) = B(0, s).
A function u ∈ Fe is said to be E-harmonic on an open set G ⊂ E if E(u, v) = 0 for any
v ∈ CG where CG = {v ∈ C : supp(v) ⊂ G} for a special standard core C of E .

We make the following assumption:

(B.1) The transition function Pt of M admits a density function pt (x, y) with respect to
m satisfying the Gaussian estimate: there exist positive constants Ki, ki, i = 1, 2, such
that

K1

t
e−k1|x−y|2/t ≤ pt (x, y) ≤ K2

t
e−k2|x−y|2/t , ∀x, y ∈ E, t > 0. (4.1)

Here are some important consequences of this assumption (B.1). First, due to
M.T.Barlow, A.Grigor’yan and T. Kumagai [1, Th.3.1, Cor.4.2], we have the following:

Proposition 4.1 (i) pt (x, y) is positive and jointly continuous in (t, x, y) ∈ (0,∞)×E×E.
(ii) For any u ∈ Fe that is E-harmonic and bounded from below on an open set G ⊂ E,

there exists its m-version ũ such that ũ is continuous on G. If u ∈ Fe is non-negative and
E-harmonic on B(x, r) ⊂ E, then ũ satisfies the Harnack inequality: there exists a constant
CH independent of x and r such that

sup{̃u(y) : y ∈ B(x, r/2)} ≤ CH inf{̃u(y) : y ∈ B(x, r/2)}. (4.2)

Lemma 4.2 For each x ∈ E, the one-point set {x} is of zero capacity relative to E .

Proof. For α > 0, denote by rα(x, y) (resp. r̂α(x, y)) the Laplace transform of pt (x, y)
(resp. the transition density of the planar Brownian motion). By (B.1), 2πK1̂r2k1(x, y) ≤
r1(x, y), x, y ∈ E. Suppose Cap(y) = c > 0 for some y ∈ E. According to [15],
Ex[e−σy ] = c · r1(x, y) for q.e. x ∈ E, which contradicts to the unboundedness of the
righthand side due to the above inequality. �

For any Borel set B ⊂ E, a point x ∈ E is called regular for B if Px(σB = 0) =
1. For an open set G ⊂ E, a point x ∈ ∂G is said to be regular for the Dirich-
let problem on G if, for any bounded Borel function ϕ on ∂G that is continuous at x,
limz→x,z∈G Ez[ϕ(Xσ∂G

); σ∂G <∞] = ϕ(x).

Proposition 4.3 Let G be an open subset of E. In the case that E = H, we assume that
G ⊂ H. Then, a point x ∈ ∂G is regular for E \G if and only if x is regular for the Dirichlet
problem on G.

Proof. When G is bounded, the ‘only if’ part follows from E.B. Dynkin [10, Th.13.1].
We reproduce a proof for a general open G under the current setting. For simplicity, we only
consider the case that E = C.

As the proof of [9, Lem.6.3], we have for any u > 0 and ε > 0

Px(|Xt − x| ≥ 2ε, ∃t ∈ [0, u] ∩Q) ≤ 2 sup
t≤u,y∈C

Pt (y,C \ B(y, ε)), ∀x ∈ C. (4.3)
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The righthand side tends to zero as u ↓ 0 by the assumption (B.1). Since Px(supt∈[0,u] |Xt−
x| > ε) is dominated by the lefthand side of Eq. 4.3 with ε/2 in place of ε, we obtain for
any ε > 0

lim
u↓0 supx∈G

Px(sup
t≤u
|Xt − x| > ε) = 0. (4.4)

On the other hand, assumption (B.1) along with Proposition 4.1 (i) implies that M is
strong Feller in the sense that Ptf ∈ C∞(C) for any bounded Borel function f on C.
According to Lemma 13.1 of [10], this means that for u > 0 and τG = σC\G

Px(τG > u) is upper semi continuous in x ∈ C. (4.5)

Assume that c ∈ ∂G is regular for C \ G, namely, Pc(τG = 0) = 1. Take any bounded
Borel function ϕ on ∂G which is continuous at c so that, for any ε > 0, there is α > 0 with
|ϕ(y)− ϕ(c)| < ε for any y ∈ B(c, α). We then get, for f (x) = Ex[ϕ(XτG

)], x ∈ G,

|f (x)− ϕ(c)| ≤ ε + 2||ϕ||∞(1− Px(XτG
∈ B(c, α))), x ∈ G. (4.6)

By Eq. 4.4, we can find u > 0 with

Px(sup
t≤u
|Xt − x| ≥ α/2) < ε, ∀x ∈ G. (4.7)

As Pc(τG > u) = 0, Eq. 4.5 implies

Px(τG > u) < ε, ∀x ∈ B(c, δ), for some δ ∈ (0, α/2). (4.8)

It follows from Eqs. 4.7 and 4.8 that, for any x ∈ G ∩ B(c, δ),

Px(τG ≤ u, sup
t≤u
|Xt − x| < α/2) > 1− 2ε.

Since the lefthand side is dominated by Px(|x − XτG
| < α/2), we obtain Px(|c − XτG

| <

α) > 1− 2ε, which combined with Eq. 4.6 leads us to |f (x)−ϕ(c)| < ε+ 4ε||ϕ||∞, ∀x ∈
G ∩ B(c, δ).

The ‘if’ part can be proved in exactly the same manner as [26, Prop.3.6, Th.2.2] by noting
that each one point set is polar by Lemma 4.2. �

We further make the next assumption:

(B.2) Let B = B(x, r) ∩ E for any x ∈ E, r > 0. In the case that E = H, we assume
that r �= �x. Then every point of ∂B is regular for B and for E \ B.

The property derived in Proposition 4.1(i) is much stronger than the absolute continuity
condition (AC) which now holds with N = ∅. For any set B as in the assumption (B.2), let
B̃ the quasi-support of 1B ·m specified by Eq. 3.4. Then, by (B.2)

B̃ = B, and Px(σB̃ = σ∂B) = 1, for every x ∈ E \ B. (4.9)

Define rα(x, y) = ∫∞
0 e−αtpt (x, y)dt, x, y ∈ E, and Rαf (x) =∫

E
rα(x, y)f (y)m(dy), x ∈ E. Then {Rα, α > 0} is the resolvent of M satisfying the

conditions (A.1), (A.2) in Section 3. Further, r1(x, y) is positive and lower semi-continuous
in (x, y) ∈ E × E so that infx∈F,y∈F r1(x, y) > 0 for any compact set F ⊂ E. Therefore
any compact set F ⊂ E with positive Lebesgue measure m(F) can be an admissible set in
the sense of Eq. 2.17. We make a special choice of it; for a fixed S > 2,

F = B(S + 1) \ B(S) when E = C; F = (B(S + 1) \ B(S)) ∩H when E = H. (4.10)

By the assumption (B.2), we see that F̃ = F .
In what follows, we only deal with the case that E = C for simplicity of presentation

and we aim at constructing the Gaussian multiplicative chaos on B(S − 1). But, in the case
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that E = H, all the statements below hold only by changing B(S − 1) into B(S − 1)∩ {x ∈
H : �x > 1}.

For the annulus F in C defined by Eq. 4.10, its indicator function 1F will be denoted by
g. Recall the related objects Eg, Fg

e , Sg,(0)
0 , Mg, Rg, introduced in Sections 2.3 and 3. We

shall also use the notations mF (A) = m(F ∩ A), A ∈ B(C), m̃F = mF /m(F). As the
transition function P

g
t of Mg satisfies the absolute continuity condition (AC) with N = ∅,

there exists a non-negative symmetric Borel measurable function rg(x, y), x, y ∈ C, such
that it is Mg-excessive in each variable and

Rgf (x) =
∫

C

rg(x, y)f (y)m(dy) <∞ ∀x ∈ C, (4.11)

for any non-negative bounded Borel function f on C vanishing outside a bounded set by
virtue of Lemma 3.1 and the definition [14, (2.12)] of rg(x, y). Eq. 4.11 particularly implies
that, for each x ∈ C, rg(x, y) <∞ for q.e. y ∈ C on account of [5, Th.A.2.13 (v)]. Further,
for any μ ∈ Sg.(0)

0 , the function Rgμ define by Rgμ(x) = ∫
C

rg(x, y)μ(dy), x ∈ C, is
M

g-excessive and a quasi continuous version of the 0-order potential Ugμ ∈ Fg
e of μ in

view of [14, Prop.2.5].
Recall the space of signed measures M0 defined by Eq. 2.18. For any μ ∈ M0, the

recurrent potential Rμ of μ relative to the admissible set F has been constructed in [14,
Th.3.5] explicitly by the formula

Rμ = HF Ř(1F Rgμ)+ Rgμ− μ(C)

m(F )
. (4.12)

which is a specific quasi continuous function in Fg
e satisfying the condition Eq. 2.19. Here

HF is defined by HF u(x) = Ex[u(XσF
)], x ∈ C, and Ř is a bounded operator on

L2(F ;mF ) to be explained below.
Let (Řp)p>0 be the resolvent of the time changed process M̌ = (Xτt , {Px}x∈F ) on F of

M by its positive continuous additive functional Ct =
∫ t

0 1F (Xs)ds. τt is the right contin-

uous inverse of Ct . F coincides with the support of Ct . We note that Ř1(x, ·) is absolutely
continuous with resepct to mF and satisfies

Ř1ϕ(x) =
∫

F

ř1(x, y)ϕ(y)mF (dy), ř1(x, y) = rg(x, y)1F (y), x ∈ F . (4.13)

Define Ř1
1 = Ř1 and Řn

1ϕ(x) = ∫
F

Ř1(x, dy)Ř
n−1
1 ϕ(y), n ≥ 2. Then

Řϕ =
∞∑

n=1
(Řn

1ϕ − 〈m̃F , ϕ〉), ϕ ∈ L2(F ;mF ), (4.14)

is convergent in L2(F ;mF ). We also note that Ř admits the bounds (cf. [14, (3.7),(3.10)]):

||Řϕ||2 ≤ c1||ϕ||2, ||Řϕ||∞ ≤ c2||ϕ||∞, for some constants c1 > 0, c2 > 0. (4.15)

We have seen in Theorem 3.4 that, for any B ∈ B(C) with m(B) > 0, the quasi-support
B̃ of 1B ·m admits the equilibrium measure μB̃ ∈ Sg,(0)

0 defined by Eq. 3.5. Let B(x, r) be
any open disk with center x ∈ B(S − 1) and radius 0 < r < 1. Its closure will be denoted
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by B̄(x, r). By Eq. 4.9, we have B̃(x, r) = B(x, r). We denote the equilibrium measure
μB(x,r) by μx,r . We then see from Theorem 3.4 that
⎧
⎪⎪⎨

⎪⎪⎩

μx,r (A) = Pm̃F
(Xσ∂B(x,r) ∈ A), A ∈ B(∂B(x, r)),

Rμx,r (y) = f (x, r)− 1
m(F)

Ey

[∫ σB(x,r)
0 1F (Xt )dt

]
, q.e. y ∈ C, where

f (x, r) := 1
m(F)

Em̃F

[∫ σ∂B(x,r)
0 1F (Xt )dt

]
,

(4.16)

where m̃F is the probability measure defined by Eq. 3.15. Thusμx,r is a probability measure
concentrated on ∂B(x, r) and its potential Rμx,r takes a constant value f (x, r) (called the
Robin constant for B̄(x, r)) q.e. on B(x, r).

Lemma 4.4 Define R̂μx,r (y), y ∈ C, by

R̂μx,r (y) = f (x, r)− 1

m(F)
v(y), where v(y) = Ey

[∫ σB(x,r)

0
1F (Xt )dt

]

. (4.17)

R̂μx,r is a quasi continuous version of Rμx,r . Further R̂μx,r (y) is continuous in y ∈ B(S),
E-harmonic on B(S) \ B(x, r) and identically equal to f (x, r) on B(x, r).

Proof. Eq. 4.16 implies the first statement. v ∈ Fe by Eq. 4.16 and v is bounded on C

in view of Eq. 3.7. Take any disk B with B ⊂ B(S) \ B(x, r). Then v is M-harmonic on
B in the sence that, for any open O with O ⊂ B, Ex[v(XτO

)] = v(x), x ∈ O. Therefore,
by virtue of [5, Th.6.7.13], v is E-harmonic on B, and by Proosition 4.1 (ii), there exists an
m-version ṽ of v which is continuous on B.

On the other hand, v is excessive relative to the partM
C\B(x,r) ofM onC\B(x, r) and so

relative to the part MB of M on B. Denote by P B
t the transition function of MB . By taking

the assumption (B.1) into account, we have ṽ(y) = limt→0 P B
t ṽ(y) = limt→0 P B

t v(y) =
v(y), for all y ∈ B, namely, v(y) is continuous in y ∈ B.

Denote v by vr . vr is identically zero on B(x, r) by assumption (B.2). So it remains to
prove that, for any y0 ∈ ∂B(x, r),

lim
y→y0, y∈B(S)\B(x,r)

vr (y) = 0. (4.18)

Take s ∈ (0, r). Then vs(z) is continuous in z ∈ B(S) \ B(x, s) and

vs(y) = vr(y)+ Ey[vs(Xσ∂B(x,r) )], y ∈ C \ B(x, r),

Hence Eq. 4.18 follows from assumption (B.2) and Proposition 4.3. �
We first study the relation between the next two properties (P.1), (P.2) of the equilibrium

potentials {Rμx,r }:
(P.1) There exist constants κ ≥ 1 and C1 ≥ 0 such that for all x ∈ B(S − 1) and

0 < 4r ≤ t ≤ 1
3 ,

max{R̂μx,r (y) : y ∈ ∂B(x, t)} ≤ κ min{R̂μx,r (y) : y ∈ ∂B(x, t)} + C1. (4.19)

(P.2) There exist constants κ ≥ 1 and C1 ≥ 0 such that, for all x, y ∈ B(S − 1) and
0 < ε ≤ δ with 6δ ≤ |x− y| < 1/3,

〈μx,ε, Rμy,δ〉 ≤ κf (y, |x− y| − (ε + δ))+ C1. (4.20)

Lemma 4.5 (i) For r ∈ (ε, 1/2),

max{R̂μx,ε(y) : y ∈ B(S) \ B(x, r)} = max{R̂μx,ε(y) : y ∈ ∂B(x, r)}. (4.21)
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(ii) If property (P.1) holds for some constant κ > 0 and C1 ≥ 0, then so does property
(P.2) for the same constants κ, C1.

Proof. (i) Let v(y), y ∈ B(S)\B(x, ε), be the function defined by Eq. 4.17 for ε in place
of r . Then, for r ∈ (ε, 1/2) and for any y ∈ B(S) \ B(x, r), Py(σ∂B(x,r) < σ∂B(x,ε)) = 1
and so

v(y) ≥ Ey

[∫ σ∂B(x,ε)

σ∂B(x,r)

1F (Xt )dt

]

= Ey
[
v(Xσ∂B(x,r) )

] ≥ min
z∈∂B(x,r)

v(z),

yielding Eq. 4.21.
(ii) For any z ∈ B(x, ε), we have 1/2 > |x− y| + ε ≥ |z− y| ≥ |x− y| − ε− δ ≥ 4δ so

that (i), Eq. 4.19 with r = δ, t = |x− y| − (ε + δ) < 1/3 and Eq. 2.20 imply

R̂μy,δ(z) ≤ max{R̂μy,δ(z) : z ∈ ∂B(y, |x− y| − (ε + δ))}
≤ κ min{R̂μy,δ(z) : z ∈ ∂B(y, |x− y| − (ε + δ))} + C1

≤ κ

∫
R̂μy,δ(w)μy,|x−y|−(ε+δ)(dw)+ C1 = κf (y, |x− y| − (ε + δ))+ C1,

yielding Eq. 4.20. �

Lemma 4.6 (i) For any 0 < r0 < 1/3, there exists a constant M1 depending only on r0
such that

Rgμy,r (x) ≤ M1, for all y ∈ B(S − 1), x ∈ C \ B(y, r0), 0 < r < r0/2. (4.22)

(ii) For any 0 < r0 < 1/3, there exists a constant M2 depending only on r0 such that

|R̂μy,r (x)| ≤ M2, for all y ∈ B(S − 1), x ∈ B(S) \ B(y, r0), 0 < r < r0/2. (4.23)

(iii) Property (P.1) holds true for some constant κ > 0 and C1 ≥ 0.

Proof. (i) Let G = B(S−1/2)\B(y, r0/2) for any y ∈ B(S−1). Take any r ∈ (0, r0/2).
Then, for any v ∈ CG, E(Rgμy,r , v) = Eg(Rgμy,r .v) = 〈μy,r , v〉 = 0, namely, Rgμy,r

is E-harmonic on G. As Rgμy,r is Mg-excessive on C, we can use Proposition 4.1 (ii) in
the same way as the proof of Lemma 4.4 to conclude that it is continuous on G. We can
then apply the Harnack inequality Eq. 4.2 to Rgμy,r to obtain for any z ∈ G, s > 0, with
B(z, s) ⊂ G that

max{Rgμy,r (w) : w ∈ B(z, s/2)} ≤ CH min{Rgμy,r (w) : w ∈ B(z, s/2)}.
In particular, for any z ∈ ∂B(y, r0), B(z, r0/2) ⊂ G and consequently,

max{Rgμy,r (w) : w ∈ B(z, r0/4)} ≤ CH min{Rgμy,r (w) : w ∈ B(z, r0/4)}.
Since the length of the circle ∂B(y, r0) is 2πr0, ∂B(y, r0) can be covered by k =

[2πr0/(r0/2)] + 1 = 13 disks B(zi , r0/4) with center zi ∈ ∂B(y, r0), i = 1, 2, · · · , 13
such that B(zi , r0/4) ∩ B(zi+1, r0/4) �= ∅ for any 1 ≤ i ≤ 13 with the convention that
z14 = z1. If we denote the maximum and the minimum of Rgμy,r on B(zi , r0/4) by Mi and
mi , respectively, then Mi/mi ≤ CH for any 1 ≤ i ≤ 13.

Without loss of generality, we may assume that M1 = max1≤i≤13 Mi . As B(z1, r0/4) ∩
B(z2, r0/4) is non-empty, we have m1 ≤ M2 and M1 ≤ CH m1 ≤ CH M2 ≤ C2

H m2 so that
M1 ≤ C2

H (m1∧m2). Similarly, one can get, for any 1 ≤ i ≤ 7,M1 ≤ Ci
H (m1∧m2∧· · ·∧mi)

andM1 ≤ Ci
H (m13∧m12∧· · ·∧m14−i ). If the number k such thatm1∧m2∧· · ·∧m13 = mk
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satisfies 1 ≤ k ≤ 7 (resp. 7 ≤ k ≤ 13), then the first (resp. second) relation with i = 7
yields thatM1 ≤ C7

H mk . LetD(y, r0) = ∪13i=1B(zi , r0/4). We thus obtain, for any r < r0/2,

max{Rgμy,r (w) : w ∈ D(y, r0)} ≤ C7
H min{Rgμy,r (w) : w ∈ D(y, r0)}. (4.24)

Because of the inclusion ∂B(y, r0) ⊂ D(y, r0), we also have for any r < r0/2

max{Rgμy,r (w) : w ∈ ∂B(y, r0)} ≤ C7
H min{Rgμy,r (w) : w ∈ ∂B(y, r0)}. (4.25)

Since Rgμy,r ∈ Fg
e is Eg-harmonic on C \ B(y, r0), Rgμy,r (x) = H

g

B(y,r0)
Rgμy,r (x)

for q.e. x ∈ C \ B(y, r0) by [15, Th.4.3.2], which holds for every x ∈ C \ B(y, r0) because
the both hand sides areMg-excessive and consequently excessive relative to the part ofMg

on C \ B(y, r0). Accordingly we get, for any x ∈ C \ B(y, r0),

Rgμy,r (x) = H
g

D(y,r0)
Rgμy,r (x) ≤ max{Rgμy,r (z) : z ∈ D(y, r0)}

≤ C7
H min{Rgμy,r (z) : z ∈ D(y, r0)} ≤ C7

H

m(D(y, r0))

∫

D(y,r0)
Rgμy,r (z)m(dz)

= C7
H

m(D(y, r0))
〈μy,r , Rg1D(y,r0)

〉.

As the proof of Lemma 3.1 (i), Rg1D(y,r0)
(z) ≤ 1/�(D(y, r0)) on C for

�(D(y, r0)) = inf{R2g(x) : x ∈ D(y, r0)} ≥ inf{r2(x, z) : x ∈ D(y, r0), z ∈ F }m(F).

By the Gaussian lower bound in Eq. 4.1, the last term in the above is larger than M1m(F)

with M1 =
∫∞
0 (K1/t)e−2t−k1(2S−1/2)2/t dt < ∞. Further m(D(y, r0)) takes a positive

value mr0 independent of y ∈ B(S − 1) and Eq. 4.22 holds for M1 = C7
H /(M1m(F)mr0).

(ii) Eq. 4.22 particularly implies that Rgμy,r (x) ≤ M1 for any x ∈ F , y ∈ B(S − 1) and
r ≤ r0/2. Hence, in view of Eqs. 4.12 and 4.15, we have

||Rμy,r ||L∞(C\B(y,r0)) ≤ c2M1 +M1 + 1

m(F)
:= M2. y ∈ B(S − 1), r ∈ (0, r0/2).

By Lemma 4.4, R̂μy,r is a version of Rμy,r and continuous on B(S) so that we obtain the
desired bound Eq. 4.23.

(iii) Take any r0 ∈ (0, 1/6) and let G1 = B(S − 1/2) \ B(y, r0). For r < r0, R̂μy,r is
E-harmonic and continuous on G1 by Lemma 4.4. For r < r0/2, |R̂μy,r | ≤ M2 on G1 by
(ii) so that Ṙμy,r = R̂μy,r +M2 is non-negative continuous and E-harmonic on G1. Hence
the same method as in (i) works to obtain Eq. 4.25 for Ṙμy,r and 2r0 in place of Rgμx,r

and r0, respectively. Accordingly,

max{R̂μy,r (z) : z ∈ ∂B(y, 2r0)} ≤ C7
H min{R̂μy,r (z) : z ∈ ∂B(y, 2r0)}+C1, ∀r < r0/2,

for some constant C1 ≥ 0, yielding Eq. 4.19 with κ = C7
H . �

Proposition 4.7 (i) There exists a symmetric Borel measurable function r(x, y), x, y ∈ C,

such that, for each x ∈ C, it is a difference ofMg-excessive functions of y ∈ C finite q.e. and

Rμ(x) =
∫

C

r(x, y)μ(dy), x ∈ C, for any μ ∈M0. (4.26)

(ii) For any fixed 0 < η < 1/2, 〈μx,r1 , Rμy,r2〉 is uniformly bounded in r1, r2 ∈ (0, η/8)
and x, y ∈ B(S − 1) with |x− y| > η.

lim
r1,r2↓0

〈μx,r1 , Rμy,r2〉 = r(x, y), (4.27)
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for m×m-a.e. (x, y) ∈ B(S − 1)× B(S − 1) ∩ {(x, y) : |x− y| > η}.

A proof of this proposition will be given in Appendix (Section 7.1). In the proof of the
second assertion (ii), we shall make a full use of the upper Gaussian bound in assumption
(B.1) along with Lemma 4.6.

Before going into our task of constructing Gaussian multiplicative chaos, we need to
make an additional assumption that

(B.3) There exist a constant C2 > 0 such that

sup{f (y, r) : y ∈ B(S − 1)} ≤ C2 inf{f (z, r) : z ∈ B(S − 1)}, r ∈ (0, 1). (4.28)

4.2 Construction of Gaussianmultiplicative chaos from {μx,r , f (x, r)}
Let {Xu; u ∈ Fe} be the centered Gaussian field defined on a probability space (�,B,P)

with covariance E[XuXv] = E(u, v) u, v ∈ Fe. Define

Y x,r = XRμx,r , x ∈ B(S − 1), 0 < r < 1, (4.29)

for the equilbrium potential Rμx,r ∈ Fe with respect to the closed disk B(x, r).
On account of the probabilistic expression Eq. 4.16 of the Robin constant f (x, r), we

readily see that f (x, r) is a strictly decreasing continuous function of r ∈ (0, 1). We denote
its inverse function by f−1(x, r). For any r ∈ (0, 1/2), let r = r(x) = f−1(x, [f (x, r)]),
where [f (x, r)] is the integer part of f (x, r).
Given α > 0 and 0 < ε < ε0 < 1/2, we shall consider the set Gα,ε0

x,ε (ω) defined by

Gα,ε0
x,ε (ω) = {Y x,r ≤ αf (x, r), ∀r ∈ (ε, ε0)}. (4.30)

For a fixed γ > 0, put

Ỹ x,ε,γ = γ Y x,ε − γ 2

2
V (Y x,ε), (4.31)

where V (Y x,ε) = f (x, ε) is the variance of Y x,ε .
The following estimate is well known for a centered Gaussian random variable ξ with

variance V (ξ) (see [22; Lem.5.1.3]):

P[|ξ | > a] ≤ exp

(

− a2

2V (ξ)

)

∀a > 0. (4.32)

Proposition 4.8 For any α > γ and ε0 > 0, there exists p(α, γ, ε0) > 0 independent of ε

and x such that limε0→0 p(α, γ, ε0) = 0 and

E

[
eỸ x,ε,γ : � \Gα,ε0

x,ε

]
≤ p(α, γ, ε0), for all ε ∈ (0, ε0) and x ∈ B(S − 1).

Proof. Put Mx,ε,γ,α = E

[
eỸ x,ε,γ : � \G

α,ε0
x,ε

]
. Then

Mx,ε,γ,α = e−(γ 2/2)V (Y x,ε)
E

⎡

⎣eγY x,ε :
⋃

k∈([f (x,ε0)],[f (x,ε])
{Y x,f−1(x,k) > αk}

⎤

⎦ .

Since, for any ε < f−1(x, k),

cov(γ Y x,ε, Y x,f−1(x,k)) = γ 〈μx,ε, Rμx,f−1(x,k)〉 = γf (x, f−1(x, k)) = γ k,
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the Cameron-Martin formula Eq. 2.25 applies in getting

Mx,ε,γ,α = P

⎛

⎝
⋃

k∈([f (x,ε0)],[f (x,ε)])
{Y x,f−1(x,k) + γ k > αk}

⎞

⎠

≤
∑

k∈([f (x,ε0)],[f (x,ε)])
P

(
Y x,f−1(x,k) > (α − γ )k

)
.

As Y x,f−1(x,k) is a centered Gaussian random variable with variance k, we get from Eq. 4.32,

Mx,ε,γ,α ≤ 1

2

∞∑

k=[f (x,ε0)]
exp

(

− ((α − γ )k)2

2k

)

≤ 1

2

∞∑

k=k0(ε0)

exp

(

− (α − γ )2k

2

)

,

where k0(ε0) = inf{[f (z, ε0)] : z ∈ B(S − 1)}.
We let p(α, γ, ε0) =∑∞

k=k0(ε0)
e−(α−γ )2k/2. By Eq. 4.16, Lemma 4.2 and the recurrence

of E , it holds that

lim
r↓0 f (x, r) = 1

m(F)
Em̃F

[∫ ∞

0
1F (Xt )dt

]

= ∞, ∀x ∈ B(S − 1).

On the other hand, the assumption (B.3) yields that, for a fixed c ∈ B(S − 1),

f (c, r) ≤ C1 inf{f (z, r) : z ∈ B(S − 1)}, for every r ∈ (0, 1).

Therefore limε0→0 k0(ε0) = ∞ and limε0→0 p(α, γ, ε0) = 0. �
Before proceeding further, let us prepare the following proposition about the existence

of a measurable version in two variables (x, ω) of the random variable Y x,r (ω) defined by
Eq. 4.29 for each r > 0.

Proposition 4.9 For any r ∈ (0, 1/2) and finite positive measure σ on B(S − 1), there
exists a measurable function Y r(x, ω) on B(S − 1)×� such that, for σ -a.e. x ∈ B(S − 1),
Y r(x, ω) = Y x,r (ω) P-a.s.

Proof. Let us fix r ∈ (0, 1/2) and a finite positive measure σ on B(S− 1). We shall first
prove that the map from x ∈ B(S − 1) to Rμx,r ∈ Fe is continuous. Since

E(Rμx,r − Rμy,r , Rμx,r − Rμy,r ) = f (x, r)+ f (y, r)− 2〈μy,r , Rμx,r 〉,
it is enough to show that limn→∞ f (yn, r) = f (x, r) and limn→∞〈μyn,r , Rμx,r 〉 = f (x, r)
for any sequence yn ∈ B(S − 1) converging to x ∈ B(S − 1), In view of Eq. 4.16, these
two relations are equivalent to limn→∞(1F , RE\B̄(yn,r)1F )m = (1F , RE\B̄(x,r)1F )m and
limn→∞〈μyn,r , RE\B̄(x,r)1F 〉 = 0, respectively. But by Eq. 4.16 again,

〈μyn,r , RE\B̄(x,r)g〉 = Em̃F HB̄(yn,r)

[∫ σB̄(x,r)

0
1F (Xt )dt

]

= Em̃F

[∫ σB̄(yn,r)+σB̄(x,r)◦θ(σB̄(yn,r))

σB̄(yn,r)

1F (Xt )dt

]

.

Therefore, if we can show that, for any sequence yn ∈ (S − 1) converging to x ∈ B(S − 1),

Pz( lim
n→∞ σB̄(yn,r) = lim

n→∞(σB̄(yn,r) + σB̄(x,r) ◦ θ(σB̄(yn,r)) = σB̄(x,r)) = 1, ∀z ∈ E, (4.33)

the desired continuity follows.
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For any 0 < ε < r , if |x − yn| < ε then B(x, r − ε) ⊂ B(yn, r) ∩ B(x, r) ⊂
B(yn, r)∪B(x, r) ⊂ B(x, r+ε). Hence σB(x,r+ε) ≤ limn→∞σB̄(yn,r) ≤ limn→∞σB̄(yn,r) ≤
σB(x,r−ε). The same relation also holds for σB̄(yn,r)+σB̄(x,r)◦θ(σB̄(yn,r)) instead of σB̄(yn,r).
Therefore, for the proof of Eq. 4.33, it only remains to show that Pz(limk→∞ σB(x,r+εk) =
limk→∞ σB(x,r−εk)

= σB(x,r)) = 1, ∀z ∈ E for some sequence εk ↓ 0.
By (B.2), σB(x,r) = σB(x,r) a.s. Clearly σB(x,r−εk)

≥ σB(x,r). Further, if σB(x,r)(ω) < t ,

thenXs(ω) ∈ B(x, r) for some s < t and henceXs(ω) ∈ B(x, r−εk) for some k ≥ 1, that is
σB(x,r−εk)

< t . Therefore limk→∞ σB(x,r−εk)
≤ σB(x,r) and hence Pz(limk→∞ σB(x,r−εk)

=
σB(x,r) = σB̄(x,r)) = 1. To show another relation, put σ = limk→∞ σB(x,r+εk) ≤ σB(x,r).

Since Xσ = limk→∞XσB(x,r+εk )
∈ ∩kB(x, r + εk) = B(x, r), σ ≥ σB(x,r). Hence we also

have Pz(limk→∞ σB(x,r+εk) = σB(x,r)) = 1. Thus we have the desired continuity.

As E[(Y x,r−Y y,r )2] = E(Rμx,r−Rμy,r , Rμx,r−Rμy,r ), the continuity verified in the
above implies that x �→ Y x,r is a continuous map from B(S−1) toL2(P), and consequently,
a uniformly continuous map from K to L2(P) for any compact sunset K of B(S − 1). For
n ≥ 1, express B(S − 1) as a finite disjoint sum B(S − 1) = ∑k Cn,k, where Cn,k is an
intersection of B(S − 1) and a square of side length 1/n. Pick the unique point cn,k from
Cn,k with shortest distance from the origin and let Y r

n (x, ω) =∑k 1Cn,k
(x)Y cn,k,r (ω). Then

Y r
n (x, ω) is measurable in (x, ω) ∈ B(S − 1)×� and, by the stated uniform continuity, we

have for any compact subset K of B(S − 1)

lim
n→∞ sup

x∈K

E[(Y r
n (x, ω)− Y x,r (ω))2] = 0. (4.34)

Consequently,

lim
n,�→∞

∫

�×K

(Y r
n (x, ω)− Y r

� (x, ω))2P(dω)σ(dx)

≤ σ(K) lim
n,�→∞ sup

x∈K

E[(Y r
n (x, ω)− Y r

� (x, ω))2] = 0,

namely, {Y r
n (x, ω)} is a Cauchy sequence in L2(�×K,P× σ).

By choosing a suitable subsequence {n′} of {n}, Yn′(x, ω) conveges to a P × σ -
measurable function Y r(x, ω) on K × � as n′ → ∞. In particular, for σ -a.e. x ∈ K ,
limn′→∞ Y r

n′(x, ω) = Y r(x, ω), P-a.s., which combined with Eq. 4.34 yields E[(Y r(x, ω)−
Y x,r (ω))2] = 0 and Y r(x, ω) = Y x,r (ω) P-a.s., for σ -a.e. x ∈ K . Since K is an arbitrary
compact subset of B(S − 1), the proof of Proposition 4.9 is complete. �

Throughout the rest of this subsection, we shall consider a positive measure σ onB(S−1)
absolutely continuous with respect to the Lebesgue measure with an integrable density on
B(S − 1). For any A ∈ B(B(S − 1)) and for 0 < ε < ε0, define

Iε(ω) =
∫

A

eỸ x,ε,γ
σ (dx), Jε(ω) =

∫

A

eỸ x,ε,γ
1
G

α,ε0
x,ε

σ (dx), (4.35)

where the random variable Y x,ε(ω) involved in Ỹ x,ε,γ andG
α,ε0
x,ε is taken to be its measurable

version in Proposition 4.9 so that the integrals in Eq. 4.35 make a perfect sense and they can
be regarded as a random measures on (B(S − 1),B(B(S − 1))).

We aim at deriving the convergence in probability of the random measure Iε as ε ↓ 0
toward a non-degenerate random measure on B(S − 1) in the topology of the weak conver-
gence. To this end, we adopt the strategy taken by Berestycki [2]; we fix A ∈ B(B(S − 1))
and look for conditions given in terms of γ, σ, α and the Robin constant f (x, r) to ensure
the L2(P)-convergence of Jε , which will then be combined with Proposition 4.8 to obtain
the L1(P)-convergence of Iε as well as its uniform integrability. Notice that, by the Fubini
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theorem,

E[J 2
ε ] =

∫ ∫

A×A

E

[
eỸ x,ε,γ+Ỹ y,ε,γ

1
G

α,ε0
x,ε

1
G

α,ε0
y,ε

]
σ(dx)σ (dy).

Proposition 4.10 Assume that the following two conditions are fulfilled for some α ∈
(0, 2γ ):

lim
r↓0

∫

A

exp

(

−1

2
(2γ − α)2f (y, 7r)+ γ 2f (y, r)

)

σ(B(y, 6r))σ (dy) = 0 (4.36)

and

lim
η→0

sup
ε,δ≤η

∫ ∫

A×A∩{|x−y|<η}
exp

(

−1

2
(2γ − α)2f (y, |x− y| + ε ∨ δ)

)

× exp
(
γ 2κf (y, (|x− y| − (ε + δ)) ∨ (ε ∨ δ)

)
σ(dx)σ (dy) = 0, (4.37)

where κ is a constant appearing in Eq. 4.20. Then,

lim
η↓0 sup

ε,δ≤η

∫ ∫

A×A∩{|x−y|<η}
E

[
eỸ x,ε,γ+Ỹ y,δ,γ

1
G

α,ε0
x,ε

1
G

α,ε0
y,δ

]
σ(dx)σ (dy) = 0. (4.38)

Proof. Put
{

G̃
α,ε0
x,ε (y, δ) = {Y x,r ≤ αf (x, r)− γCov(Y x,ε + Y y,δ, Y x,r ),∀r ∈ (ε, ε0)

}
,

G̃
α,ε0
y,δ (x, ε) = {Y y,r ≤ αf (y, r)− γCov(Y x,ε + Y y,δ, Y y,r ),∀r ∈ (δ, ε0)

}
.

(4.39)

Then, by the Cameron-Martin formula Eq. 2.25, we have
∫ ∫

A×A∩{|x−y|<η}
E

[
eỸ x,ε,γ+Ỹ y,δ,γ

1
G

α,ε0
x,ε

1
G

α,ε0
y,δ

]
σ(dx)σ (dy)

=
∫ ∫

A×A∩{|x−y|<η}
eγ 2Cov(Y x,ε,Y y,δ)

P

(
G̃α,ε0

x,ε (y, δ) ∩ G̃
α,ε0
y,δ (x, ε)

)
σ(dx)σ (dy).(4.40)

We may assume that ε ≤ δ ≤ r because if otherwise we may exchange (y, δ) and (x, ε). If
0 < ε ≤ δ ≤ ε0, then cov(Y x,ε + Y y,δ, Y y,r ) = f (y, r)+ 〈μx,ε, Rμy,r 〉 so that

P(G̃
α,ε0
y,δ (x, ε)) ≤ P

(
Y y,r ≤ (α − γ )f (y, r)− γ 〈μx,ε, Rμy,r 〉

)
.

Let us make a special choice of r satisfying f (y, |x− y| + ε)− 1 < [f (y, r)] ≤ f (y, |x−
y| + ε). Then |x − y| + ε ≤ r and hence 〈μx,ε, Rμy,r 〉 = f (y, r). Since α − 2γ < 0, we
get from Eq. 4.32,

P

(
G̃α,ε0

x,ε (y, δ) ∩ G̃
α,ε0
y,δ (x, ε)

)
≤ P

(
G̃

α,ε0
y,δ (x, ε)

)
≤ P

(
Y y,r ≤ (α − 2γ )f (y, r)

)

≤ exp

(

−1

2
(2γ − α)2(f (y, |x− y| + ε)− 1)

)

.

If |x−y| ≤ 6δ, then f (y, |x−y|+ε) ≥ f (y, 7δ). As Cov(Y x,ε, Y y,δ) = 〈μx,ε, Rμy,δ〉 ≤
f (y, δ) by Eq. 4.16, we have

∫ ∫

A×A∩{|x−y|≤6δ}
eγ 2Cov(Y x,ε,Y y,δ)

P

(
G̃α,ε0

x,ε (y, δ) ∩ G̃
α,ε0
y,δ (x, ε)

)
σ(dx)σ (dy)

≤
∫

A

exp

(

−1

2
(2γ − α)2(f (y, 7δ)− 1)+ γ 2f (y, δ)

)

σ(B(y, 6δ))σ (dy).
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On the other hand, if 6δ < |x− y|, then

Cov(Y x,ε, Y y,δ) ≤ κf (y, (|x− y| − (ε + δ)) ∨ δ)+ C1,

by Eq. 4.20 and accordingly the integral over the domain resricted to |x − y| ≥ 6δ of the
righthand side of Eq. 4.40 is dominated by

∫ ∫

A×A∩{6δ<|x−y|<η}
exp

(

−1

2
(2γ − α)2f (y, |x− y| + δ)

+γ 2Cov(Y x,ε, Y y,δ)

)

σ(dx)σ (dy)

≤ eγ 2C1

∫ ∫

A×A∩{|x−y|<η}
exp

(

−1

2
(2γ − α)2f (y, |x− y| + δ)

)

× exp
(
κγ 2f (y, (|x− y| − (ε + δ)) ∨ δ)

)
σ(dx)σ (dy).

Therefore we have Eq. 4.38 under Eqs. 4.36 and 4.37. �

Proposition 4.11 Fix η > 0 and α > γ . For any Borel subset A of B(S − 1),

lim
ε,δ→0

∫ ∫

A×A∩{|x−y|≥η}
E

[
eỸ x,ε,γ+Ỹ y,δ,γ

1
G

α,ε0
x,ε

1
G

α,ε0
y,δ

]
σ(dx)σ (dy)

=
∫ ∫

A×A∩{|x−y|≥η}
eγ 2r(x,y)

P

(
G̃

α,ε0
x,0 ∩ G̃

α,ε0
y,0

)
σ(dx)σ (dy) <∞, (4.41)

where
{

G̃
α,ε0
x,0 = {Y x,r ≤ (α − γ )f (x, r)− γ R̂μx,r (y), ∀r ∈ (0, ε0)}

G̃
α,ε0
y,0 = {Y y,r ≤ (α − γ )f (y, r)− γ R̂μy,r (x), ∀r ∈ (0, ε0)} (4.42)

Proof. Similarly to Eq. 4.40, we have

∫ ∫

A×A∩{|x−y|≥η}
E

[
eỸ x,ε,γ+Ỹ y,δ,γ

1
G

α,ε0
x,ε

1
G

α,ε0
y,δ

]
σ(dx)σ (dy)

=
∫ ∫

A×A∩{|x−y|≥η}
E

[
eγ 2Cov(Y x,ε,Y y,δ)1

G̃
α,ε0
x,ε (y,δ)∩G̃

α,ε0
y,δ (x,ε)

]
σ(dx)σ (dy)

=
∫ ∫

A×A∩{|x−y|≥η}
eγ 2〈μx,ε,Rμy,δ〉

P

(
G̃α,ε0

x,ε (y, δ) ∩ G̃
α,ε0
y,δ (x, ε)

)
σ(dx)σ (dy).(4.43)

By rewriting Eq. 4.39, we also have

{
G̃

α,ε0
x,ε (y, δ) = {Y x,r ≤ (α − γ )f (x, r)− γ 〈μy,δ, Rμx,r 〉, ∀r ∈ (ε, ε0)},

G̃
α,ε0
y,δ (x, ε) = {Y y,r ≤ (α − γ )f (y, r)− γ 〈μx,ε, Rμy,r 〉, ∀r ∈ (δ, ε0)}. (4.44)

Since R̂μx,r (z) is continuous on B(S) by Lemma 4.4,

lim
δ↓0〈μ

y,δ, R̂μx,r 〉 = R̂μx,r (y), y ∈ B(S − 1). (4.45)
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We now let v(α, ε0, x, y, ε, δ) = P

(
G̃

α,ε0
x,ε (y, δ) ∩ G̃

α,ε0
y,δ (x, ε)

)
. It follows from Eq. 4.45

and the continuity of the finite dimensional Gaussian distribution function that

lim sup
ε↓0, δ↓0

v(α, ε0, x, y, ε, δ)

≤ P

(
{Y x,r ≤ (α − γ )f (x, r)− γ R̂μx,r (y), ∀r ∈ (ε1, ε0)}

∩{Y y,r ≤ (α − γ )f (y, r)− γ R̂μy,r (x), ∀r ∈ (δ1, ε0)}
)

,

for arbitrarily fixed ε1 < ε0, δ1 < ε0. We then let δ1 ↓ 0, ε1 ↓ 0 to obtain

lim sup
ε↓0, δ↓0

v(α, ε0, x, y, ε, δ) ≤ P(G̃
α,ε0
x,0 ∩ G̃

α,ε0
y,0 ). (4.46)

Fix any η > 0. By taking r0 = η
2 ∧ 1

4 in Lemma 4.6, we find, for x, y ∈ B(S − 1)
with |x − y| > η, a constant M2 > 0 depending only on η such that |〈μy,δ, R̂μx,r 〉| ≤ M2
for any δ ∈ (0, η/2) and r ∈ (0, η

4 ∧ 1
8 ). According to the fine properties of the function

f (x, r) in r stated in the first part of this subsection, we see that ε1 ↓ 0 implies ε1 =
f−1(x, [f (x.ε1)]) ↓ 0. Hence one can choose ε1 > 0 with ε1 <

η
4 ∧ 1

8 so that r <
η
4 ∧ 1

8
whenever r < ε1. Further, if we let D(x, ε1) = {[f (x, r)] : r ∈ (0, ε1)}(⊂ N), then
D(x, ε1) = {k ∈ N : k ≥ [f (x, ε1)]}

By using the tail distribution estimate Eq. 4.32, we therefore have for any δ ∈ (0, η/2)

P(G̃α,ε1
x,ε (y, δ)c) ≤ P

⎛

⎝
⋃

r∈f−1(x,D(x,ε1))

{Y x,r > (α − γ )f (x, r)− γ 〈μy,δ, R̂μx,r 〉}
⎞

⎠

≤
∑

r∈f−1(x,D(x,ε1))

P

(
Y x,r > (α − γ )f (x, r)− γ 〈μy,δ, R̂μx,r 〉

)

≤ M̃
∑

r∈f−1(x,D(x,ε1))

exp

[

− (α − γ )2

2
f (x, r)

]

= M̃
∑

k≥[f (x,ε1)]
exp

[

− (α − γ )2

2
k

]

,

where M̃ = exp[(α − γ )γM2]. Hence limε1↓0 P(G̃
α,ε1
x,ε (y, δ)c) = 0 uniformly in δ ∈

(0, η/2). Similarly limδ1↓0 P(G̃
α,δ1
y,δ (x, ε)c) = 0 uniformly in ε ∈ (0, η/2).

We just saw that, for any small a > 0, there is b > 0 such that P(G̃
α,ε1
x,ε (y, δ)c) < a for

any ε1 < b uniformly in δ ∈ (0, η/2), and P(G̃
α,δ1
y,δ (x, ε)c) < a for any δ1 < b uniformly in

ε ∈ (0, η/2).
Let Aη = {(x, y) ∈ B(S − 1)2 : |x− y| > η}. It follows from

v(α, ε0, x, y, ε, δ) ≥ v(α, ε0, x, y, ε1, δ1)− P(G̃
α,ε1
x,ε (y, δ)c)− P(G̃

α,δ1
y,δ (x, ε)c) that

lim inf
ε↓0, δ↓0 v(α, ε0, x, y, ε, δ)1Aη((x, y))

≥ P

(
{Y x,r ≤ (α − γ )f (x, r)− γ R̂μx,r (y), ∀r ∈ (ε1, ε0)}

∩{Y y,r ≤ (α − γ )f (y, r)− γ R̂μy,r (x), ∀r ∈ (δ1, ε0)}
)
1Aη((x, y))− 2a,

for any ε1 < b, δ1 < b. By letting ε1 ↓ 0, δ1 ↓ 0 and then a ↓ 0, we arrive at

lim inf
ε↓0, δ↓0 v(α, ε0, x, y, ε, δ)1Aη((x, y)) ≥ P(G̃

α,ε0
x,0 ∩ G̃

α,ε0
y,0 )1Aη((x, y)). (4.47)
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On the set (B(S − 1)× B(S − 1)) ∩ {|x− y| ≥ η}, 〈μx,ε, Rμy,δ〉 is uniformly bounded
and converges to r(x, y) as ε ↓ 0, δ ↓ 0 a.e. σ ×σ by Proposition 4.7. Further σ ×σ(B(S−
1)× B(S − 1)) < ∞. Therefore we obtain Eq. 4.41 from Eqs. 4.43, 4.46 and 4.47. �

Recall the random variables Iε(ω) and Jε(ω) defined by Eq. 4.35.

Theorem 4.12 Assume that the conditions Eqs. 4.36 and 4.37 in Proposition 4.10 are ful-
filled for some α ∈ (γ, 2γ ). Then Jε(ω) converges in L2(�;P) as ε → 0. Furthermore,
Iε(ω) is uniformly integrable with respect to 0 < ε < 1 and A ∈ B(B(S − 1)), and it
converges in L1(�,P) as ε → 0.

Proof. For any ε, δ ∈ (0, ε0),

E

[
|Jε(ω)− Jδ(ω)|2

]
=
∫ ∫

A×A

E

[
eỸ x,ε,γ+Ỹ y,ε,γ

1
G

α,ε0
x,ε

1
G

α,ε0
y,ε

]
σ(dx)σ (dy)

+
∫ ∫

A×A

E

[
eỸ x,δ,γ+Ỹ y,δ,γ

1
G

α,ε0
x,δ

1
G

α,ε0
y,δ

]
σ(dx)σ (dy)

−2
∫ ∫

A×A

E

[
eỸ x,ε,γ+Ỹ y,δ,γ

1
G

α,ε0
x,ε

1
G

α,ε0
y,δ

]
σ(dx)σ (dy).

Express each of three integrals on A × A in the righthand side as a sum of integrals over
(A × A) ∩ {|x − y| < η} and (A × A) ∩ {|x − y| ≥ η}. For an arbitrarily small a > 0,
there exists ηa > 0 such that each integral over (A × A) ∩ {|x − y| ≤ η} with η = ηa is
smaller than a uniformly in ε > 0, δ > 0 by virtue of Proposition 4.10. On the other hand,
the limits of the integrals over (A× A) ∩ {|x− y| ≥ ηa} as ε, δ → 0 exist and cancel each
others by Proposition 4.11, resulting in lim supε, δ→0 E

[|Jε(ω)− Jδ(ω)|2] ≤ 4a. Since a

is arbitrary, we obtain the L2-convergence of Jε(ω).
Proposition 4.8 says that, by taking small ε0,E(eỸ x,ε,γ

1
�\Gα,ε0

x,ε
) becomes arbitrarily small

uniformly in 0 < ε < ε0 and x ∈ B(S− 1). Since E[(Jε)
2] is uniformly bounded relative to

ε, {Jε} is uniformly integrable. Hence {Iε} is also uniformly integrable. As Jε converges in
L2(�,P), it also converges in L1(�,P). Noting that E[Iε − Jε] is small uniformly relative
to ε < ε0 by taking small ε0, we also see that Iε converges in L1(�,P). �

In formulating the following theorem, we put D = B(S−1). Consider the familyM(D)

of all finite positive measures on (D,B(D)) equipped with the topology of weak conver-
gence: μn(D) ∈ M(D) converges to μ ∈ M(D) as n → ∞ if limn→∞〈f, μn〉 = 〈f, μ〉
for any f ∈ Cb(D), where 〈f, μ〉 = ∫

D
f (x)μ(dx). This topology is induced by the metric

ρ onM(D) defined by

ρ(μ, ν) =
∞∑

n=1
2−n (|〈gn, μ〉 − 〈gn, ν〉| ∧ 1) , μ, ν ∈M(D), (4.48)

where {gn} is a countable dense subfamily of C(D) (cf. [16, Prop.2.5]).
For each set A ∈ B(D), the integral

∫
A

eỸ x,ε(ω)σ (dx) will be denoted by με(A,ω)

instead of Iε(ω). Notice that με(·, ω) ∈M(D) a.s.

Theorem 4.13 Assume that the conditions Eqs. 4.36 and 4.37 in Proposition 4.10 are ful-
filled for some α ∈ (γ, 2γ ). Then there exists μ(·, ω) ∈ M(D) uniquely a.s. such that
με(·, ω) converges in probability to μ(·, ω) as ε ↓ 0 relative to the metric ρ onM(D): for
any δ > 0,

lim
ε↓0 P (ρ(με, μ) > δ) = 0. (4.49)
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Proof. Denote by A the family of rectangles in D of the form [r1, s1) × [r2, s2) with
rational numbers r1 < s1 and r2 < s2. We also put Dk = B(S − 1 − 1/k), k ≥ 1. By
virtue of Theorem 4.12, for each A ∈ B(D), με(A,ω) converges in probability as ε ↓ 0 to
a random variable which we denote by μ(A,ω).

First we will prove that there exists a family of random variables {μ(A,ω); A ∈ B(D)}
such that μ(·, ω) ∈M(D) for almost all ω ∈ � and

μ(A,ω) = μ(A, ω) for any A ∈ A, a.s. (4.50)

Further we will prove that any sequence εn ↓ 0 admits a subsequence {ε′n} such that
με′n (·, ω) is weakly convergent to μ(·, ω) as n→∞ a.s.

Take any sequence εn ↓ 0. As the family A is countable, there exists its subsequence
{ε′n} such that limn→∞ με′n (D, ω) = μ(D, ω), limn→∞ με′n(Dk, ω) = μ(Dk, ω) for all
k ≥ 1 and limn→∞ με′n(A, ω) = μ(A, ω) for all A ∈ A a.s. say for all ω ∈ �′ ⊂ � with
P(�′) = 1. Since limn→∞ με′n (D, ω) = μ(D, ω) for all ω ∈ �′ and {με(D); ε > 0} is
uniformly integrable by Theorem 4.12,

E[μ(D, ω)] = lim
n→∞E[με′n (D, ω)] = σ(D) < ∞.

Hence μ(D, ω) <∞ a.s. Similarly, since μ(Dk, ω) is non-decreasing relative to k and

lim
k→∞E[μ(D, ω)− μ(Dk, ω)] = lim

k→∞ lim
n→∞E[με′n (D, ω)− με′n (Dk, ω)]

= lim
k→∞ σ(D \Dk) = 0,

it follows that limk→∞ μ(Dk, ω) = μ(D, ω) a.s. Therefore, we may and shall assume that
μ(D, ω) <∞ and limk→∞ μ(Dk, ω) = μ(D, ω) for all ω ∈ �′.

For any A ∈ A, let A◦ and A be the interior and the closure of A, respectively. Since
με(A

◦, ω) ≤ με(A, ω) ≤ με(A,ω) and E[με(A
◦)] = σ(A) = E[με(A)] by the stated

assumption that σ(∂A) = 0, E[μ(A◦)] = E[μ(A)]. Hence μ(A◦, ω) = μ(A,ω) =
μ(A,ω) for almost all ω and we may assume that this holds for all ω ∈ �′.

Fix ω ∈ �′. For any δ > 0, take a number k0 such that μ(D, ω) − μ(Dk, ω) <

δμ(D, ω)/2 for any k ≥ k0. Further, there exists n0 such that |με′n(D\Dk0 , ω)−(μ(D, ω)−
μ(Dk0 , ω))| < δμ(D, ω)/2 for any n ≥ n0. Therefore με′n(D \ Dk) ≤ με′n(D \ Dk0) <

δμ(D, ω) for any n ≥ n0 and k ≥ k0. By taking large k0 if necessary, this holds for all n ≥ 1
and k ≥ k0. Since Dk ⊂ Dk ⊂ D and Dk is a compact subset of D, this means the uni-
form tightness of {με′n(·, ω)}. As a consequence, any subsequence of {ε′n} admits a further
subsequence {εn′′} such that {μεn′′(·, ω)} converges weakly to some measure μ(·, ω).

For any A ∈ A, choose Ck, Bk ∈ A, k ≥ 1, such that Ck increases to A◦ and B◦k
decreases to A as k →∞. Then

μ(Ck) = μ(Ck) = lim
n

με′n (Ck) ≤ lim sup
n

με′n′(Ck) ≤ μ(Ck) ≤ μ(A◦) ≤ μ(A),

μ(B◦k ) = μ(Bk) = lim
n

με′n(Bk) ≥ lim inf
n

με′′n (B
◦
k ) ≥ μ(B◦k ) ≥ μ(A) ≥ μ(A),

and so
μ(Ck) ≤ μ(A◦) ≤ μ(A) ≤ μ(A) ≤ μ(B◦k ), k ≥ 1. (4.51)

It also follows from

E[lim
k

μ(Ck)] = lim
k

σ (Ck) = σ(A◦) = E[μ(A)] = σ(A) = lim
k

σ (B◦k ) = E[lim
k

μ(B◦k )],
that

lim
k

μ(Ck) = μ(A) = lim
k

μ(B◦k ), a.s.,
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which combined with Eq. 4.51 yields Eq. 4.50.
Since this holds for any subsequence of {ε′n} and A generates the Borel σ -field B(D),

με′n converges weakly to μ a.s. Actually every A ∈ A is a μ-continuity set a.s.
We have seen that any sequence εn ↓ 0 admits a subsequence {ε′n} such that

limn→∞ ρ(με′n , μ) = 0 a.s. and consequently limn→∞ P
(
ρ(με′n , μ) > δ

) = 0 for any
δ > 0. This means Eq. 4.49. �

We call {μ(A,ω);A ∈ B(D)} in the above theorem the Gaussian multiplicative chaos
associated with the Gaussian field G(E). We notice that, due to the uniform integrability of
Iε in Theorem 4.12 and Eq. 4.50, E[μ(A)] = σ(A) for any A ∈ A, so that μ is no-trivial if
and only if so is σ . We further notice that the validity of the conditions Eqs. 4.36 and 4.37
in Proposition 4.10 depends on the choice of the measure σ and the value κ > 0 in Eq. 4.20.
In examples in the next section, we examine the possible range of the value γ to ensure the
validity of these conditions.

5 Examples of Gaussianmultiplicative chaos for recurrent forms

Example 5.1 We consider the case that E = C, m is the Lebesgue measure onC and (E,F)

is the regular recurrent Dirichlet form ( 12DC, H 1(C)) on L2(C) = L2(C;m), where

DC(u, v) =
∫

C

∇u(x) · ∇v(x)dx, H 1(C) = {u ∈ L2(C); |∇u| ∈ L2(C)}.
The associated diffusionM = (Xt ,Px) is the planar Brownian motion.

Clearly the conditions (B.1) and (B.2) are satisfied. We take

F = B(S + 1) \ B(S)

as an admissible set and let {Rμ : μ ∈M0(C)} be the family of recurrent potentials relative
to F and μx,r be the equilibrium measure for B(x, r)(⊂ B(S)) relatove to F . The uniform
probability measure on ∂B(x, r) will be denoted by νx,r . The logarithmic potential Uμ of

a measure μ ∈ ◦
M0 (C) on C is defined in §2.4 (III). m̃F will designate the probability

measure defined by Eq. 3.15.
It holds then that

μx,r = νx,r , (5.1)
and, for the version R̂μx,r of Rμx,r introduced in Lemma 4.4,

R̂μx,r (z) = 1

π
log

1

|x− z| ∨ r
− 2�(S)+ 〈m̃F , Um̃F 〉, for every z ∈ B(S), (5.2)

where �(S) is a constant defined by

�(S) = − S2

π(2S + 1)
log(1+ 1

S
)− 1

π
[log(S + 1)− 1/2]. (5.3)

A proof will be given in the last part of this example. Eq. 5.2 means that the Robin constant
for B(x, r) equals

f (x, r) = 1

π
log

1

r
− 2�(S)+ 〈m̃F , Um̃F 〉, (5.4)

which is independent of x ∈ B(S), and consequently the condition (B.3) is trivially fulfilled.
Further Eq. 5.2 implies Eq. 4.19 with κ = 1 so that Eq. 4.20 with κ = 1 is fulfilled by
Lemma 4.5.

The extended Dirichlet space Fe is now the Beppo Levi space BL(C) as was mentioned
in §2.4 (III). Let {Xu; u ∈ BL(C)} be the centered Gaussian field defined on a probability
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space (�,B,P) with covariance E[XuXv] = 1
2DC(u, v) u, v ∈ BL(C). Define Ỹ x,ε,γ by

Eq. 4.31. We now check for what γ > 0 the conditions Eqs. 4.36 and 4.37 with κ = 1
are satisfied to ensure the convergence in probability of random measures με(A,ω) =
∫
A

eỸ x,ε,γ
σ (dx), A ∈ B(B(S− 1)) as ε ↓ 0 toward a non-trivial random measure on B(S−

1). Let σ(dx) be a non-trivial positive finite measure on B(S − 1) absolutely continuous
with respect to the Lebesgue measure satisfying

∫

B(S−1)
σ (B(y, r))σ (dy) ≤ C3r

2, for some constant C3 > 0, (5.5)

∫ ∫

B(S−1)×B(S−1)
1

|x− y|2−̃ε
σ (dx)σ (dy) <∞, for any ε̃ > 0. (5.6)

σ fulfills Eqs. 5.5 and 5.6 if its density function with respect to the Lebesgue measure is
bounded.

For a given γ > 0, we choose α such that

γ < α < 2γ,
1

2π
(2γ − α)2 − γ 2

π
+ 2 > 0. (5.7)

We can actually find α sufficiently close to γ and satisfying the property Eq. 5.7 provided
that

γ < 2
√

π . (5.8)

In this section, K1 ∼ K9 will denote some positive constants. By virtue of the simple
expression Eq. 5.4 of the Robin constant f (x, r), the integral in Eq. 4.36 is, under the

assumption Eq. 5.5, dominated by K1r
(2γ−α)2

2π − γ 2

π
+2, which tends to 0 as r ↓ 0 in view of

the property Eq. 5.7, yielding Eq. 4.36.
Substituting Eq. 5.4 into the integral of the left hand side of Eq. 4.37 with κ = 1 by

assuming that ε ≤ δ, we see that the integral equals

K2

∫ ∫

A×A∩{|x−y|<η}
exp

(
1

2π
(2γ − α)2 log(|x− y| + δ)

)

× exp

(

−γ 2

π
log((|x− y| − (ε + δ)) ∨ δ)

)

σ(dx)σ (dy)

≤ K2

∫ ∫

A×A∩{|x−y|<2(ε+δ)}
(|x− y| + δ)

1
2π (2γ−α)2 δ−

γ 2

π σ (dx)σ (dy)

+K2

∫ ∫

A×A∩{2(ε+δ)≤|x−y|<η}
(|x− y| + δ)

1
2π (2γ−α)2

×(|x− y| − (ε + δ))−
γ 2

π σ (dx)σ (dy)

= I+ II

Taking ε̃ ∈ (0, 2) with 1
2π (2γ − α)2 − γ 2

π
+ 2− ε̃ > 0, we let

K3 =
∫ ∫

B(S−1)×B(S−1)
1/|x− y|2−̃ε σ (dx)σ (dy)

which is finite by Eq. 5.6. Since |x− y| ≤ 2(ε + δ) ≤ 4δ in the integrand of I,

I = K2

∫ ∫

A×A∩{|x−y|<ε+δ}
(|x− y| + δ)

1
2π (2γ−α)2 |x− y|2−̃ε δ−

γ 2

π
σ (dx)σ (dy)
|x− y|2−̃ε

≤ K2K3(5δ)
1
2π (2γ−α)2 (4δ)2−̃ε δ−

γ 2

π ≤ K4 δ
1
2π (2γ−α)2− γ 2

π
+2−̃ε.
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Since 2(ε + δ) ≤ |x− y| < η in the integrand of II,

II ≤ K2

∫ ∫

A×A∩{|x−y|<η}
(2|x− y|)(2γ−α)2/2π

( |x− y|
2

)−γ 2/π

|x− y|2−̃ε σ (dx)σ (dy)
|x− y|2−̃ε

≤ K5 η
1
2π (2γ−α)2− γ 2

π
+2−̃ε.

Hence Eq. 4.37 holds true.
Thus, by virtue of Theorem 4.13, the convergence in probability of random measures

με(·, ω) as ε ↓ 0 to a non-trivial random measure μ on B(S − 1) relative to the metric
Eq. 4.48 has been verified for γ ∈ (0, 2

√
π).

Finally, in order to verify Eqs. 5.1 and 5.2, we consider the spaces
◦
M0 (C) of measures

on C stated in §2.4 (III). By [26, Prop.3.4.9],

νx,r ∈ ◦
M0 (C), and Uνx,r (z) = 1

π
log

1

|x− z| ∨ r
, z ∈ C. (5.9)

Furtherhmore, by virtue of [26, Prop.3.4.11,Th.3.4.12], we see that, for B(x, r) ⊂ B(S),

νx,r admits a probabilistic expression, by using the uniform probability measure s∂B(t) on
the circle ∂B(t),

νx,r (A) =
∫

∂B(t)

Py(Xσ∂B(x,r) ∈ A)s∂B(t)(dy), A ∈ B(∂B(x, r)), ∀t ≥ S,

in terms of the planar Brownian motion M = (Xt ,Px). By integrating the both hand sides
by tdt from S to S + 1 and deviding by 1

2 (2S + 1), we obtain the identity Eq. 5.1 from the
probabilistic expression Eq. 4.16 of μx,r .

By Eq. 5.9, we have Us∂B(t)(z) = 1
π
log 1

|z|∨t
. Consequently, by the same compu-

tation as above, we see that m̃F ∈ ◦
M0 (C) and Um̃F (z) takes a constant value � =

2
(2S+1)π

∫ S+1
S

t log 1
t
dt for z ∈ B(S). It then follows from Lemma 3.7 and 〈m̃F , Uνx,r 〉 =

〈Um̃F , νx,r 〉 = � that, for z ∈ B(S),

R̂μx,r (z) = Uνx,r (z)− Um̃F (z)− �+ 〈m̃F , Um̃F 〉 = Uνx,r (z)− 2�+ 〈m̃F , Um̃F 〉,
yielding Eq. 5.2. �

Example 5.2 We next examine the case that E = H, m is the Lebesgue measure on H and
(E,F) is the regular recurrent Dirichlet form ( 12DH, H 1(H)) on L2(H) = L2(H;m), where

DH(u, v) =
∫

H

∇u(x) · ∇v(x)dx, H 1(H) = {u ∈ L2(H); |∇u| ∈ L2(H)}.

The associated diffusion M̂ = (X̂t , P̂x) is the reflecting Brownian motion (RBM in
abbreviation) on H.

Clearly the conditions (B.1) and (B.2) are satisfied. We take F+ = {x ∈ H : S < |x| ≤
S + 1} as an admissible set. Let {Rμ : μ ∈ M0(H)} be the family of recurrent potentials
relative to F+ and, for x ∈ E0 = {x ∈ H : |x| < S − 1, �x > 1} and r ∈ (0, 1), let μx,r be
the equilibrium measure for B(x, r)(⊂ B+(S) = {y ∈ H, |y| < S}) relative to F+.

For a finite signed measure μ on H with compact support, its logarithmic potential Ûμ

for RBM is defined by

Ûμ(x) =
∫

H

k̂(x, y)μ(dy), x ∈ H, for k̂(x, y) = 1

π
log

1

|x− y| +
1

π
log

1

|x− y∗| , (5.10)
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where, for y = (y1, y2), y∗ = (y1,−y2) denotes its reflection relative to ∂H. The collection
of finite signed measures μ on H with compact support and with 〈|μ|, Û |μ|〉 < ∞ will be

denoted by
◦
M0 (H).

For each x ∈ E0 and r ∈ (0, 1), define a function R̂μx,r onH by Eq. 4.17 in terms of M̂,
which is a version ofRμx,r and continuous onB+(S). It then holds that for every z ∈ B+(S)

R̂μx,r (z) = 1

π
log

1

|z− x| ∨ r
+ 1

π
log

1

|z− x∗| −
1

π
Êz

[

log
1

|X̂σ − x∗|
]

+ Cx,r ,(5.11)

where Cx,r = 〈μx,r , log
1

| · −x∗| 〉 − 4�(S)+ 〈m̃F+ , Ûm̃F+〉. (5.12)

Here, σ is the hitting time σB(x,r) of M̂ for B(x, r), �(S) is the constant defined by Eq. 5.3

and m̃F+(A) = 1
m(F+)

m(A ∩ F+), A ∈ B(H). A proof will be given in the last part of this
example.

Eq. 5.11 means that the Robin constant f (x, r) for B(x, r) ⊂ B+(S) equals

f (x, r) = 1

π
log

1

r
+ Cx,r . (5.13)

In view of Eq. 5.12, Cx,r is uniformly bounded in (x, r) ∈ E0 × (0, 1), and consequently
the condition (B.3) with E0 in place of B(S − 1) is fulfilled by virtue of Eq. 5.13. Since the
second and third terms on the right hand side of Eq. 5.11 are bounded in x ∈ E0, z ∈ B+(S)

and r ∈ (0, 1), Eq. 5.11 implies Eq. 4.19 with κ = 1 so that Eq. 4.20 with κ = 1 and with
E0, B+(S) in place of B(S − 1), B(S), respectively, is also fulfilled.

The extended Dirichlet space Fe is now the Beppo Levi space BL(H) over H defined by

BL(H) = {u ∈ L2
loc(H) : |∇u| ∈ L2(H)}.

Let {Xu; u ∈ BL(H)} be the centered Gaussian field defined on a probability space
(�,B,P) with covariance E[XuXv] = 1

2DH(u, v) u, v ∈ BL(H). Define Y x,r by Eq. 4.29.
As the Robin constant f (x, r) differs from 1

π
log 1

r
by Cx,r that is uniformly bounded in

(x, r) ∈ E0 × (0, 1), we can repeat the same argument as in the preceding example to con-
clude that, for any non-trivial positive finite measure σ on E0 absolutely continuous with
respect to the Lebesgue measure satisfying Eqs. 5.5 and 5.6 with E0 in place of B(S − 1),
the random measures

με(A,ω) =
∫

A

exp

(

γ Y x,ε − γ 2

2
f (x, ε)

)

σ(dx), A ∈ B(B(E0)),

on E0 is convergent in probability to a non-trivial random measure μ on E0 relative to the
present counterpart of the metric Eq. 4.48 as ε ↓ 0 when γ ∈ (0, 2

√
π).

Finally, in order to verify Eqs. 5.11 and 5.12, we first note two facts. It follows from
Eqs. 5.9 and5.10 and [13, Lem.3.4] that

νx,r ∈ ◦
M0 (H), Ûνx,r (z) = 1

π
log

1

|z− x| ∨ r
+ 1

π
log

1

|z− x∗| ∨ r
, z ∈ B+(S).

(5.14)
By [13, Lem. 3.4] again, ÛmF+(z) = UmF (z), z ∈ H so that

m̃F+ ∈
◦
M0 (H), Ûm̃F+(z) = 2�(S) for every z ∈ B+(S), (5.15)

where �(S) is the constant defined by Eq. 5.3.
By the RBM version [13, Prop.3.2] of the fundamental identity for the logarithmic

potentials, we have, for any compact set K ⊂ H, Ûμ(z) = ĤKÛμ(z) + RH\Kμ(z) −
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ẆK(z)〈μ, 1〉. Substituting μ = νx,r − m̃F+ , K = B(x, r) and taking Eq. 5.14 and Eq. 5.15
into account, we get

Ûνx,r (z) = Ûm̃F+(z)+ 1

π
log

1

r
+ 1

π
Êz

[

log
1

|X̂σ − x∗|
]

− Ûm̃F+(z)

−RH\B(x,r)m̃F+(z)

= 1

π
log

1

r
+ 1

π
Êz

[

log
1

|X̂σ − x∗|
]

− RH\B(x,r)m̃F+(z), z ∈ B+(S),

where σ = σB(x,r). On the other hand, we have by definition

R̂μx,r (z) = f (x, r)− RH\B(x,r)m̃F+(z), z ∈ B+(S).

It follows from the above two identities that

R̂μx,r (z) = Ûνx,r (z)+f (x, r)− 1

π
log

1

r
− 1

π
Êz

[

log
1

|X̂σ − x∗|
]

, z ∈ B+(S). (5.16)

We next show that the uniform probability measure νx,r on ∂B(x, r) belongs to the space
M0(H)whenB(x, r) ⊂ B+(S). We know from Eq. 5.1 that νx,r ∈M0(C), or equivalently,
there eixists a constant C > 0 with

(∫
|ϕ|dνx,r

)2

≤ C

(
1

2
DC(ϕ, ϕ)+

∫
ϕ2dmF

)

, for any ϕ ∈ C1
c (C). (5.17)

Define C(H) = C1
c (C)

∣
∣
H
and extend any ϕ ∈ C(H) to ϕ̂ ∈ C1

c (C) by reflection relative
to ∂H: ϕ̂(y) = ϕ(y∗), �y < 0. We then get from Eq. 5.17 the same inequality holding
for ϕ ∈ C(H) with 2C,DH, mF+ in place of C,DC,mF , respectively, which means that
νx,r ∈M0(H) on account of [15, Lem.6.1.1].

Lemma 3.7 applied to νx,r ∈M0(H)∩ ◦
M0 (H) along with Eq. 5.15 leads us to

Rνx,r (z) = Ûνx,r (z)+ Ĉ, with Ĉ = −4�(S)+ 〈m̃F∗ .Ûm̃F+〉,
for q.e. z ∈ H. This combined with Eq. 5.14 yields

f (x, r) = 〈Rμx,r , νx,r 〉 = 〈μx,r , Rνx,r 〉 = 〈μx,r , Ûνx,r 〉 + Ĉ = 1

π
log

1

r
+ Cx,r .

By substituting this into Eq. 5.16, we arrive at Eqs. 5.11 and 5.12.

Example 5.3 Finally in this subsection, we consider the case that E = C, m is the Lebesgue
measure on C and (E,F) is the regular recurrent Dirichlet form (a, H 1(C)) on L2(C) =
L2(C;m), where the form a is defined by Eq. 1.2 by means of measurable coefficients
aij (x), 1 ≤ i, j ≤ 2, on C satisfying the uniform ellipticity Eq. 1.3 for some positive
constants λ ≤ �. The associated diffusion on C will be denoted by M = (Xt ,Px) (cf.
[15, Exa.4.5.2]).

It is well known that the condition (B.1) is fulfilled by this example (see [1] and ref-
erences therein). According to [20], the regularity of the boundary point for the Dirichlet
problem on an open set is equivalent to that for the case of Example 5.1. Therefore condition
(B.2) is also fulfilled by Proposition 4.3.

Analogously to Example 5.1, we take F = B(S + 1) \ B(S) as an admissible set and
let {Rμ : μ ∈ M0(C)} be the family of recurrent potentials relative to F , μx,r be the
equilibrium measure for B(x, r)(⊂ B(S)) relative to F and f (x, r) be the corresponding
Robin constant.
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Example 5.1 is a special case of the present one where aij (x) = 1
2δij . According to

Eq. 5.4, the Robin constant for B(x, r) in this special case is given by 1
π
log 1

r
+ �1(S) for

a constant �1(S) = −2�(S) + 〈m̃F , Um̃F 〉 with �(S) of Eq. 5.3. Therefore we obtain from
Proposition 3.6 the bound

1

2�

(
1

π
log

1

r
+ �1(S)

)

≤ f (x, r) ≤ 1

2λ

(
1

π
log

1

r
+ �1(S)

)

. (5.18)

which particularly means that the condition (B.3) is fulfilled with C2 = �/λ.
We have verified by Lemma 4.6 (iii) that Eq. 4.19 is valid for κ = C7

H in a general setting
so that Eq. 4.20 is fulfilled with this big constant κ accordong to Lemma 4.5 (ii). However,
if we make some smoothness assumption on the coefficients aij (x), 1 ≤ i, j ≤ 2 in the
present case, we can attain a much better choice of κ: κ = �/λ which equals 1 in the case
that aij (x) = Cδij for a constant C > 0 as in Example 5.1.

Proposition 5.4 If aij (x) and their first derivatives are Hölder continuous on C, then
Eq. 4.19 holds for κ = �/λ so that Eq. 4.20 is filfilled with this constant κ .

A proof of this proposition will be given in Appendix (Section 7.2) by making use of a
construction of a fundamental solution for a from a parametrix

�0(x, y) = − 1

(4πdet(aij (y))1/2
log

⎛

⎝
2∑

i,j=1
aij (y)(xi − yi)(xj − yj )

⎞

⎠ , (5.19)

as is stated in [11, §5.6]. Here (aij (y)) denotes the inverse matrix of (aij (y)).
The conditions Eqs. 4.36 and 4.37 (for the constant κ in Eq. 4.20) can be verified to hold

for certain values of γ > 0 as Example 5.1 by using Eq. 5.18. In fact, if 0 < γ < α < 2γ
and σ satisfies Eqs. 5.5 and 5.6, then

∫

A

exp

(

−1

2
(2γ − α)2f (y, 7δ)+ γ 2f (y, δ)

)

σ(B(y, 6δ))σ (dy)

≤ K6 exp

(

− 1

4π�
(2γ − α)2 log

1

7δ
+ γ 2

2πλ
log

1

δ

)

δ2

≤ K7δ
(2γ−α)2/4π�−γ 2/2πλ+2. (5.20)

Similarly, the integral in Eq. 4.37 is estimated as
∫

A×A∩{|x−y|<η}
exp

(

− 1

2
(2γ − α)2f (y, |x− y| + δ)

)

× exp
(
γ 2κf (y, (|x− y| − (ε + δ)) ∨ δ)

)
σ(dx)σ (dy)

≤ K8

∫

A×A∩{|x−y|<2(ε+δ)}
exp

(
1

4π�
(2γ − α)2 log(|x− y| + δ)− γ 2κ

2πλ
log δ

)

σ(dx)σ (dy)

+K8

∫

A×A∩{2(ε+δ)≤|x−y|<η}
exp

(
1

4π�
(2γ − α)2 log(|x− y| + δ)− γ 2κ

2πλ
log(|x− y| − (ε + δ))

)

σ(dx)σ (dy)

= I′ + II′.

In the same way as in Example 5.1, we see that, for ε̃ ∈ (0, 2),

I′ ≤ K8 exp

(
(2γ − α)2

4π�
log(5δ)− γ 2κ

2πλ
log δ

)

(4δ)2−̃ε ≤ K9δ
(2γ−α)2/4π�−γ 2κ/2πλ+2−̃ε.
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Furthermore, we can see that

II′ ≤ K9η
(2γ−α)2/4π�−γ 2κ/2πλ+2−̃ε,

provided that the exponent appearing on the righthand side is positive for some ε̃ > 0.

Therefore Eqs. 4.36 and 4.37 are satisfied if the inequality
1

4π�
(2γ−α)2− κγ 2

2πλ
+2 > 0

holds for some α ∈ (γ, 2γ ) with κ ≥ 1. This condition is fulfilled provided that

γ ∈
(

0, 2

√
2πλ�

2κ�− λ

)

. (5.21)

Let {Xu; u ∈ BL(C)} be the centered Gaussian field defined on a probability space
(�,B,P) with covariance E[XuXv] = a(u, v) u, v ∈ BL(C). Define Y x,r by Eq. 4.29.

Define με(A, ω) = ∫
A
exp(γ Y x,ε − γ 2

2 f (x, ε))σ (dx) for a non-trivial positive finite mea-
sure σ on B(S − 1) satisfying Eqs. 5.5 and 5.6 and for A ∈ B(B(S − 1)), ω ∈ � by
taking Proposition 4.9 into account. As in Example 5.1, the convergence in probability of
the random measures με(·, ω) toward a non-trivial random measure μ relative to the met-
ric Eq. 4.48 as ε ↓ 0 is legitimate for γ in this region according to Theorem 4.13. If

aij ∈ C2(C), then, by Propostion 5.4, the range Eq. 5.21 equals

(

0, 2
√

2πλ2�

2�2−λ2

)

, which

reduces to (0, 2
√

π) when aij (x) = 1
2δij .

6 GMCs via equilibrium potentials for transient forms

6.1 Construction of Gaussianmultiplicative chaos for transient forms

In this subtsection, we assume that E is an open subset of C and m is the Lebesgue measure
on E. We consider a regular transient strongly local Dirichlet form (E,F) on L2(E;m) and
the associated diffusion process M = (Xt ,Px) on E. We fix a bounded open set E0 with
E0 ⊂ E and aim at constructing Gaussian multiplicative chas on E0. We choose a > 0 such
that the a-neighborhood of E0 is contained in E.

The transition function {Pt , t > 0} of M is assumed to satisfy the absolute continuity
condition (AC) with N = ∅ and some more:

(C.1) (i) Pt (x, ·) is absolutely continuous with respect to m for each t > 0 and x ∈ E

with a density function pt (x, y) jointly continuous in t > 0, x, y ∈ E.
(ii) pt (x, y) admits a Gaussian upper bound: for some constants K > 0, k > 0,

pt (x, y) ≤ K

t
e−k|x−y|2/t , x, y ∈ E, t > 0.

The resolvent kernel {Rα, α > 0} ofM then admits a density function rα(x, y), x, y ∈ E,

with respect to m possessing properties [14, (2.10),(2.11)]. We let r(x, y) = limα↓0 rα(x, y)
and write Rμ(x) = ∫ r(x, y)μ(dy), x ∈ E, for a positive Radon measure μ on E. Let S(0)

0
be the family of positive Radon measures on E of finite 0-order energy and Uμ ∈ Fe be
the 0-order potential of μ ∈ S(0)

0 . As the proof of [14, Prop.2,5 (ii)], we see that μ ∈ S(0)
0 if

and only if 〈μ,Rμ〉 <∞ and in this case Rμ is the excessive version of Uμ.
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Consider a compact setB ⊂ E whose 0-order capacity Cap(0)(B) is positive. As has been
explained in the last part of Section 3, there exists a unique measure μB ∈ S(0)

0 supported
by B such that

RμB(y) = Py(σB <∞), for every y ∈ E. (6.1)

The equality holds for every y ∈ E because the both hand sides are excessive functions of
y. μB has been called the 0-order equilibrium measure of B, but we consider instead the
renormalized equlibrium measure μB of B defined by Eq. 3.20. μB is a probability measure
concentrated on B (actually on ∂B) and

RμB(y) = 1

Cap(0)(B)
Py(σB <∞), for every y ∈ E,

so that present counterpart of the Robin constant of B equals 1/Cap(0)(B).
Let us denote the closed disk {y ∈ C : |y − x| ≤ r} by B(x, r). For B(x, r) ⊂ E, define

μx,r = μB(x,r), f (x, r) = 1/Cap(0)(B(x, r)). (6.2)

We then have

Rμx,r (y) = f (x, r)Py(σB(x,r) <∞), for every y ∈ E. (6.3)

We now make the following additional assumptions.

(C.2) Any non-negative E-harmonic function u ∈ Fe on an open set G ⊂ E has an
m-version ũ that is continuous on G and satisfies the Harnack inequality (4.2) for any
B(x, r) ⊂ G.

(C.3) For any x ∈ E0, the one-point set {x} is of zero capacity relative to E .
(C.4) For any disk B with B ⊂ E, every point of ∂B is regular for B and for the Dirichlet

problem on E \ B.
(C.5) There exists a constant C2 > 0 such that

sup{f (y, r) : y ∈ E0} ≤ C2 inf{f (y, r) : y ∈ E0}, r ∈ (0, a).

We state important properties of {μx,r , f (x, r)} defined by Eq. 6.2 under the above
assumptions.

Proposition 6.1 (i) limr↓0 f (x, r) = ∞ for any x ∈ E.
(ii) For any r0 ∈ (0, a/3),the uniform bound Eq. 4.22 holds true for R and E0 in place

of Rg and B(S − 1), respectively.
(iii) There exist constants κ ≥ 1 and C1 > 0 such that, for all x, y ∈ E0 and 0 < ε ≤ δ

with 4δ ≤ |x− y| < a/3,

〈μx,ε, Rμy,δ〉 ≤ κf (y, |x− y| − (ε + δ))+ C1. (6.4)

(iv) For any η ∈ (0, a/2), Proposition 4.7 (ii) holds true for E0 and r(x, y) in place of
B(S − 1) and r(x, y), respectively.

(v) For each x ∈ E, f (x, r) is strictly decreasing and continuous in r > 0.
(vi) The mapping x ∈ E0 �→ Rμx,r ∈ Fe is continuous.

Proof. (i) follows directly from Eq. 6.2 and the assumption (C.3).
(ii). As in the proof of Lemma 4.6, the assumption (C.2) implies that, for y ∈ E0 and

0 < 2r < r0 < a/3,

max{Rμy,r (w) : w ∈ ∂B(y, r0)} ≤ C7
H min{Rμy,r (w) : w ∈ ∂B(y, r0)}. (6.5)
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By a similar argument made below Eq. 4.25, we have Rμy,r (x) = H∂B(y,r0)Rμy,r (x) for
any x ∈ E \ B(y, r0), so that Rμy,r (x) ≤ maxw∈∂B(y,r0) Rμy,r (w) ≤ C7

H 〈Rμy,r , μy,r0〉 =
C7

H f (y, r0), which is bounded in y ∈ E0 by (C.5).
(iii). Eq. 6.4 for κ = C7

H , C1 = 0 follows from Eq. 6.5 as Lemma 4.5 (ii) using the
similar argument to the above.

(iv) can be proved as in subsection 7.1 using (C.1) and (ii).
(v). For C ∈ B(E), denote by pC(y) the the hitting probability Py(σC < ∞), y ∈ E.

In particular, we consider the function v = pB(x,r) for B(x, r) ⊂ E. Then v ∈ Fe and

E(v.v) = Cap(0)(B(x, r)). In the same way as the proof of Lemma 4.4, we can deduce from
the assumption (C.2) that v is E-harmonic and continuous on E \ B(x, r). Moreover, the
assumption (C.4) implies that v is equal to 1 on B(x, r) and continuous on E. But v is not
identically 1 onE. If v were identically equals 1 onE, we see, by choosing vn ∈ Fe∩Cc(E)

that is E-convergent to 1, E(1, 1) = limn→∞ E(vn, 1) which vanishes by the strong locality,
contradicting to a transience criterion [15, (1.5.8)].

In view of Eq. 6.2, it suffices to show that Cap(0)(B(x, r)) is strictly increasing and
continuous in r . Obviously it is non-decreasing. If Cap(0)(B(x, r1)) = Cap(0)(B(x, r2)) for
some 0 < r1 < r2, then, by the 0-order version of [15, Th.2.1.5], pB(x,r1)

equals pB(x,r2)
identically, contradicting to the maximum principle for the non-constant harmonic function
pB(x,r1)

on E \ B(x, r1). Its right continuity follows from [15, §A.1 (c)]. If rn ↑ r , then

Cap(0)(B(x, rn)) ↑ Cap(0)(B(x, r)). Since σB(x,r) = σB(x,r) a.s. by the assumption (C.4),

we have from [15, Th.4.3.3], Cap(0)(B(x, r)) = E(pB(x,r), pB(x,r)) = E(pB(x,r), pB(x,r)) =
Cap(0)(B(x, r)), yielding the left continuity.

(vi), It follows from Eqs. 6.2 and 6.3 that

E(Rμy,r − Rμx,r , Rμy,s − Rμx,r ) = f (y, r)+ f (x, r)− 2〈μx,r , Rμy,r 〉.
Denote pB̄(x,r) and μB̄(x,r) by px,r and μx,r , repectively. Define

ex,r (z) = Ez[e−σB̄(x,r) ], RE\B̄(x,r)f (z) = Ez[
∫ σB̄(x,r)

0
f (Xs)ds].

Then we have the identity px,r = ex,r+RE\B̄(x,r)ex,r , because the bothhand sides are equal
to 1 on B̄(x, r) on account (C.4) and E-harmonic on E \ B̄(x, r) (see [15, §2,§4]).

On the other hand, we have from Eq. 4.33, Pz(limn→∞ σB̄(yn,r) = σB̄(x,r)) = 1, z ∈
E, for any sequence yn ∈ E0 converging to x ∈ E0. The above identity then implies
limn→∞ pyn.r (z) = px,r (z), z ∈ E, and consequently,

lim
y→x

py,r (z) = px,r (z), for every z ∈ E. (6.6)

Now take a disk B ⊂ E containing B̄(x, r)∪B̄(y, r). It follows from Eq. 6.6 that, as y→ x,
Cap(0)(B(y, r)) = μy,r (B̄(y, r)) = 〈μy,r , RμB̄〉 = 〈py,r , μB̄〉 tends to Cap(0)(B(x, r)) =
μx,r (B̄(x, r)) = 〈μx,r , RμB̄〉 = 〈px,r , μB̄〉. Namely, f (y, r) → f (x, r) as y → x. By
taking B = B(x, r), we also have 〈μy,r , Rμx,r 〉 → 〈μx,r , Rμx,r 〉, y → x, arriving at the
desired continuity (vi). �

Thus all the assertions made in Section 4.2 for recurrent cases can be carried over to
the present transient cases straightforwardly. To be more precise, for the centered Gaussian
field {Xu : u ∈ Fe} with covariance E[XuXv] = E(u, v), u, v ∈ Fe, define

Y x,r = XRμx,ε , Ỹ x,ε,γ = γ Y x,ε − γ 2

2
f (x, ε), x ∈ E0, ε ∈ (0, 1), γ > 0. (6.7)
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by using present transient equilibrium potential Rμx,r and the Robin constant f (x, r) in
Eqs. 6.2 and 6.3. Note that E[(Y x,ε)2] = f (x, ε).

For a positive Radon measure σ on E0 absolutely continuous with respect to the
Lebesgue measure with a strictly positive bounded density, put

με(A,ω) =
∫

A

eỸ x,ε,γ
σ (dx), A ∈ B(E0). (6.8)

Owing to Proposition 6.1 (vi), for each ε, one can choose as Proposition 4.9 a measurable
function Y (x, ε, ω) on (x, ω) ∈ E0 ×� such that, for σ -a.e. x ∈ E0, Y (x, ε, ω) = Y x,ε(ω)

P-a.e. The integral in the above makes sense for this version and gives a random measure
on E0.

Analogously to Theorem 4.13, we obtain

Theorem 6.2 Assume that, for some α ∈ (γ, 2γ ), conditions Eqs. 4.36 and 4.37 with the
constant κ in Eq. 6.4 are fulfilled. Then, as ε ↓ 0, με(·, ω) converges in probability to a
non-degenerate random measure μ(·, ω) on (E0,B(E0)) relative to the metric ρ defined by
Eq. 4.48 for E0 in place of D = B(S − 1).

In the rest of this subsection and in the next subsection as well, we shall work with
transient Dirichlet forms associated with absorbing Brownian motions on planar domains.
Let M = (Xt ,Px) be the Brownian motion on the complex plane C. Let D be a domain in
C with C \ D being non-polar and M

D be the absorbing Brownian motion on D obtained
from M by killing upon its leaving time τD from D. Then M

D is transient and (E,F) =
( 12DD,H 1

0 (D)) is the regular transient strongly regular Dirichlet form on L2(D) of MD .
Here

DD(u, v) =
∫

D

∇u(x) · ∇v(x)dx, H 1(D) = {u ∈ L2(D) : |∇u| ∈ L2(D)},

andH 1
0 (D) is the closure ofC1

c (D) in this space. The extended Dirichlet spaceFe of (E,F)

equals the extended Sobolev space H 1
0,e(D) that can be obtained by completing the space

C1
c (D) with respect to the 0-order Dirichlet norm

√
DD(u, u). In the following example, we

apply Theorem 6.2 to the case that D is a bounded domain of C.

Example 6.3 Assuming thatD is a bounded domain ofC, we consider the absorbing Brow-
nian motionMD on D and the associated Dirichlet form ( 12DD .H 1

0 (D)) on L2(D) as above.
Due to a Poincaré inequality ([15, Example 1.5.1], the extended Dirichlet space H 1

0,e(D)

is the space H 1
0 (D) itself which is a real Hilbert space with the 0-order inner product

1
2DD(u, v).

Using the planar BM M = (Xt ,Px), the resolvent density {rα(x, y), α > 0, x, y ∈ D}
of MD is defined by

rα(x, y) = gα(x, y)− Ex[e−ατDgα(XτD
, y)], gα(x, y) =

∫ ∞

0
e−αt 1

2πt
e−

|x−y|2
2t dt .

The 0-order resolvent density of MD is defined by r(x, y) = limα↓0 rα(x, y), x, y ∈ D.
The fundamental identity for logarithmic potentials due to S.C. Port and C.J. Stone [26,
Th.3.4.2] says that

r(x, y) = k(x, y)− Ex[k(XτD
, y)], x, y ∈ C, (6.9)
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where k is the logarithmic kernel defiend by k(x, y) = 1
π
log 1

|x−y| , x, y ∈ C. Generally
the righthand side involves an extra additional term WC\D(x) which disappears under the
present assumption on the boundedness of D.

The present Dirichlet form ( 12DD,H 1
0 (D)) on L2(D) and the associated diffusion M

D

obviously satisfy the conditions (C.1) (ii), (C.2), (C.3) and (C.4). The condition (C.1) (i)
follows from Theorem 3.1 in [1] by taking X = C, (E,F) = ( 12DD,H 1(C)) and � = D.
We let D0 = {x ∈ D : dist(x, ∂D) > 1}, and consider for the closed disk B(x, r)
with x ∈ D0, r ∈ (0, 1) its renormalized equilibrium measure μx,r and the Robin con-
stant f (x, r) defined by Eq. 6.2. Then, by Eq. 6.3, the renormalized equilibrium potential
Rμx,r ∈ H 1

0 (D) has the expression Rμx,r (y) = f (x, r)Py(σB(x,r) < τD), ∀y ∈ D, in
terms of the planar Brownian motionM = (Xt ,Px).

We consider again the uniform probability measure νx,r on ∂B(x, r). It follows from
Eqs. 6.9 and 5.9 that

νx,r ∈ S(0), Rνx,r (z) = 1

π
log

1

|x− z| ∨ r
− 1

π
Ez

[

log
1

|XτD
− x|

]

,

and so

〈μx,r , Rνx,r 〉 = 1

π
log

1

r
+ �(x, r), (6.10)

where

�(x, r) = − 1

π
Eμx,r

[

log
1

|XτD
− x|

]

. (6.11)

Since the left hand side of Eq. 6.10 equals 〈Rμx,r , νx,r 〉 = f (x, r), we obtain

f (x, r) = 1

π
log

1

r
+ �(x, r) x ∈ D0, r ∈ (0.1). (6.12)

for �(x, r) given by Eq. 6.11. By Eq. 6.11, �(x, r) is bounded in x ∈ D0 uniformly in
r ∈ (0, 1). Therefore, by Eq. 6.12, the condition (C.5) is fulfilled.

Property Eq. 6.4 now holds with κ = 1. In order to verify this, take any x, y ∈ D0, and
any ε, δ ∈ (0, 1/2) with 1 > |x− y| > ε + δ. It then follows from Eq. 6.9 that

⎧
⎪⎨

⎪⎩

〈μx,ε, Rμy,δ〉 = I− II, where

I = 1
π

∫
∂B(x,ε)×∂B(y,δ) log

1
|z−z′|μ

x,ε(dz)μy,δ(dz′),
II = 1

π

∫
∂D×∂B(y,δ) log

1
|ξ−z|Pμx,ε (XτD

∈ dξ)μy,δ(dz).

(6.13)

As |z− z′| ≥ |x− y| − ε − δ for z ∈ ∂B(x, ε) and z′ ∈ ∂B(y, δ), we have

I ≤ 1

π
log

1

|x− y| − ε − δ
. (6.14)

Since dist(∂D, ∂B(y, δ)) ≥ 1/2, and D is bounded, II is uniformly bounded. Hence
Eqs. 6.12 and 6.14 imply that the property Eq. 6.4 with κ = 1 is fulfilled.

Let {Xu; u ∈ H 1
0 (D)} be the centered Gaussian field defined on a probability space

(�,B,P) with covariance E(XuXv) = 1
2DD(u, v), u, v ∈ H 1

0 (D). Define Y x,r and Ỹ x,ε,γ

by Eq. 6.7. Defineμε(A,ω) by Eq. 6.8 for a positive finite measure σ onD0 specified there.
Then we can use Theorem 6.2 along with the expression Eq. 6.12 of f (x, r) in the same
way as in Example 5.1 to get the stated convergence of με(·, ω) as ε ↓ 0 for γ ∈ (0, 2

√
π).
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6.2 Transformations of GMCs by conformal maps

Let D and D̂ be domains of C with C \ D and C \ D̂ being non-polar with respect to the
Brownian motion on C, and ψ be a conformal map from D onto D̂. We write

ψ(x + iy) = u+ iv ∈ D̂, x + iy ∈ D.

We consider the Dirichlet form E = ( 12DD, H 1
0 (D)) (resp.Ê = ( 12DD̂, H 1

0 (D̂))) on L2(D)

(resp.L2(D̂)) and its extended Dirichlet space H 1
0,e(D) (resp.H 1

0,e(D̂)) as was described

preceding to Example 6.3. For a function f on D, define a function �f on D̂ by (�f )(u+
iv) = f ◦ ψ−1(u+ iv), u+ iv ∈ D̂. We then readily obtain

H 1
0,e(D̂) = {�f : f ∈ H 1

0,e(D)}, 1

2
DD̂(�f,�g) = 1

2
DD(f, g), f, g ∈ H 1

0,e(D).

(6.15)
� is a bijection between H 1

0,e(D) and H 1
0,e(D̂).

We first note the conformal invariance of potential theoretic notions. For any subset
A of D, Cap(0)(A) denotes its 0-order capacity with respect to the Dirichlet form E and,
for A ∈ B(D), pA denotes its hitting probability of the absorbing Brownian motion M

D:
pA(x) = P

D
x (σA <∞), x ∈ D. The correponding notions for D̂ will be designated with .̂

Lemma 6.4 (i) It holds for any set A ⊂ D that

Cap(0)(A) = Ĉap
(0)

(ψ(A)). (6.16)

A set A ⊂ D is E-polar iff ψ(A) is Ê-polar. A function f on D is E-quasi-continuous iff
�f is Ê-quasi-continuous.

(ii) For any A ∈ B(D) with Cap(0)(A) < ∞.

�pA(y) = p̂ψ(A)(y), for Ê − q.e. y ∈ D̂. (6.17)

Proof. (i). It suffices to show Eq. 6.16 for any open set A ⊂ D. Then, Cap(0)(A) =
inf{ 12DD(f, f ) : f ∈ H 1

0,e(D), f ≥ 1a.e. on A}, which combined with Eq. 6.15 yields
Eq. 6.16.

(ii). By the 0-order version of [15, Th.2.1.5] and [15, Th.4.3.3], pA is E-quasi-continuous
function in H 1

0,e(D) and characterized by the conditions that pA = 1 E-q.e. on A and
1
2DD(pA, v) ≥ 0, for any v ∈ H 1

0,e(D) with ṽ ≥ 0 E-q.e. on A, which combined with (i)
and Eq. 6.15 yields Eq. 6.17. �

For any compact set B ⊂ D with Cap(0)(B) > 0, the (renormalized) equilibrium
potential pB and the Robin constant c(B) of B are given by pB = pB/Cap(0)(B) and
c(B) = 1/Cap(0)(B), respectively. The above lemma implies

�pB = p̂ψ(B), c(B) = ĉ(ψ(B)). (6.18)

Let G(E) = {Xf ; f ∈ H 1
0,e(D)} be the centered Gaussian field indexed by H 1

0,e(D)

defined on a probability space (�,B,P) with E[Xf Xg] = 1
2DD(f, g), f, g ∈ H 1

0,e(D).

For any f̂ ∈ H 1
0,e(D̂), �−1f̂ ∈ H 1

0,e(D) by Eq. 6.15 so that one may define the random
variable

X̂f̂ = X�−1f̂ . (6.19)
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Equation 6.15 then implies that G(Ê) = {X̂f̂ : f̂ ∈ H 1
0,e(D̂)} becomes a centered Gaussian

field indexed by H 1
0,e(D̂) with E[X̂f̂ X̂ĝ] = 1

2DD̂(f̂ , ĝ), f̂ , ĝ ∈ H 1
0,e(D̂). It further follows

from Eq. 6.18 that, for any compact set B ⊂ D with Cap(0)(B) > 0,

X̂p̂ψ(B) = XpB . (6.20)

We now consider a bounded open set D0 with D0 ⊂ D and choose, for each x ∈ D0, a
family {B(x, ε), ε > 0} of compact sets with

x ∈ Bo(x, ε), B(x, ε) ⊂ D, Cap(0)(B(x, ε)) > 0 ∀ ε > 0, and B(x, ε) ↓ {x} as ε ↓ 0,

where Bo(x, ε) denotes the interior of B(x, ε). We assume that for each ε > 0

the map x ∈ D0 to pB(x,ε) ∈ H 1
0,e(D) is continuous. (6.21)

Define
Y x,ε = XpB(x,ε) , f (x, ε) = 1/Cap(0)(B(x, ε)), x ∈ D0, ε > 0. (6.22)

We fix a constant γ > 0. Given a finite positive measure σ onD0, we introduce a random
measure με(·, ω) on D0 by

με(A,ω) =
∫

A

exp

(

γ Y x,ε − γ 2

2
f (x, ε)

)

σ(dx), A ∈ B(D0). (6.23)

Here Y x,ε in Eq. 6.22 is chosen to be its measurable version of x, namely, a function Y (x, ω)

measurable in (x, ω) ∈ D0 ×� such that, for σ -a.e. x ∈ D0, Y (x, ω) = Y x,ε(ω) for P-a.e.
ω ∈ �. The existence of such a version is ensured by the assumption Eq. 6.21 as in the
proof of Proposition 4.9.

LetM(D0) be the space of all finite positive measures onD0 equipped with the topology
of the weak convergence, which can be induced by the metric ρ(μ, ν), μ, ν ∈ M(D0),

defined by Eq. 4.48 using any countable dense subfamily {gn} of C(D0).
Notice that με(·, ω) ∈ M(D0) for almost all ω ∈ �. If there exists ν(·, ω) ∈ M(D0)

such that limε↓0 P(ρ(με, ν) > δ) = 0 for any δ > 0, then we say that the Gaussian field
G(E) admits a multiplicative chaos ν(·, ω) on D0 relative to σ and {B(x, ε), x ∈ D0, ε >

0}.
Put D̂0 = ψ(D0). Let us define, for y ∈ D̂0, ε > 0,

B̂(y, ε) = ψ(B(ψ−1y, ε)), Ŷ y,ε = X̂
p̂B̂(y,ε) , f̂ (y, ε) = 1/Cap(0)(B̂(y, ε)). (6.24)

{B̂(y, ε) : y ∈ D̂0, ε > 0} is then a family of compact subsets of D̂0 containing y in the
interior with B̂(y, ε) ↓ {y} as ε ↓ 0. We further let

σ̂ = ψ · σ : σ̂ (C) = σ(ψ−1(C)), C ∈ B(D̂0). (6.25)

For instance, when σ is the Lebegue measure dx1dx2 on D0, σ̃ (dy1dy2) = 1
|ψ ′(y)|2 dy1dy2.

Theorem 6.5 Let ψ be a conformal map from D onto D̂. G(E) admits a multiplicative
chaos ν on D0 relative to σ and {B(x, ε), x ∈ D0, ε > 0} if and only if G(Ê) admits a
multiplicative chaos ν̂ on D̂0 = ψ(D0) relative to σ̂ defined by Eq. 6.25 and {B̂(y, ε), y ∈
D̂0, ε > 0} defined by Eq. 6.24.

In this case, ν̂ is the image measure of ν by ψ: ν̂(C) = ν(ψ−1(C)), C ∈ B(D̂0).

Proof. It follows from Eqs. 6.20 and 6.24 that

Ŷ y,ε = Yψ−1y,ε, f̂ (y, ε) = f (ψ−1y, ε), y ∈ D̂, ε > 0. (6.26)
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Therefore

〈gn, με〉 =
∫

D0

gn(x) exp
(

γ Ŷ y,ε − γ 2

2
f̂ (y, ε)

) ∣
∣
y=ψ(x) σ (dx)

=
∫

D̂0

�gn(y) exp
(

γ Ŷ y,ε − γ 2

2
f̂ (y, ε)

)

σ̂ (dy) = 〈�gn, μ̂ε〉.

We also have 〈gn, ν〉 = 〈�gn, ν̂〉 for the image measure ν̂ of ν by ψ . The assertion of the-
orem follows by noting that {�gn, n ≥ 1} is dense in the space of all continuous functions
on the closure of D̂0. �

Appendix: Proof of Proposition 4.7

Proof of Proposition 4.7 (i)

Using the function ř1(x, y), x, y ∈ F, in Eq. 4.13, define

ř11 (x, y) = ř1(x, y), řn
1 (x, y) =

∫
ř1(x, z)ř

n−1
1 (z, y)mF (dz), n ≥ 2.

řn
1 (x, y) is the density function of the kernel Řn(x, dy) on (F,B(E)) with respect to mF .

Řn
1 (x, dy) is mF -symmetric and Řn

11F (x) = 1, x ∈ F, so that m̃F Řn
1 = m̃F . Consequently,

Řn
1 (x, A)− m̃F (A) =

∫

F

[Řn
1 (x, A)− Řn

1 (x
′, A)]m̃F (dx′), A ∈ B(F ).

Denote by ||μ|| the total variation of a signed measure μ on F, We then get from the above
identity and an estimate [14, (3.4)]

sup
x∈F

||Řn
1 (x, ·)− m̃F (·)|| ≤ 2γ n, for some constant γ ∈ (0, 1). (7.1)

Therefore, if we let

ř (±)(x, A) =
∫

A

∑∞
n=1(ř

n
1 (x, y)− 1/m(F))±mF (dy), x ∈ F, A ∈ B(F ), (7.2)

then, ř (+)(x, A), ř(−)(x, A) are positive kernels on (F,B(F )) satisfying
supx∈F ř(±)(x, F ) < ∞ and, for any ϕ ∈ L∞(F ;mF ),

Řϕ(x) =
∫

F

ř(+)(x, dy)ϕ(y)−
∫

F

ř(−)(x, dy)ϕ(y) for m-a.e. x ∈ F . (7.3)

on account of Eq. 4.14. This identity can be readily verified to hold also for ϕ ∈ L2(F ;mF ).
Define r(±)(x, y) = ∫

F

∫
F×F

rg(x, z)ř(±)(z, dw)rg(w, y)mF (dz) for x, y ∈
C, r(±)(x, y) are symmetric and M

g-excessive for each variable x and y.∫
C
r(+)(x, y)h(y)m(dy) is finite for each x ∈ C for any non-negative bounded Borel func-

tion h on C vanishing outside a bounded set, because Rgh is bounded on C by Lemma 3.1
and so ψ(z) = ∫

F
ř(+)(z, dw)Rgh(w) is bounded on F by a constant C > 0, and further-

more
∫
C
r(+)(x, y)h(y)m(dy) = Rg(1F · ψ)(x) ≤ CRgg(x) = C in view of [14, (3.28)].

Therefore r(±)(x, y) is finite for m-a.e.y and hence q.e.y ∈ C.
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We see from Eq. 4.14 that, for ϕ ∈ L2(F ;mF ), Řϕ = Ř1ϕ − 〈m̃F , ϕ〉 + Ř1Řϕ. Con-
sider any μ ∈ Sg,(0)

0 with μ(C) < ∞. Since Rgμ ∈ L2(C, mF ) and 〈m̃F , Rgμ〉 =
1

m(F)
〈Rgg, μ〉 = μ(C)/m(F ), we have

HF Ř(1F Rgμ)(x) = Rg(1F Rgμ)(x)− μ(C)/m(F )+ Rg(1F Ř(1F Rgμ))(x), x ∈ C,

which combined with Eqs. 4.12 and 7.3 implies that Rμ admits an expression Eq. 4.26 by
a kernel r(x, y) defined by

r(x, y) =
∫

F

rg(x, z)rg(z, y)mF (dz)+ r(+)(x, y)− r(−)(x, y)

+rg(x, y)− 2/m(F), x, y ∈ C. (7.4)

r(x, y) is symmetric and, for each x ∈ C, it is a difference of Mg-excessive func-
tions finite for q.e. y ∈ C. This property for the first term of the righthand side
can be verified in a similar way to the proof for other terms given previously.

Proof of Proposition 4.7 (ii)
We take x, y ∈ B(S − 1) with |x − y| > η. Since there exists a constant M2 such

that |R̂μy,r2 | ≤ M2 on B(x, η/8) for any r2 < η/8 by Lemma 4.6, the stated uniform
boundedness of 〈μx,r1 , Rμy,r2〉 = 〈μx,r1 , R̂μy,r2〉 holds true. To prove Eq. 4.27, we first
show that

lim
r1,r2↓0

〈μx,r1 , Rgμy,r2〉 = rg(x, y), (7.5)

for m×m-a.e. (x, y) ∈ B(S − 1)× B(S − 1) ∩ {(x, y) : |x− y| > η}.
Since e−tpt (z,w) ≤ p

g
t (z,w) ≤ pt (z,w), we can use Eq. 4.1 to find for any ε > 0 a

positive t0 satisfying
∫ t

0
p

g
s (z,w)ds ≤

∫ t

0

K2

s
e−9k2η2/16sds < ε (7.6)

for any t ≤ t0 and z,w ∈ E such that |z−w| > 3η/4. In particular,
∫ t

0〈μx,r1 , P
g
s μy,r2〉ds <

ε.
Let M1 be a constant satisfying Rgμy,r2 ≤ M1 on C \ B(y, η/2) for all r2 ≤ η/8. Such

constant M1 exists by Lemma 4.6. By Eq. 4.1 and the tail estimate Eq. 4.32, we may assume
that, by taking smaller t0 > 0 if necessary,
∫

C\B(x,η/2)
p

g
t (z,w)m(dw) ≤

∫

{|w|>3η/8}
K2

t
e−k2|w|2/t dw ≤ K2

√
π/k2te

−9η2k2/64t <
ε

M1

for all t ≤ t0 and z ∈ B(x, η/8). In particular,

〈μx,r1P
g
t , 1C\B(S−1/2)Rgμy,r2〉

=
∫ ∫

p
g
t (z,w)1C\B(S−1/2)(w)Rgμy,r2(w)m(dw)μx,r1(dz)

≤ M1

∫

B(x,η/8)
μx,r1(dz)

∫

C\B(x,η/2)
p

g
t (z,w)m(dw) < ε. (7.7)

Put D(y) = B(S − 1/2) \ B(y, η/2). Since p
g
t (z,w) ≤ (K2/t)e−9k2η2/64t for any z ∈

B(x, η/8) and w ∈ B(y, η/2) and Rg1B(S−1) ≤ M4 on C for some constant M4 by Lemma
3.1 (i),

〈μx,r1P
g
t , 1B(y,η/2) · Rgμy,r2〉≤ K2

t
e−9k2η2/64t 〈μy,r2 , Rg1B(y,η/2)〉≤ K2M4

t
e−9k2η2/64t <ε

(7.8)
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for any t < t0 by taking smaller t0 if necessary. Further, since the distance between F and
B(x, η/8) exceeds 1/2, we get by putting At =

∫ t

01F (Xs)ds,

Pt0(z,D(y))− P
g
t0
(z, D(y)) = Ez

[
(1− e−At0 )1D(y)(Xt0)

]
≤ Ez

[∫ t0

0
1F (Xs)ds

]

≤
∫ t0

0

K2m(F)

s
e−k2/4sds for any z ∈ B(x, η/8).

Hence we may also assume that

〈μx,r1 , (Pt − P
g
t )(1DRgμy,r2)〉 < ε for all t ≤ t0, (7.9)

because Rgμx,r2 ≤ M1 on D(y).
Therefore, in the decomposition

〈μx,r1 , Rgμy,r2〉 =
∫ t

0
〈μx,r1 , P

g
s μy,r2〉ds + 〈μx,r1 , P

g
t Rgμy,r2〉

=
∫ t

0
〈μx,r1 , P

g
s μy,r2〉ds + 〈μx,r1P

g
t , 1C\B(S−1/2) · Rgμy,r2〉

+〈μx,r1P
g
t , 1B(y,η/2) · Rgμy,r2〉 + 〈μx,r1 , (P

g
t − Pt )(1D(y)R

gμy,r2)〉
+〈μx,r1 , Pt (1D(y)R

gμy,r2)〉,
the sum of the first four terms of the righthand side is smaller than 4ε for any r1, r2 ∈
(0, η/8) and t ≤ t0.

Since pt (z,w) is uniformly continuous relative to (z,w) on B(x, η/8) × D(y), by
putting δ(t, r1) = sup{|pt (z,w) − pt (x,w)| : z ∈ B(x, r1),w ∈ D(y)}, we can see that
the difference of the last term of the righthand side and

∫
D(y)pt (x,w)Rgμy,r2(w)m(dw)

is smaller than M1δ(t, r1) which converges to zero as r1 ↓ 0 for each t < t0.
Furthermore, for f x

t (w) = 1D(y)(w)pt (x,w), Rgf x
t is E-harmonic on B(y, η/8)

by Lemma 3.1 and continuous there as in the proof of Lemma 4.4. Consequently,
limr2→0

∫
D(y)pt (x,w)Rgμy,r2(w)m(dw) = limr2→0 〈μy,r2 , Rgf x

t 〉 = Rgf x
t (y). Accord-

ingly
lim sup
r1,r2↓0

|〈μx,r1 , Rgμy,r2〉 − Rgf x
t (y)| < 4ε (7.10)

for any t ≤ t0 and any x, y ∈ B(S − 1) with |x− y| > η.
Thus, to verify Eq. 7.5, it suffices to show that limt→0 Rgf x

t (y) = limt→0 Pt (1D(y) ·
rg(·, y))(x) = rg(x, y) for m × m-a.e.(x, y) ∈ B(S − 1) × B(S − 1) ∩ {|x − y| > η}. For
any y ∈ B(S − 1), let E1(y) = {x : rg(x, y) <∞}. As C \ E1(y) is polar and

P
g
t (1D(y)r

g(·, y))(x) ≤ Pt (1D(y)r
g(·, y))(x) ≤ etP

g
t (1D(y)r

g(·, y))(x),
it is enough to show that limt→0 P

g
t (1D(y) ·rg(·, y))(x) = rg(x, y) for any x ∈ D(y)∩E1(y).

Since rg(·, y) is Mg-excessive and 1D(y)(Xt )r
g(Xt , y) is right continuous at t = 0 a.s.Px

for x ∈ D(y) ∩ E1(y), we have

rg(x, y) ∧ n = lim
t→0

E
g
x
[
1D(y)(Xt )r

g(Xt , y) ∧ n
] ≤ lim

t→0
E

g
x
[
1D(y)(Xt )r

g(Xt , y)
]

≤ lim
t→0

E
g
x
[
1D(y)(Xt )r

g(Xt , y)
] ≤ lim

t→0
E

g
x
[
rg(Xt , y)

] = rg(x, y), n ≥ 1.

By letting n→∞, we arrive at Eq. 7.5.
We shall next show that, for the kernels r+(x, y) and r−(x, y) appearing in the proof of

Proposition 4.7 (i),
lim

r1,r2↓0
〈μx,r1 , R(±)μy,r2〉 = r(±)(x, y), (7.11)
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for m × m-a.e. (x, y) ∈ B(S − 1) × B(S − 1). Here we let R(±)μ(x) =∫
C
r(±)(x, z)μ(dz), x ∈ C. Consider the function on C defined by xiy,r2+ (z) =

1F (z)Ř(+)(1F Rgμy,r2)(z), z ∈ C. Since Rgμy,r2(z) is bounded in z ∈ F and r2 by Lemma
4.6 (i) and Ř(+) is a bounded linear operator on L∞(F ;mF ), there exists a constant M > 0
such that for any z ∈ C, r2 ∈ (0, η/8),

xiy,r2+ (z) ≤ M, Rgxiy,r2+ (z) =
∫

F

rg(z,w)xiy,r2+ (w)m(dw) = HF (Rgxiy,r2+ )(z) ≤ M .

(7.12)
In view of definition, we have the identity R(+)μy,r2 = Rgxiy,r2+ . Accordingly, as in the

previous proof of Eq. 7.5, we can decompose 〈μx,r1 , R(+)μy,r2〉 as
〈μx,r1 , R(+)μy,r2〉 =

∫ t

0
〈μx,r1 , P

g
s xi

y,r2+ 〉ds + 〈μx,r1P
g
t , 1C\B(S−1/2) · Rgxiy,r2+ 〉

+〈μx,r1 , (P
g
t − Pt )(1B(S−1/2)Rgxiy,r2+ )〉

+〈μx,r1 , Pt (1B(S−1/2)Rgxiy,r2+ )〉.
For any ε > 0, we can take t1 such that the first term of the righthand side is less than ε

for any t ∈ (0, t1) as Eq. 7.6 because of dist(F, B(x, r1)) > 1/2 and the bound Eq. 7.12.
Because also of the bound Eq. 7.12, we can take t1 such that the second term is less than ε

for any t ∈ (0, t1) as Eq. 7.7. Further, as Eq. 7.9, we may suppose that the third term is less
than ε for all t ≤ t1.

Since sup{|pt (z,w)− pt (x,w)| : z ∈ B(x, r1),w ∈ B(S − 1/2)} → 0 as r1 → 0,
limr1→0 〈μx,r1 , Pt (1B(S−1/2)Rgxiy,r2+ )〉 = Pt (1B(S−1/2)Rgxiy,r2+ )(x) uniformly in r2 ≤
η/8. Put hxt (w) = 1F (w)Ř(+)Rg(1B(S−1/2)pt (·, x))(w). Since hxt vanishes outside of F, we
can see as before that Rghxt (w) is continuous on B(S − 1) and consequently

lim
r2→0

Pt (1B(S−1/2)Rgxiy,r2+ )(x) = lim
r2→0

〈μy,r2 , Rghxt 〉 = Rghxt (y).

Therefore, as Eq. 7.10, lim supr1,r2↓0 |〈μx,r1 , R(+)μy,r2〉 − Rghxt (y)| < 3ε for any t ≤ t1.
As Rghxt (y) = R(+)(1B(S−1/2)pt (·, x))(y) = Pt (1B(S−1/2) · r(+)(·, y))(x), and r(+)(·, y)

is M
g-excessive and finite q.e., we obtain similarly to the above proof of Eq. 7.5, that

limt→0 Rghxt (y) = r(+)(x, y) for q.e.x ∈ B(S−1) for each y ∈ B(S−1), and consequently,
the validity of Eq. 7.11 for R(+) and r(+). In the same way Eq. 7.11 for R(−) and r(−) is
valid.

It remains to prove
lim

r1,r2↓0
〈μx,r1 ,Qμy,r2〉 = q(x, y), (7.13)

for m×m-a.e. (x, y) ∈ B(S − 1)×B(S − 1). Here q(x, y) is the first term of the righthand
side of Eq. 7.4 and Qμ(x) = ∫

C
q(x, z)μ(z), z ∈ C. But this can be shown in exactly the

same way as the proof of Eq. 7.11 using 1F (z)Rgμy,r2(z) in place of xiy,r2+ (z).

Appendix: Proof of Proposition 5.4

Assume that (aij (x)) is a family of C1 functions on C with Hölder continuous derivative
satisfying Eq. 1.3. Let bi(x) = ∑2

i,j=1∂aij (x)/∂xj and L be the infinitesimal generator
corresponding to the form a:

Lu(x) =
∑2

i,j=1
∂

∂xi

(

aij (x)
∂u

∂xj

)

=
∑2

i,j=1aij (x)
∂2u

∂xi∂xj

+
∑2

i=1bi(x)
∂u

∂xi

.
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Let us fix an open disk G containing B(S + 1). A function �(x, y) is said to be a fun-
damental solution of L on G if it satisfies −L�(x, y) = δ(x − y) weakly, that is, for all
u ∈ C1

c (G), ∫

G

∑2

i,j=1aij (x)
∂u(x)
∂xi

∂�(x, y)
∂xj

dx = u(y), ∀y ∈ G. (7.14)

For any fixed y ∈ G, letL0u(x) =∑2
i,j=1aij (y) ∂2u

∂xi∂xj
. Then�0(x, y) defined by Eq. 5.19 is

a fundamental solution ofL0 onG. We shall briefly describe a construction of a fundamental
solution of L from the parametrix �0(x, y) as is stated in [11, §5.6] under the condition that
the coefficients of L are Hölder continuous.

Since aij ∈ C1
b (G), the function k0(x, y) = (L−L0)�0(x, y) satisfies, for some constant

K1 > 0, |k0(x, y)| ≤ K1/|x − y|, ∀x, y ∈ G. Define k
(n)
0 (x, y) by k

(1)
0 (x, y) = k0(x, y)

and k
(n)
0 (x, y) = ∫

G
k0(x, z)k

(n−1)
0 (z, y)dz. Then |k(2)

0 (x, y)| ≤ K2 log(1/|x− y|)+K3 and

|k(3)
0 (x, y)| ≤ K4 for some constants K2, K3 and K4. Put K

(n)
0 f (x) = ∫

G
k
(n)
0 (x, y)f (y)dy.

A fundamental solution �(x, y) of L on G can be constructed by

�(x, y) = �0(x, y)+
∫

G

�0(x, z)�(z, y)dz+
∑

αi(x)βi (y) (7.15)

for suitable continuous functions �(x, y), αi(x) and βi (y). In order to make � to satisfy
−L�(x, y) = δ(x − y), �(x, y) needs to be a solution of the following Fredholm integral
equation.

�(x, y) = k0(x, y)+
∫

G

k0(x, z)�(z, y)dz+
∑

Lαi(x)βi (y). (7.16)

Note that k(n)
0 (x, y) is continuous on G for any n ≥ 3. Let us take a continuous function

g(x, y) = k
(4)
0 (x, y)+ k

(5)
0 (x, y)+ k

(6)
0 (x, y)+

∑
(K

(3)
0 +K

(4)
0 +K

(5)
0 )(Lαi)(x)βi (y).

Here αi = βi = 0 for all i if λ = 1 is not an eigenvalue of the dual operator (K∗
0 )(3) on

Cb(G) of K
(3)
0 defined by (K∗

0 )(3)f (x) = ∫ (k∗0)(3)(x, y)f (y)dy with k∗0(x, y) = k0(y, x),
while, if λ = 1 is an eigenvalue, then αi, βi are chosen to satisfy (g(·, y), ψj ) = 0 for all
eigenfunctions {ψj } corresponding to the eigenvalue λ = 1 of (K∗

0 )(3). Then the Fredholm

equation w(x, y) = K
(3)
0 w(x, y) + g(x, y) has a unique continuous solution w(x, y) for

any y ∈ G. Using this solution, the unique solution of Eq. 7.16 is given by �(x, y) =
k0(x, y)+ k

(2)
0 (x, y)+ k

(3)
0 (x, y)+w(x, y). We notice that, according to the construction of

� from �0 by Eq. 7.15,

�(y, z)− �0(y, z)is bounded in (y, z) ∈ G×G. (7.17)

We now proceed to a proof of Eq. 4.19 with κ = �/λ. For x ∈ B(S − 1) and 0 <

5r ≤ t ≤ 1/3, let μx,r be the equilibrium measure for B(x, r) relative to the admissible set
F = B(S + 1)\B(S) for the Dirichlet form a on H 1(C). We first show that the logarithmic
potential

Uμx,r (y) = 1

π

∫
log

1

|y− z|μ
x,r (dz), y ∈ C,

of μx,r has the properties

〈μx,r , Uμx,r 〉 <∞ and Uμx,r ∈ L2
loc(C). (7.18)

Sinceμx,r is a measure of 0-order finite energy for the perturbed form ag of a by g = 1F ,
so it is for the perturbed Dirichlet integral (1/2)D(u, u)+ (u, u)g .
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Denote by Ḿ the planar Brownian motion. Ŕg(x, y) and ŔC\F (x, y) denote the 0-order
resolvent density of the subproces of Ḿ by exp[−∫ t

0IF (Xs)ds] and that of the part of Ḿ on

the set C \ F , respectively. Then ŔC\F (x, y) ≤ Ŕg(x, y) so that

〈μx,r , ŔC\F μx,r 〉≤〈μx,r , Ŕgμx,r 〉<∞, and ŔC\F μx,r ∈H 1
0,e(C \ F)⊂BL(C)⊂L2

loc(C).

According to the fundamental identity of the logarithmic potential (cf. [13, (2.13)]),

Uμx,r (y) = ŔC\F μx,r (y)+ H́F Uμx,r (y)−WF (y), y ∈ C,

which readily implies Eq. 7.18.
Define �μx,r (y) = ∫ �(y, z)μx,r (dz), y ∈ C. �0μ

x,r is defined similarly. Since �0(x, y)
is bounded by K5 log(1/|x − y|) + K6 for some constants K5 and K6, we have �0μ

x,r ∈
L2
loc(C) by Eq. 7.18. By Eq. 7.17, this also holds for � in place of �0.
Put A−1(y) = (aij (y)). Since the weak derivative ∇�0μ

x,r is given by

∇�0μ
x,r (w) =

∫

G

1

π(det(A−1(y)))1/2
A−1(y)(w− y)

t (w− y)A−1(y)(w− y)
μx,r (dy),

we get
∫

G

|∇�0μ
x,r (w)|2dw ≤ K7

∫ ∫ ∫
1

|w− y||w− z|dwμx,r (dy)μx,r (dz)

≤ K8

∫ ∫
log

1

|y− z|μ
x,r (dy)μx,r (dz)+K9.

which is finite by Eq. 7.18. Consequently �0μ
x,r ∈ BL(G). By Eq. 7.15, �μx,r also belongs

to the space BL(G). Since the disk G is an extendable domain for BL-functions ([18]), there
exists � ∈ BL(C) such that �

∣
∣
G
= �μx,r .

In what follows, we let T = S − 1/4. By virtue of Lemma 3.8, it holds that

R̂μx,r −HC\B(T )R̂μx,r = RB(T )μx,r q.e.

Further, if we let Fe,B(T ) = {u ∈ BL(C) : ũ = 0q.e. on C \ B(T )}, then
RB(T )μx,r ∈ Fe,B(T ), and a(RB(T )μx,r , v) = 〈μx,r , ṽ〉, ∀v ∈ Fe,B(T ).

Define �B(T )(y) = �(y) − HC\B(T )�(y), y ∈ C. As � ∈ BL(C), �B(T ) ∈ Fe,B(T )

and HC\B(T )� is a-harmonic on B(T ), namely, a(HC\B(T )�, v) = 0, ∀v ∈ Fe,B(T ). Since
� equals �μx,r on G and � is a fundamental solution of L on G, we have a(�B(T ), v) =
〈μx,r , v〉, ∀v ∈ Fe,B(T )∩Cc(B(T )). Therefore a(RB(T )μx,r−�B(T ), R

B(T )μx,r−�B(T )) =
0, which in turn implies

R̂μx,r (y)− �μx,r (y) = H∂B(T )R̂μx,r (y)−H∂B(T )�μx,r (y), for a.e.y ∈ B(T ) \ B(x, r),
(7.19)

where R̂μx,r is a version of Rμx,r introduced in Lemma 4.4.
By Lemma 4.6,

sup
y∈B(T )

sup
x∈B(S−1),0<r<1/8

|H∂B(T )R̂μx,r (y)| ≤ sup
z∈∂B(T )

sup
x∈B(S−1),0<r<1/8

|R̂μx,r (z)|
=: �1 <∞.

By Eq. 7.15, �(y, z) is jointly continuous on G×G off the diagonal set, and consequently

sup
y∈B(T )

sup
x∈B(S−1),0<r<1/8

|H∂B(T )�μx,r (y)| ≤ sup
y∈∂B(T ),z∈B(S−1/2)

|�(y, z)| =: �2 <∞.
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Therefore, it follows from Eq. 7.19 and Lemma 4.4 that

sup
x∈B(S−1),0<r<1/8

sup
y∈B(T )\B(x,r)

|R̂μx,r (y)− �μx,r (y)| ≤ �1 + �2 <∞.

By taking Eq. 7.17 into account, it holds further that �μx,r (y) − �0μ
x,r (y) is bounded

uniformly in x ∈ B(S − 1) and 0 < r < 1/2.
Hence, there exists a constant K9 such that, for x ∈ B(S − 1) and 0 < 4r ≤ t < 1/2,

max
{
R̂μx,r (y) : y ∈ ∂B(x, t)

} ≤ max
{
�0μ

x,r (y) : y ∈ ∂B(x, t)
}+K9

≤ �

π
max

{∫

B(x,r)
log

�

|y− z|2μx,r (dz) : y ∈ ∂B(x, t)
}

+K9.

Since (3/4)t ≤ |y− z| ≤ (5/4)t for any y ∈ ∂B(x, t) and z ∈ ∂B(x, r), the last expression
in the above display is dominated by

�

π
min

{∫

B(x,r)
log

25�

9|y− z|2 μx,r (dz) : y ∈ ∂B(x, t)
}

+K9.

≤ �

λ
min

{
λ

π

∫

B(x,r)
log

λ

|y− z|2μx,r (dz) : y ∈ ∂B(x, t)
}

+�

π
(log(25�/9)− log λ)+K9

≤ �

λ
min{�0μ

x,r (y) : y ∈ ∂B(x, t)} +K10

≤ �

λ
min{R̂μx,r (y) : y ∈ ∂B(x, t)} +K9 +K10

for K10 = K9 + (�/π)(log(25�/9) − log λ). Therefore Eq. 4.19 holds for κ = �/λ and
C2 = K9 +K10.
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28. Röckner, M.: Generalized Markov fields, Dirichlet forms. Acta. Appl. Math 3, 285–311 (1985)
29. Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. probab.

44, 3474–3545 (2016)
30. Silverstein, M.L.: Symmetric Markov Processes, Lecture Notes in Math, vol. 426. Springer, Berlin

Heidelberg (1974)
31. De La Vallée Poussin, Ch.-J.: Le Potentiel Logarithmique Gauthier-Villars (1949)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Gaussian fields, equilibrium potentials and multiplicative chaos... 337


	Gaussian fields, equilibrium potentials and multiplicative chaos...
	Abstract
	Introduction
	Basic properties of Gaussian field G(E)
	A pseudo Markov property of G(E)
	Characterization of Markov property of G(E) for transient E
	Characterization of Markov property of G(E) for recurrent E
	Cameron-Martin formulae for G(E)

	Equilibrium potentials for recurrent Dirichlet forms
	GMCs via equilibrium potentials for recurrent forms
	Properties of the family {x,r,f(x,r)} for recurrent forms
	Construction of Gaussian multiplicative chaos from {x,r,f(x,r)}

	Examples of Gaussian multiplicative chaos for recurrent forms
	GMCs via equilibrium potentials for transient forms
	Construction of Gaussian multiplicative chaos for transient forms
	Transformations of GMCs by conformal maps

	Appendix A Proof of Proposition 4.7
	Proof of Proposition 4.7 (i)
	References


