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Abstract

For a Dirichlet form (£, F) on L2(E; m), let G(E) = {X,; u € F.} be the Gaussian field
indexed by the extended Dirichlet space J,. We first solve the equilibrium problem for a
regular recurrent Dirichlet form & of finding for a closed set B a probability measure u?
concentrated on B whose recurrent potential Ru® e F, is constant q.e. on B (called a
Robin constant). We next assume that E is the complex plane C and £ is a regular recurrent
strongly local Dirichlet form. For the closed disk Bx,r) = {z e C:|lz—x| <r}
let u*" and f(x,r) be its equilibrium measure and Robin constant. Denote the Gaussian
random variable X g, xr € G(E) by Y*" and let, for a given constant y > 0, (A, w) =
fA exp(yY*" —(1 /2)y2f(x, r))dx. Under a certain condition on the growth rate of f(x, r),
we prove the convergence in probability of i, (A, @) to arandom measure ;Z(A, w) asr | 0.
The possible range of y to admit a non-trivial limit will then be examined in the cases that
(€.F) equals (%DC, H'(C)) and (a, H'(C)), where a corresponds to the uniformly elliptic
partial differential operator of divergence form.

Keywords Gaussian field - Dirichlet form - Equilibrium potential -
Gaussian multiplicative chaos.
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1 Introduction

Let E be a locally compact separable metric space, m a positive Radon measure on E with
full support and £ a regular Dirichlet form on L%(E; m). (F., &) denotes the extended
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Dirichlet space of F. There are two stochastic objects associated with £. One is an m-
symmetric Markov process Ml = ({X;};>0, {Px}xc£) on E possessing nice properties called
a Hunt process whose transition function { P;; ¢t > 0} generates the strongly continuous con-
traction semigroup on L?(E; m) associated with £. Another is the centered Gaussian field
G(&) = {X,; u € F.} indexed by F, defined on a probability space (2, B, P) with covari-
ance E[X, X,] = E(u, v), u,v € F,. We like to study the structures and the properties of
the Gaussian field G(€) by developing and using the probabilistic potential theory for the
regular Dirichlet form £ formulated in terms of the Hunt process M.

Under the condition that £ is transient, the potential theory for £ as well as its probabilis-
tic counterpart had been well developed by [3, 6, 12, 30] when M. Rockner [28] utilized this
theory to establish the equivalence between the Markov property of the Gaussian field G(E)
and the locality of the Dirichlet form £. See Theorem 2.3 below and [21]. In a recent paper
[14] by the present authors, such an equivalence is extended to irreducible recurrent Dirich-
let forms £ by making use of a newly introduced notion of recurrent potentials Ry € F,
of finite signed measures  on E relative to an arbitrarily chosen admissible (compact) set
F C E. In Section 2.3 of the present paper, we shall also present an alternative proof of a
part of [14, Th.4.4] by means of reduction arguments to transient cases.

The primary purposes of the present paper are twofold. The first purpose is to develop in
Section 3 the probabilistic potential theory of the regular Dirichlet form £ further by solving
the equilibrium problem for recurrent Dirichlet form £ an electrostatic problem to find, for
aset B C E, a probability measure u® concentrated on B whose potential Ru® equals a
constant (called the Robin constant) g.e. on B.

The second purpose concerns the special case that the underlying space E of the form £
is the complex plane C or its subdomain, and we adopt in Section 4 the equilibrium mea-
sures 15 and its potential R w?in constructing the Gaussian multiplicative chaos (GMC) a
random measure on E created by exponentiating the Gaussian field G(€). Recently GMCs
have been investigated intensively in the context of the Gaussian free field (GFF) related
to mathematical physics under the name Liouville (quantum gravity) measure (cf. [2, 8, 19,
217, 29)).

The equilibrium problem for the logarithmic potential U pu(x) = ni f(C log IXfly‘u(dy),
x € C, on C was solved by De La Valée Poussin [31, §2] for any non-polar bounded closed
set B C C by finding a unique measure ;% minimizing the logarithmic energy (i, U 1)
among all probability measures p concentrated on B. Its probabilistic refinement was later
presented in the book [26] by S.C.Port and C.J.Stone published in 1978 along with the
identification of u® with the hitting distribution of the planar Brownian motion (X;, Py)
from infinity to B:

uB(C) = lim Py(X,, € C), op=inf{t>0:X,€B}. CeBQ).

|x|—00

When B is the closure of the open disk B(r) = {y € C : |y| < r}, u® is simply the
uniform probability measure on 8 B(r), while UpuB(y) = %log W y € C, so that the

logarithmic energy (u2, Un®) = nilog% is negative for r > 1 and the Dirichlet integral
of Un® diverges. In this sense, a direct use of the logarithmic potential of a positive finite
measure is inconvenient for our purpose. See [13, §5.2] and Section 2.4 (III) below for one
way out of such a trouble.

Since then, no substatial progress seems to have been made about the equilibrium prob-
lem for continuous time recurrent Markov processes except for the paper [24]. In Section 3,
we incorporate the idea in this paper into a general setting of a regular recurrent Dirichlet
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form £ on L%(E; m) under certain conditions on the resolvent of the associated Hunt pro-
cess Ml = (X;,Py) on E in the following manner. For an arbitrarily fixed admissible set
F C E,let {Ru : u € My} be the family of recurrent potentials relative to F defined in
§2.3. For any A € B(E) with m(A) > 0, let B be the quasi-support of 14 - m. (B = A
whenever A is open and every point of d A is regular for A). Then

B (C) = ﬁﬂ%pm(xas €C), CeB(E)
is the unique probability measure in M concentrated on B such that its recurrent potential
RuB relative to F takes a constant value ¢(B) = m(F)"2(1g, RE\B1p) g.e. on B, where
RE\B denotes the O-order resolvent of the part of M on E \ B. Furthermore, 1 ? is the unique
measure minimizing £(Ru, Ru) = {(u, Ru) among all probability measures u € My
concentrated on B and the minimum value equals the Robin constant c¢(B).

When E is a bounded domain D C C and (&, F) is the transient Dirichlet form
(%DD, HO1 (D)) on L2(D) associated with the absorbing Brownian motion (ABM) on D, B.
Duplantier and S. Sheffield [8] employed the uniform probability measure on the shrink-
ing circle and the corresponding Gaussian random variable in G(&) to construct a Liouville
random measure. Sheffield [29] also suggests analogous constructions in the cases of the
recurrent Dirichlet forms (%DC, HY(C)) and (%DH, H'(H)) associated with the BM on C
and the reflecting BM on the upper-half plane H, respectively. In Section 4, we shall con-
struct GMCs in more general planar cases by means of the equilibrium measure and the
Robin constant in place of the uniform probability measure and the variance of the corre-
sponding Gaussian random variable, respecively. There have been several methods used in
constructing GMCs in transient cases. Among them, the method due to N. Berestycki [2]
based on the Cameron-Martin formulae for the Gaussian field (see Section 2.4) works in
recurrent cases as well, and we shall invoke it in our construction.

More specifically, we consider in Section 4 a regular recurrent strongly local Dirichlet
form (€, F) on L2(C, dx) with the associated diffusion M on C satisfying certain condi-
tions including a Gaussian bound of the transition function. We fix an arbitrary S > 2,
choose the annulus F = B(S + 1) \ B(S) as an admissible set and consider the family
{Ru € Fe; u € My} of recurrent potentials relative to F. For each disk B(x,¢) = {y €
C: |y —x| < e} withx € B(S—1), ¢ € (0, 1), denote by u** € My and f(x, €) the
equilibrium measure and the Robin constant for the set B(x, ¢) relative to F, respectively.

Take any measure o on B(S — 1) absolutely continuous with respect to the Lebesgue
measure with a strictly positive bounded density. Let G(§) = {X,, : u € F.} be the cen-
tered Gaussian field defined on a probability space (2, B, P) with covariance E[X, X,] =
E(u,v) and let Y** = Xp,x:. For a fixed y > 0, we put

2
(A, ©) = / exp [yY“ - %f(x, g)] o(dx), AeBBS-1). (1D
A

Under certain condition on the growth rate of the Robin constant f (x, €) as ¢ | 0, we derive
the convergence in probability of the random measure . (-, ) as ¢ | 0 to a non-degenerate
random measure /t(-, ®) on B(S — 1) relative to a metric p on the space of all finite positive
measures on B(S — 1) compatible with the weak convergence (Theorem 4.13). We call
(-, ) the Gaussian multiplicative chaos (GMC) on B(S — 1) for the given Dirichlet form
&, F).

In Section 5, we examine the possible range of the parameter y > 0 to ensure the
above mentioned convergence to a non-degenerate random measure in three examples where
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(€, F) equals (%D@, HY(C)), (%DH, H!(H)) and (a, H!(C)). Here the form a is defined
by

au, v) = Z/ a5 00 2 V) (1.2)

dx; 0xj
i,j=1 ! J

with measurable coefficients g;;(x), x € C, satisfying

2
aij(®) =a;i(x), 1 <i,j <2, MEP < ) aEE < AEP, £ € R?, xeC,
i,j=1
(1.3)
for some constants 0 < A < A. In the first and second examples, the possible range of y is
shown to be equal to (0, 24/7). In the third example with ajj € CXC), 1 <i, Jj <2, itis

shown to be equal to (0, 2 22[7\72’\3\2 ), which reduces to (0, 2,/7) when g, (x) = %Si j as

in the first example.

In Secton 6.1, we consider a general regular transient strongly local Dirichlet form (€, F)
on L%(D, dx) for a domain D C C and make an analogous consideration to Section 4 in
constructing the associated GMC 7¢(-, ) on a bounded subdomain Dy of D by means of a
counterpart of Eq. 1.1. The possible range of y in the case that (£, F) = (%DD, HO1 (D)) for
a bounded domain D C C is also shown to be equal to (0, 2./7). In Section 6.2, we further
study in this case transformations of GMC by conformal maps of the domain D based on
the conformal invariance of renormalized equilibrium potentials.

The systematic study of multiplicative chaos for Gaussian fields was initiated by J.-P.
Kahane [19]. Specifically, given a kernel K (x, y) with a logarithmic singularity on diagonal,
the associated random measure was constructed in [19] using an approximation of K by
sums of non-singular positive definite kernels, which is well applicable to massive GFF’s.
For massless GFF’s, alternative approximations of K by its convolutions with mollifiers or
measures of shrinking supports have been successfully utilized ([27], [2]).

We start with a Dirichlet form (£, F) instead of a kernel K and construct the associated
random measure by using directly the well defined equilibrium measures with shrinking
supports. In transient cases like (%DD, HOl (D)) for a bounded domain D C C, the Green
function plays the role of the above mentioned kernel K, while, in recurrent cases like
(%D(c, H'(C)), no Green function is available. But see [13, §5.2] where yet another way of
constructing a random measure is indicated.

We conjecture that the right endpoint of the possible range of y examined in Section 5
and Exampe 6.3 is the critical value in the sense that the random measure (& degenerates for
that value of y.

2 Basic properties of Gaussian field G(£)

In this section, we discuss two basic properties of G(&); the Markov property and the
Cameron-Martin formula. But the first one will not be used in the rest of this paper.

2.1 A pseudo Markov property of G(£)

According to [7] or [17], we have the following: given a set A equipped with C(A, u) €
R, A, € A, such that C(A, u) = C(u, A) and {C(A;, 1)} is non-negative definite for
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any finite {A;} C A, there exists uniquely Gaussian distributed random variables G(A) =
{Xy; A € A} defined on a probability space (2, B, P) with

E[X; - X, ]=C(,w), E[X;1=0, VA, pueA,

whose finite linear combinations are Gaussian. G(A) is called the Gaussian system with
index set A. When A is an Euclidean space R? (resp. a function space), we may call G(A)
a Gaussian process (resp. Gaussian field).

We recall that, in the study of the Markov property of Gaussian processes, the following
useful notion and criterion were presented in H.P. McKean [23] and L.D. Pitt [25, Lem.2.1,
Lem.2.2], respectively: for sub o-algebras F, G, X of B, X is said to be a splitting o -
algebra for F and G if

P(AN B|X) = P(A|D) -P(B|Z), VAeF, VBed. 2.1)

IfF=0X;,A€ A)and G = o(X;, L € Ap) for A|, Ap C A andif ¥ C F, then
Eq. 2.1 is equivalent to the condition that

o {E[X, | FI; A € Ay} C X. (2.2)

We may think of F (resp. G) as the future (resp. past) events. As is well known, Eq. 2.1 is
also equivalent to the condition that P(B | G) = P(B | ), forany B € F.

Throughout this paper, we are concerned with the Gaussian field with index set being a
general extended Dirichlet space. Once for all, let E be a locally compact separable metric
space, m an everywhere dense positive Radon measure on E and (£, F) a Dirichlet form
on L2(E sm).

Let F, be the collection of all m-measurable functions u on E such that |u| < oo m-a.e.
and there exists an £-Cauchy sequence u, € F, n > 1, with lim, oo u, = u m-ae. €
then extends from F to F, as a non-negative symmetric bilinear form. (F,, £) is called the
extended Dirichlet space of the Dirichlet form (£, F) ([15, 30]). Let G(E) = {X, : u € F.}
be the Gaussian field defined on a probability space (€2, B, P) indexed by the functions of
the space F, and possessing the covariance E[X, X,] = E(u, v), u,v € F,.

We now assume that the Dirichlet form (€.F) is regular. A function u € F, is called &-
harmonic on an open set G C E if £(u, v) = 0 for any v € F N C.(E) with supp[v] C G,
where C.(E) is the family of continuous functions on E with compact support. Following
A.Beurling and J.Deny [3], the complement of the largest open set where u is harmonic will
be called the spectrum of u and denoted by s(u). See [6, p 166] and [15, p 99]. For any set
A C E, we define the sub o-algebra o (A) of 3 by

c(A)y=0{X,: uelkF, su)cCA}. (2.3)
For any closed set B C E, let F, g\ p be a linear subspace of F, defined by
Fe.e\g ={u € Fo: u=0q.e.on B}, 2.4)

where U denotes a quasi-continuous version of u. By [15; Theorem 2.3.3], s(«) C B if and
only if

Ew,v) =0, Yv € Fe E\B- 2.5)

Let M = (X, P,) be the Hunt process on E associated with the regular Dirichlet form

(€, F). B(E) will denote the totality of Borel subsets of E. For any B € B(E), the hitting

distribution Hg(x, -) of M = (X;, Py) for B is defined by Hp f (x) = E;[f (X5,)], x € E,

for any bounded Borel functions f on E where op = inf{tr > 0 : X; € B}. In view of
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[15, Th.4.6.5] or [5, Th.3.4.8], it holds for any closed set B and any u € F, that Hg|u|(x) <
oo for q.e. x € E and Hpll is a quasi-continuous element of F, satisfying Eq. 2.5. Hence

s(Hgu) C B, for any closed set B C Eand for any u € F,. (2.6)

Lemma 2.1 The Gaussian field G(E) = {X,, : u € F,} enjoys the following property: For
any closed set B C E and any u € Fo,

Xu—Hgw isindependentof o(B), 2.7

and
E[Xy | 0(B)] = Xy (2.8)

Proof. Take any v € F, with s(v) C B. Since u — Hpii € F, p\p, E(u — Hpii,v) =0
by Eq. 2.5. Hence E [(X,, — XHBQ)Xv] = 0 so that Eq. 2.7 holds as all random variables
involved are centered Gaussian. Consequently E [ X, — X g,7|0 (B)] = E[Xu — Xppa] =
0, and so Eq. 2.8 is valid by Eq. 2.6. O

Equation 2.8 is a fundamental identity of the Gaussian field G(E). It follows from Eq. 2.8
and the criterion Eq. 2.2 that, for any set A C E,

o{XHXg cu € F,, s(u) C E\ Alis a splitting o-algebra for 6 (E \ A) and 6 (A). (2.9)

We may call Eq. 2.9 a pseudo Markov property of the Gaussian field G(E).
The Gaussian field G(E) is said to possess the Markov property with respect to a set
ACEIif

o (3 A)is a splitting o -algebra for o (E \ A) and o (A). (2.10)
We say that G(E) has the Markov property if it possesses the Markov property with respect
to any subset A of E.
2.2 Characterization of Markov property of G(£) for transient £

Let us assume that the regular Dirichlet form & is transient, or equivalently, that there exists
a bounded m-integrable function % strictly positive m-a.e. on E sstisfying

(Jul, h) < vEw,u) foranyu e F. (2.11)

This inequality is extended to any u € F, and F, becomes a real Hilbert space with inner
product £. The function % in Eq. 2.11 is called a reference function (cf. [15, Th.1.5.1]).
A positive Radon measure u on E is called a measure of finite 0-order energy and we

write as 1 € Séo) if there exists a positive constant C such that

(lul, n) < Cv/Ew,u) forallu € FNC(E). 2.12)

Welet Mg ={u=vi—vy:v; € S(()O), i = 1,2}. Any u € M then admits a unique
function U € F, satisfying the Poisson equation

EWn,u) = {u,u) foranyu e F,. (2.13)

U is called the potential of the measure i € M. For a Borel set B C E and a signed
Radon meausre u on E, define

MB(A):/ w(dx)Hp(x, A), VA e B(E). (2.14)
E
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Lemma 2.2 (i) For any closed set B C E and for any u € Mg, ug € Mo and

Hp(Up) = Upsp. (2.15)

(i) s(Uup) = supp(|u]) for u € Mo.
(iii)  (Spectral synthesis) For any u € JF,, there exists a sequence i, € Mo, n > 1, such
that supp[|p,|] C s(u), n > 1, and U u,, is E-convergent to u.

Proof. (i). The map u +> Hpu defines a projection from F, to the orthogonal
complement of F, r\p. Hence

(ug, v) = (u, Hpv) = EUp, Hpv) = EHpUp, v), p e Mo, veFNCAE),

and (g, [v]) <V {(, Up) VE@,v), u € S(O), v € FNC:(E), from which the assertions

follow.

(i1). The space C(S) of continuous functions on a locally compact Hausdorff space S
vanishing at infinity admits as its dual space the space of finite signed measures on S normed
by their total variations. (ii) follows from this and the Poisson Eq. 2.13 holding for u <
F. N C.(E) with supp[u] C Ej for each relatively compact open set Eg C E. .

(iii). Since vh - m € M, for the reference function 4 and for any v € C.(E), Eq. 2.13
also implies that, for any u € F,, there exists a sequence {Uv, : v, € My} which is &-
convergent to u. Let u, = (v,)p, n > 1, for B = s(u). Then s(Uun,) C B by (ii) and
{Uuy,} is E-convergent to Hpil as n — oo by Eq. 2.15. Since £(u — Hpu,v) = 0 for
any v € F, p\p by Eq. 2.5 and Eq. 2.6 and u — Hpii € F, p\p, we get Hpli = u by the
transience of £. O

Lemma 2.2 (iii) is a 0-order version of [15, Th. 2.3.2]. We like to take this opportunity
to mention that the phrase ‘€j-convergent limit’ on the 6-th line in the proof of this theorem
of [15] is better to be replaced by ‘&,-weakly convergent limit’. A regular Dirichlet form £
is said to be local if £(u, v) = 0 whenever u, v € F and supp[u - m] and supp[v - m] are
disjoint compact set. The following theorem was established by M. Rockner [28]. We give
its straightforward proof for completeness.

Theorem 2.3 Suppose & is transient. Then the Gaussian field G(E) enjoys the Markov
property if and only if the form £ is local.

Proof. In view of Egs. 2.2 and 2.8, G(&) has the Markov property if and only if, for any
ACE,

o(Xpgitu€ Fe, s(u) CE\A) C o(dA). (2.16)

Assume that £ is local. Then the Hunt process M associated with £ is of continuous
sample paths (cf. [15, Th.4.5.1]). Therefore the balayage w4 of u € Mo with supp(|u]) C
E \ A has the support concentrated on dA so that, by Lemma 2.2 (i), (i), s(HzUup) =
supp(|u)) C dA.

On account of the spectral synthesis Lemma 2.2 (iii), there exists for any u € JF, with
s(u) C E\ A asequence u, € Moy, n > 1, such that supp[|u,|] C E\ A, n > 1, and
U iy is E-convergent to u. Then s (HzU p,) C dA and H7U ., is £-convergent to Hu as
n — oo so that s(Hzu) C A, yielding the Markov property Eq. 2.16 of G(&).

Conversely assume that G(&) satisfies the Markov property Eq. 2.16. Let G C E be an
open set and u be any function in F, with s(u) C E \ G. Then X Hgii € 0 (0G). Now take
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any open subset A of G with A C G and let B = G \ A. Then 0(G) D 0(B) D 0 (3G). As
XHEg =E[X, |0(G)] by Eq. 2.8, this means that Xyﬁg = E[X, |0(B)] = XH§E and hence

El(Xp i — Xui)®1 =0, thatis, & (Hgii — Hyil, Hgii — Hyil) = 0.

and so Hgu = Hyll.

By virtue of Lemma 2.2 (i), (ii) and the Eq. 2.13, we have, for any u € Mg with
supp(lul) C EN\G, (ug, f) = {ug, f) forany f € FNC.(E). In particular, if the support
of f is contained in A, then {(ug, f) = 0 so that

(1, Hgf) =0 forany u € My with supp[|ul] C E\ G.

This implies that Hz f = 0 q.c. on E \ G, and consequently Hg(x, -) is concentrated on
B for qe.x € E \ G. Since this holds for any open subset A of G such that A C G,
Hg(x, ) is concentrated on 3G for q.e.x € E \ G. Then the local property of £ follows
from [15, Lem.4.5.1]. Il

2.3 Characterization of Markov property of G(£) for recurrent £

Let us assume that the regular Dirichlet form £ is irreducible recurrent. In particular, the
constant function 1 is in F, and £(1, 1) = 0.

We make an additional assumption that the transition function {P;;¢ > 0} of the
associated Hunt process M satisfies the following absolute continuity condition:

(AC) there exists a certain Borel properly exceptional set N C E such that
P;(x, -) is absolutely continuous with resepct to m foreacht > Oand x € E\ N,

This condition is much milder than the one admitting no exceptional set N. For instance, it
is fulfilled when the form & satisfies a Sobolev type inequality (cf. [15, Th.2.7]).

Under the assumption (AC), the resolvent kernel {Ry, @ > 0} of M admits a density
function ro (x, y), x,y € E\ N, with respect to m such that it is strictly positive, symmetric
Borel measurable, «-excessive relative to M in each variable, and it satisfies the resolvent
equation. A set F C E \ N is called an admissible set if

{Fis compact, m(F) > 0 and for some ¢ > 0and % <a<l, 2.17)

m({y e F:ri(x,y) >c}) >am(F) forevery x € F.

It has been shown by [14, Lem.3.1] that, for any Borel set B C E \ N with m(B) > 0,
there exists an admissible set F' contained in B. For a fixed admissible set F', we denote its
indicator function 1 by g and consider the perturbed form

E8(u, v)=5(u,v)+/ uvgdm, u,ve]:gz}'ﬂLz(E;gom),
E

which is a regular transient Dirichlet form on L2(E; m). Its extended Dirichlet space F§

equals F, N L>(E; g - m). Let Sg @ pe the space of positive Radon measures on E with
finite 0-order energy relative to the form £$. Define

Mo={u=pu1 —p2: i € SV, wi(E) < 00,i=1,2), Moo={n € Mo : u(E)=0}.
(2.18)
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By virtue of [14, Th.3.5], there exists for any u € My a quasi continuous function
R € F¥ uniquely up to g.e. equivalence such that

- 1

ERu,u) ={p, i — ——(g-m,u)) YueFE and (g-m, Ru)=0. (2.19)
m(F)

The first equation in the above determines Ry € F5 up to an additive constant (see (H)

below), while the second identity is its normalization. In particular, we have the symmetry

(1, Rv) = (R, v)(= E(Rp, Rv)), p,v e Mo. (2.20)

We call {Ru : @ € My} the family of recurrent potentials relative to an admissible set F .

Contrarily to the transient case, the class M of measures and potentials Ry, u € Mo,
depend on the choice of an admissible set F', making relevent arguments more involved.
But the first equation in Eq. 2.19 has enabled us to derive in [15, Cor.4.8.2] and [14, Th.3.7]
a nice property of £ that the quotient space F, of F, by the space of constant functions is a
real Hilbert space with inner product €.

Theorem 2.4 (1) Suppose that € is an irreducible recurrent regular Dirichlet form satis-
fying the condition (AC). If £ is local, then G(E) has the Markov property with respect to
any open set.

(2) Suppose that £ is an irreducible recurrent regular Dirichlet form. If G(E) has the
Markov property with respect to any open set, then € is local.

Remark 2.5 The first statement (1) of Theorem 2.4 has been proved in [14, Th.4.4] by using
some detailed properties of recurrent potentials { R} specified in the above.

The second statement (2) of Theorem 2.4 has been asserted also in [14, Th.4.4] under the
assumption (AC) for £. We now give its proof without assuming (AC) by using a reduction
argument to Theorem 2.3 for transient cases.

We would like to take this opportunity to mention that the proof of the implication (ii) =
(iii) of [14, Th.4.4] contains a flaw: the space M of measures there should be replaced by
Mo and hence that proof works only under the additional condition that ‘for any open set
G C E withm(E \ G) > 0, 9G is of positive capacity’.

Theorem 2.4 (2) will be proved by using the following lemma.

Assume that the regular Dirichlet form £ is irreducnible recurrent. Let Eq be any open
subset of E with m(E \ Eg) > 0 and £© be the part of £ on the set Ej.

The Gaussian field G(£©) associated with £© is the sub-field of G(E) obtained just
by the restriction of the index set F, to F, g,.

Lemma 2.6 If G(E) has the Markov property with respect to any open set, then so does
G(ED).
Proof. Put E \ Egy = By. For A C Ep, define
0(A) = (X, :ueF,, sw)C A}, oQA) =(X,:ueForg, sPw cA).

Take any open set G C Eg with B =G C Egand any u € Fe £, With sOw) c Ey \G.
By Eq. 2.8, E[X, |0 (B U Bo)l = X -

Define Hg))f(x) =E,[f(Xsp); 0B < 0B,]. Since # = 0q.e. on By,

Hpugyii() = By [#(Xoy) | = B [#(Xopna,) | = HE W),

@ Springer



294 M. Fukushima, Y. Oshima

and so
E[X,|o (B U By)] = X oz (2:21)

As s(o)(Hl(;O)iT) C B, X 0 € o'9(B). Hence we get from Eq. 2.21,
B
E[X,]|o@(B)] = X 0 (2.22)
B u

By the Markov property of G(£) and Eq. 2.21, X 0 € 0(3B U dBy). This means that
B

s(HéO)ﬁ) C 9B U 3By, namely, E(Hg))'zi, ¢) = 0 for any ¢ € F N C.(E) with supp[¢] C

E\ (9B U3 By). In particular, s (H"i) € 9B so that X 0. C @ (3B).
B

Therefore, Eq. 2.22 implies the Markov property of G(E°) relative to G for the part £°
of £ on Ej. O

Proof of Theorem 2.4 (2). Assume that G(£) has the Markov property with respect to
any open set. For any open set Eg C E with m(E \ Eg) > 0, the part £© of £ on Ey
is a transient Dirichlet form and the associated Gaussian field G(£©) enjoys the Markov
property with resepct to any open subset of Eg by Lemma 2.7. By the proof of the ‘only if’
part of Theorem 2.3, the form £© is local.

Take two open sets Eé CE,i=1,2 suchthat, B = E \ EL i=1,2,are compact,
of positive m measure and mutually disjoint. Choose ¢ > 0 in such a way that the closures
of e-neighborhoods B; . of B; are disjoint. Since the parts of the form £ on Eé and Eé are
local, we see from [15, Lem.4.5.1, Th.4.5.1] that the sample path X; of the Hunt process
M = (X;, P,) associated with £ is almost surely continuous on [0, o] where 0 = OB, vV
0B,, € (0, 00).

Define ogp =0, o1 =0, o0,=o0,-1+006,_,, n=>1 Then

n—1

P, (X,is not continuous on [0, 0,,]) < Z P, (X;is not continuous on [k, 0k+1])

k=0
n—1
= ZE" I:]P)X"k (X,is not continuous on [0, a])] =0, x€E,
k=0

Hence the sample path of M is continuous a.s. on [0, ) where ¢ = limy,_ o0 0y,.

Suppose & < 00, then o 0 & = 0. On the other hand, due to the quasi-left continuity of
the Hunt process M, X5 € B; U By and so o 06 > 0, a contradiction. Therefore M is a
diffusion and hence & is local. ([l

2.4 Cameron-Martin formulae for G(&)

Theorem 2.7 Let (£, F) be a general (not necesarily regular) Dirichlet form on L2*(E:m)
with the extended Dirichlet space F, and let G(E) = {X,; u € F,} be the Gaussian field
defined on a probability space (2, B, P) with covariance E[X, X,] = E(u, v), u,v € F,.

Then, for any vy, vy, - -+ , vy € Fo, any u € F, and any bounded Borel function H on R",
E[H(Xy, +E@,v1), -+, Xy, +E, v,))] = e 2E@HE [eX"H(xvl, e xvn)] .
(2.23)

This Cameron-Martin formula can be readily proved by using the characteristic function.
Another simple proof is being provided in the first half of “Alternative proof of Theorem

@ Springer



Gaussian fields, equilibrium potentials and multiplicative chaos... 295

11.4.1” of M.B.Marcus and J. Rosen [22, p.518], which indeed works by assuming that u
equals one of {v;, 1 <i < n} (otherwise it suffices to add a new index v,4+1 = u).

We now assume that & is regular and derive from Eq. 2.23 those identities formulated in
terms of signed measures on E of finite energy in four cases separately.

(I) Transient case. In view of the Poisson Eq. 2.13, the map v € My +— Uv € F,
is injective. For v € My, we write Xy, as Zy and regard {Z, : v € My} as a Gaussian
field indexed by My with covariance (i, Uv), u,v € My. {Z, : v € My} can be thus
identified with a subfield of G(&). The formula Eq. 2.23 is then rewritten as follows:

For any vy, v, - -+ , v, € Mo, any u € F, and any bounded Borel function H on R”

E[H(Zy, + (i, 1), -+ Zuy + (il, va))] = e 2E@0E [e’“H(zv,, S zu,,)] . (224

(II) Irreducible recurrent case fulfilling condition (AC). In this case, choose any
admissible set F and consider the family {Ru : u € My} of recurrent potentials relative to
F. The spaces Mg and M of measures are defined by Eq. 2.18. We write Xz, as Z, for
v € My, In view of the generalized Poisson Eq. 2.19, the map u € Moy > Ru € Fs C
Fe is injective so that {Z,, : v € Mo} can be identified with a Gaussian sub-field of G(&)
and Eq. 2.24 holds true for My in place of M.

The map 4 € My — Ru € Fs C F, is not injective. Nevertheless, we have from
Eq. 2.20 and Eq. 2.23 the following formula similar to Eq. 2.24: For any vi, v2,--- , v, €
Mo, any u € My and any bounded Borel function H on R"

E[H(Zyy + (i R, -+, Zy, + t, Roa))] = e 30RIE [ p (7,0, 7,,)].
(2.25)
(IIT) The case that (£, F) = (%DC, H'(C)). This is the Dirichlet form on L%(C)
associated with the planar Brownian motion. D¢ is the Dirichlet integral on C. F, is the
Beppo Levi space BL(C) = {u € L} (C) : |[Vu| € L*(C)}. G(€) satisfies the formula
Eq. 2.23 for this choice of (F, &).
Let ./\O/lo (C) be the space of compactly supported finite signed measures on C with finite
logarithmic energy and let j\o/loo ©C) ={une j\o/lo (©) : u(C) = 0}. The logarithmic poten-

o 1
tial Up of u e Mo (C) is defined by Up(x) = —/ log
T Jc

u(dy). By the Poisson
Ix —yl

equation in [13, Th.2.6], © +— Up defines an injective map from /\O/loo (C) into BL(C).
For G./{)/l()(] (©), we write Xy, € G(E) as Z,. Then {Z,, : u e/\o/log (©)} is a Gaus-

sian field indexed by /{./loo (C) with covariance (u, m), n,v € ,/\o/loo (C). This field is
designated in [13] as G(C), which can be identified with a sub-field of G(£). The Cameron-

Martin formula Eq. 2.24 holds for j\o/loo (©), BL(C) and %DC in place of My, F, and &,
respectively.

(IV) The case that (£, F) = (3Dg, H'(R)). This is the Dirichlet form on L?(R)
associated with the standard Brownian motion on R. Dy is the Dirichlet integral on R. F,
is the Cameron-Martin space Hel (R) = {u : absolutely continuous on R, Dr(u, u) < oo}.
G(&) satisfies the formula Eq. 2.23 for this choice of (F, £).

Let ./{)/lo (R) be the space of compactly supported finite signed measures on R and let
Moo (R) = {r €eMo (R) : £(R) = 0}. The linear potential U of 1« € Mo (R) is defined
by Un(x) = — / [x — y| u(dy), x € R. By the Poisson equation in [13, Th.4.3],

R

@ +— U p defines an injective map from /\o/loo (R) into He1 (R). For u € /\o/loo (R), we write
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Xu, € G(E) as Z,. Then {Z,, : u € Moo (R)} is a Gaussian field indexed by Moo (R)
with covariance (i, Uv), u,v € ./\0/100 (R). This field is designated in [13] as G(R), which
can be identified with a sub-field of G(&).

The Cameron-Martin formula Eq. 2.24 holds for Mgo (R), Hel (R) and %DR in place of
Mo, F, and &, respectively. In particular, if we take v, = (8, — 80)/v/2 € ,/{3/100 (R) for
x € Rand write Z,, as B, then E[B, By] = %(|x| + |yl — |x — y|]) so that {B, : x € R} is
the standard Brownian motion with time parameter x € R ([13, §5.3]). Forany u € Hel (R),
the Gaussian random variable X,, € G(&) can then be expressed as the Wiener integral

u' (x)d By multiplied by 1/\f2. Hence, given any x1,x2, - ,x, € R, any u € He1 (R)
R
and any bounded Borel function H on R", the identity Eq. 2.24 for vy;, 1 < i < n, and
V2u in place of v;, 1 <i < n, and u, repectively, reads

E[H (B, + (u(x1) = u(0)), -, By, + (u(x,) — u(0)))]

= ¢ PR | [exp (/ u’(x)dBX> H(By,, - ,an)}, (2.26)
R

which is slightly more general than the original formula due to R.H.Cameron and
W.T.Martin [4].

3 Equilibrium potentials for recurrent Dirichlet forms

In this section, except for the last part below Lemma 3.8, we assume that (£, F) is a regular
recurrent Dirichlet form on L2(E; m) and satisfies the absolute continuity condition (AC).
We further make the following assumptions on the resolvent {R,, o > 0} of the associated
Hunt process Ml = (X;, P,) on E:

(A.1) Forany B € B(E) withm(B) > 0, Ry(x, B) > Oforallx € E,
(A.2) Ry f is lower semi-continuous for any non-negative Borel function f on E.

Condition (A.1) implies the irreducibility of the Dirichlet form £.
For any bounded non-negative function w such that (m, w) > 0, consider the Dirichlet
form (£*, F) on L*(E; m) given by

EYu,v) =EWw,v) + WU, Vym, u,verF, 3.1

which is regular transient and associated with the canonical subprocess M" of M with
respect to the multiplicative functional et >0, for A, = fotw(XS)ds, t > 0. 1Its
extended Dirichlet space F coincides with F, N L?(E; w - m) and its resolvent RY f is
expressed as

RY f(x) = E, [/we_“’_A'f(Xt)dt} , xeE.
0

Let F be an admissible set, namely, a set satisfying Eq. 2.17, and B be any Borel set with
positive m-measure. Their indicator functions 1z and 1p will be occasionally designated
by g and h, respectively. The above notions for w = g (resp. w = h) are denoted by
&8, F5, M8, RE (resp. &, ]-"eh, M", Rg). RS, R(})' are denoted by RS, R", respectively.
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Lemma 3.1 (i) R"g is bounded on E. For any bounded Borel function f on E vanishing
outside a compact set, R8 f is also bounded on E and moreover R8 f is an element of Fe
satisfying E8(R8 f,v) = (f, v) forany v € F5.

(ii) It holds that

R2(h-R"g)(x) = R8g(x) — R"g(x) + R%(g - R"g)(x), forge x € E. (3.2)

The left hand side and the three terms of the right hand side are bounded functions in Fs .

Proof. (i). (A.1), (A.2) imply that infycx Ryh(x) = €(K) > 0 for any compact set
K C E, and consequently

RMg @) < LRthh(x) < LRthh(x) < Lth(x) - vier
~ U(K) Tk T T UK (K)’ '
3.3)
The same bound holds for g in place of & and the boundedness assertions in (i) follow.

In view of [5, Th.2.1.12] or [14, Prop.2.5 (ii)], we see that, for a non-negative Borel
function f on E, R¥ f € F} if and only if (f, R f) < oo and in this case the Poisson
equation E¥(RY f,v) = (f,v), v € FY, is valid. In particular, the last assertion in (i)
holds true.

(ii). First suppose B is compact. If we put u = R8(g+g- R"g —h - R"g), thenu € F$
by virtue of (i) and u satisfies the equation

E8u,v)=(g+g-R'g—h-R'g,v), veFNCAE).
On the other hand, R"g € ]:eh c F.sothat R"g € F,NL*(E; g -m) = F§ and
E8(R"g,v) = EM(R"g, v) + (R"g, v)(q—tym = (g + gR"¢ —hR"g,v), v e FNCAE).

Therfore u = Rhg, m-a.e., namely, Eq. 3.2 holds m-a.e.

For a general B € B(E) withm(B) > 0, we put B, = BNU,, h, = 1p,, for relatively
compact open sets {Up,} increasing to E. Then Eq. 3.2 holds m-a.e. for &, in place of i and
we have (R8v, h,R" g) = (v, R8g — R""g + R%(g - R g)), v e FNC.E).

By noting the bound Eq. 3.3 and that R" g decreases to R"g as n — oo, we let n — o0
to get Eq. 3.2 holding m-a.e. together with the final statement of (ii). Since both hand sides
are quasi-continuous by [14, Prop.2.5 (ii)], we arrive at Eq. 3.2 holding q.e. a

Recall the Borel properly exceptional set N C E of M = (X;, P,) appearing in the
absolute continuiLy condition (AC). For B € B(E \ N) of positive m-measure, we consider
a quasi-support B of the measure 1p - m, namely, the smallest quasi-closed set (up to the
quasi-equivalence) outside which this measure vanishes. It is quasi-equivalent to the support

t
of the corresponding PCAF C; = / 1p(X)ds, t = 0, of M|E\N ([5, Th.5.2.1]), so that
0

we can and will make a specific choice of B:

B={x€eE \N:P,(R=0)=1}, R(w)=inf{t >0: Ci(w) > 0}. 3.4

B is a Borel subset of E \ N ([14, §3.2]) and hence E \ N \ Bis finely open Borel set by
enlarging the Borel properly exceptional set N of M if necessary. We denote by RE\B the
0-order resolvent kernel of the part process of M} F\ o0 this set.

In what follows, we fix an admissible set ¥ C E \ N and let {Ru, u € My} be the
family of recurrent potentials relative to F. _

Given a Borel set B C E \ N with positive m-measure, B denotes the quasi-support of
the measure 1p - m.
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Definition 3.2 A probability measure i € My concentrated on B is called the equilibrium
measure for B if Ry is constant g.e. on B.

Define

5 1
B —
no(A) = m(F)IPlF'm(XUﬁ € A), AeB(E). 3.5)

By virtue of Theorem 3.5.6 and (A.2.4) of [S], we see that ME is a probability measure on
E concentrated on B.

Lemma 3.3 ME belongs to the space Sé”(o) of positive Radon measures of finite 0-order
energy relative to the form (€8, F).

Proof. We first show that, for any non-negative Borel function u on E,
Hgu(x) = Hiu(x) + RE\B (g H&w) (x), (3.6)

where H g denotes the counterpart of Hy for the process M#. In fact, by using the PCAF
G; = f(; g(Xy)ds of M, we have for any non-negative bounded Borel function u,

REVE(1p Hu)(x) = E UUE 8(X/)Ey, [e*Gvgu(xag)] dt]
0

=E, [ f UE g(Xe 95" u(X oy 0 0,)dt] =E, [ / 7 g(X,)e_(G”E_G’)u(Xag)dt}
0 0
—E, [e_G"Eu(XUE) (eG“E _ 1)] = Hgu(x) — Hu().

For a general non-negative Borel function, it suffices to aproximate by u A n.
We next show that

RE\B g (x)is bounded in x € E \ N. (3.7)

Indeed, since R = oy a.s. ([5, Proposition A.3.6]), RE\Eg(x) = E, [foag g(X,)dt] is

dominated by R"g(x) = E, [ [;° ¢~ g(X,)dt] which is bounded on E by Lemma 3.1.
It follows from Egs. 3.5 and 3.6 that

~ ~ 1 ~ ~ ~
B pg, By _ ( ) g pg,, B E\B g pg B>
(w”, REu”™) m(F) g-m, HzREp” + R\ (gHERE ™)
1 B E\B B
=< W«g'm, REp >+<g-m,R (gR% 1 )))

Observe that (g - m, Rgug) = (ME, R8g) =1and
(g-m. REVE(gREuP)) = (1 RE (g - RFVEg) < | RF\Eglog
which is finite by Eq. 3.7. Hence ,uE € Sg’(o) on account of [14, Prop.2.5 (ii)]. O

Theorem 3.4 (i) For any Borel set B C E \ N of positive m-measure, the probability
measure u® defined by Eq. 3.5 is the unique equilibrium measure for the quasi-support B
of 1g - m. Ru®B(x) takes a constant value ¢(B) g.e. on B given by

c(B) = (1r. REVB1p),, 3.8)

m(F)?2
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and Ru® admits the expression
1

RME = C(E) — WRE\Eg, g.e.on E. 3.9)
(ii) [LE is the unique measure among
(nesy ™ uB) =1, WE\B)=0) (3.10)

minimizing E(Ru, Ru) = (i, Ru), and the minimum value equals C(E).

Proof. (i). According to [14, Th.3.5] about an explicit construction of the family {Ru :
u € My} of recurrent potentials relative to the admissible set F, it holds that

1
Rf = HrR(g - Rgf)+Rgf—ﬁ( ) (3.11)
if a non-negative Borel function f on E satisfies f - m € My, or equivalently, if f is m-
integrable and (f, R8 f) < oco. Here R is an operator defined by [14, (3.16)]. We make a
special choice that f = ph - RPh g for any constant p > 1 and 2 = 1p, which satisfies just
stated condltlons in view of Lemma 3.1.

Notice that Rg =0, R8¢ =1, R""(ph) = 1, g - R&(gR""g) = Ri(gR"g) by [14,
(3.13)], and R Rg = R(p (Rig —m(F)"Y1p -m, @) by [14, (3.16)]. Egs. 3.2 and 3.11
lead us to

. 1
R(ph-R"g) = HrRR®(ph- R""g) + R®(ph - R""g) — oy e Pl Rg)
= HeR (g(1 = R™ g+ R¥(g- RM™g))) +1 - RV
FRY(g - RPg) — —— (g, RV (ph))
m(F)

= HpRg — HrR(g- R""g) + HrRRi R g — RP"g + Hp Ri(g - R"g)
= —HpR(g-R™g) + HpR(g - R"™g) — HpRi(g - R"g)

+m(F)" (1p -m, R g) — R”" g + HrRi(g - R g)
= —R""g + m(F) Ymp, RP"g). (3.12)

We let p — 00. Since R = o a.s. as was noted already, we have, forx € E\ N,
o0
lim R”"g(x) = lim E, [ / e—PCfg(Xt)dr}
p—>00 p—>00 0
O'§ o0 ~
=E, [/ g(x,)dt] + lim E, [IEXU~ [/ e*PCfg(x,)d;]} = REVBg(x),
0 p—>00 B Jo

RP"g(x) being bounded in x uniformly in p > 1 by Lemma 3.1.

Take any v € C.(E). Then v - m € My and Rv is quasi-continuous and bounded by
[14, Th.3.5 (iv)] and Lemma 3.1. Let t(¢) be the right continuous inverse of the PCAF C;:
7(¢) = inf{s : C5 > t}. In particular, 7(0) = R = 0. By using [14, Th.3.5 (ii)], we obtain

lim (v, R(ph - R”"g)) = lim (RP"(ph - Rv), g)
p—>00 p—>00

o0 oo
lim E,,, [/ e_‘”C’Rv(X,)d(pCt)] = lim By [/ e_sRv(Xr(S/p))ds]
0 - 0

p—>00

= (mp, HzRv) = m(F)(uP, Rv) = m(F)(RuP, v),
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for the probability measure ME defined by Eq. 3.5. Since ME € M by Lemma 3.3, the last
identity in the above is legitimated by Eq. 2.20.
Thus we have from Eq. 3.12 that

RuP = __ 1 erE
m(F)

g+ (1r, RE\Eg) qe.onE. (3.13)

(F )?
Since RE \B g=0 0n~§ s /LE satisfies the condition of the equilibrium measure of B and, in

fact, its potential Ru® takes the constant value Eq. 3.8 q.e. on B and Eq. 3.9 is valid.

To show the uniqueness of the Squilibrium measure, assume tllat ui, ko € My are
probability measures supported by B satisfying Ru; = C; g.e. on B for some constant C;,
fori =1, 2. Since R(u; — u2) = Cy — Ca qe.on B, HzR(iuy — pu2) = C; — C2 g.e.on
E. Noting that ;1] — ua € My, for any v € F, N C.(E), we have from Eq. 2.19,

0=EHgR(u1 — p12), v) = ER(u1 — n2), Hzv) = (u1 — 2, Hzv) = (1 — u2, v).

Therefore, 1 = pp which implies the uniqueness of the equilibrium measure.

(ii). Take any p from the class Eq. 3.10 and put v = u — wB. Then (v, Rv) = (, Rp) —
c(B) so that (i, Ru) > c(B) The equality holds if and only if £(Rv, Rv) = (v, Rv) =0,
or equivalently, £(Rv, v) = 0 for any v € F,. As v € My, E(Rv,v) = (v,7), Yv € Fo,
by Egq. 2.19, which completes the proof. O

We call Ru® equilibrium potential for B and ¢(B) of Eq. 3.8 the Robin constant for B
(relative to the admissible set F).

Remark 3.5 In esLablishing Theorem 3.4, we need to take, instead of a Borel set B itself,
the quasi-support B of 15 - m. -

(i). If B is closed, then B C Bandm(B \ B) = 0.

(ii). If B is open, then B C B C B. In this case, B = B if and only if every point of 3 B
is regular for B.

Here we present a comparison statement of Robin constants for different recurrent
Dirichlet forms. Let us consider two regular recurrent Dirichlet forms (€ o F ), i =1,2
on L2(E; m) both satisfying the condition (AC) with N = @ and conditions (A.1), (A.2) as
well. We assume that there exist some positive constants & < A with

2D, u) < EPw,u) < AEV@w,u) forallu e F

The two Dirichlet forms then share common notions of ‘g.e.” and ‘quasi-continuity’. For
any Borel set B C E with m(B) > 0, they have therefore a common quasi-support B of
15 - m up to q.e. equivalence. Let F C E be a common admissible set for £ and £,

Proposition 3.6 For any Borel set B C E, denote by c(i)(E) the Robin constant for B
relative to F with respect to the Dirichlet form ED i =1,2. Then

~ ~ 1 ~
—cMB) <P B) < . c<D(B). (3.14)

Proof. Let {ROp, u € ./\/l(()i )} be the family of recurent potentials relative to F with
respect to ED, i = 1.2. Let u;(e ./\/lg)) be the equilibrium measure of B with respect
to E@. i = 1,2. Since RV u; = ¢V(B) q.e. on B which is also supported by the
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probability measure w,, we get by taking Eq. 2.19 into account, c(l)(E) = (u2, R(l),ul) =
ED(RDyy, RW yuy). The righthand side is dominated by

EDORD 11y, R )2 O (RD 11y, RO 1 )1/2
< OB 2R EDRD 1y RV )2 < VAW (B) 26 (B2,

Hence ¢(D (E) < Ac® (E). The converse inequality follows similarly. O
For the sake of later use, let us state two formulae holding for recurrent potentials Ru
relative to a fixed admissible set F. For F, define the probability measure 7 on E by

1
mr(A) = ﬁm(AﬂF) A € B(E). (3.15)
Besides the family {Ru; u € M} of recurent potentials relative to F, we consider a certain
linear space M of finite signed measures on E such that each 1 € Moo := {u_€ Mo :
w(E) = 0} admits a unique function Ry € F, satisfying the Poisson equation E(Rw,v) =
(i, v) forall v € F, N C.(E). We assume that m g € M.

Lemma 3.7 If u is a probability measure and u € Mo N ./T/l\o, then, for q.e. x € E,
Ru(x) = R(u — fip)(x) — (fip, R(u — fip)) (3.16)

Proof. Since e 1 — mp € Mon ./\70 with zero total mass, we have by the Poisson
equatlons (R — R)(,u mp) = c for some constant c. As Rimp =0 by Eq. 2.19, Ru(x) =
R(/L m ) (x)-+c. Integrating both sides by 71z (dx), it holds that (7 g, R(/I, mp))+c =0,
yielding Eq. 3.16. U

Next let A be an open set with AN F = ¢, (£, F4) be the part of the Dirichlet form
(£, F) on the set A and M4 = (X;“, P,) be the part of the Hunt process M on A. My is
then a transient Hunt process on A associated with the regular Dirichlet form (€, F4) on
L%(A; m). We denote by SA’(O) the family of positive Radon measures on A of finite 0-

order energy relative to (£, Fa) and by U4 (€ F, 1) the O-order potential of u € S 4.0

We further put ./\/lA '@ ={u=pu —u2: U, U2 € SA (0)} We note that the inclusion
FA C F¥ holds because (€, FA) can be also considered as the part of (£, F¢) on the set A.

The transition function PtA of M4 satisfies the absolute continuity condition (AC) hold-
ing forany t > Oand x € A\ N, N being the properly exceptional set of M appearing there.
Hence the resolvent {R4, @ > 0} of M4 admits the density function 72 (x, y), x,y € A\N,
that is e~ % P,A-excessive in each variable. Define r(x,y) = lim, 10 r&“ (x,y) and put
RAux) = fA rA(x, y)u(dy). Then, exactly in the same way as the proof of [14, Prop.2.5
(ii)], we can see that u € 85"(0) if and only if (1, R4u) < oo and in this case R4 is a
quasi-continuous version of the potential U*

Since R4 f < R® f for any non-negative Borel function f, one can prove the inclusion

{we S supplul c Ay c S, (3.17)

in exactly the same way as the proof of [14, Prop.2.5 (i)].

Lemma 3.8 For any open set A with ANF = () and for any measure u € My concentrated
on A, it holds that . € Mg’(o) and

HpaRp = Ru — R4 . (3.18)
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Proof. In the proof of [14; Th.3.8], we have seen that up\a = wHp\a € My for any
u € M. The first assertion is a consequence of Eq. 3.17. We show that

Hp\aRiw = RiLE\A- (3.19)

Let f be a bounded m-integrable function on E such that R¢|f]| is bounded. Then, by
Eq.2.17, (miFp, HexaRp) = (mp, Rp) = 0 and further E(Rf, He\aRp) = (f, He\aRW),
whose left hand side equals E(Hp\aRf, Rn) = (u, HR\aRf) = (up\a, Rf) =
(f, Rug\a), arriving at Eq. 3.19.

Take any function v € Fs. In view of [5, Th.3.4.8, Th.3.4.9], Hp\ AV € F, is
E-orthogonal to FA and we get from Eq. 2.19 and Eq. 3.19

E(Hp\aRu + R, v) = ERUE\A + R4, v)
= (wE\a, V) — (E\a, D) (mp, v) + (u, v — Hpy\av) = (u, v) — (1) (i F, v).

Hence, the function u = Hp\aRp + R4 1 is an element of F¢ satisfying the first equation
in Eq. 2.19. Since it also satisfies the normalization (mp, u) = (nmp, Ru) = 0, we obtain
u=Ru. O

In this section, we have considered the equilibrium measure and the equilibrium potential
of a set for a recurrent Dirichlet form. For transient Dirichlet forms, these concepts have
been introduced in a somewhat different way (see [6, Ch.4] and [15, §2.1, §2.2]). To be more
precise, let (£, F) be a regular transient Dirichlet form on L*(E;m) and M = (X,,P,)
be the associated Hunt process on E. Let Séo) be the family of positive Radon measures

on E of finite O-order energy and Uu € F, be the 0-order potential of u € S(()O) as were
introduced in Section 2.2.

We consider any Borel set B C E whose 0-order capacity Cap® (B) is positive and
finite. By the 0-order version of the second paragraph of [15, p 82] and [15, Th.4.3.3], there
exists then a unique measure up € S(go) supported by B such that

l//ﬁ;(x) = pp(x)forg.e. x € E. where pg(x) =P, (0p < 00), x € E.

Note that pp = 1 q.e. on B. up (resp. Uup) has been called the 0-order equilibrium
measure (resp. equilibrium potential) of B.

Assume further that the set B is closed. Then Cap(o)(B) = (up, pp) equals the total
mass of ;5 and we can define the renormalized equilibrium measure 18 of B by

1B (A) = up(A)/Cap®(B), A e B(E), (3.20)

which is a probability measure concentrated on B. Accordingly, the renormalized equi-

librium potential UnB(x) = pp (x)/Cap<0) (B), qe. x € E, takes a constant value
1/Cap?(B) g.e. on B so that this value can be regarded as the Robin constant for the closed
set B relative to the renornmalized equilibrium measure u5.

We notice that, if we further assume that the Dirichlet form & is strongly local, then /LB
is concentrated on the boundary d B, because, for any function ¢ € F,NC,(E) with support
in the interior of B, (u®, ¢) = E(pg, ¢) = 0.
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4 GMCs via equilibrium potentials for recurrent forms
4.1 Properties of the family {u*", f(x, r)} for recurrent forms

Let E be either the whole plane C or the closure of the upper half-plane H and m be
the Lebesgue measure on E. We consider a strongly local regular recurrent Dirichlet form
(€, F)on L2(E; m) and an associated diffusion process Ml = (X;, Px) on E.
Forx e C, s > 0, welet B(x,s) ={y € C: |y — x| < s} and B(s) = B(0, s).
A function u € F, is said to be £-harmonic on an open set G C E if £(u, v) = 0 for any
v € Cg where Cg = {v € C : supp(v) C G} for a special standard core C of &.

We make the following assumption:

(B.1)  The transition function P, of M admits a density function p,(x, y) with respect to
m satisfying the Gaussian estimate: there exist positive constants K;, k;, i = 1, 2, such
that X .

Tle_kllx_y‘z/t < pi(x,y) < 726—k2|x—y|2/t’ Vx,ye E,t > 0. 4.1
Here are some important consequences of this assumption (B.1). First, due to
M.T.Barlow, A.Grigor’yan and T. Kumagai [1, Th.3.1, Cor.4.2], we have the following:

Proposition 4.1 (i) p;(x,y) is positive and jointly continuous in (t,x,y) € (0,00) x E X E.

(ii) For any u € F, that is £-harmonic and bounded from below on an open set G C E,
there exists its m-version u such that U is continuous on G. If u € F, is non-negative and
E-harmonic on B(x, r) C E, then U satisfies the Harnack inequality: there exists a constant
Cy independent of x and r such that

sup{u(y) :y € B(x,r/2)} < Cyinf{u(y) :y € B(x,r/2)}. 4.2)
Lemma 4.2 For each x € E, the one-point set {x} is of zero capacity relative to £.

Proof. For o > 0, denote by ry(x, y) (resp. 74 (X, y)) the Laplace transform of p;(x,y)
(resp. the transition density of the planar Brownian motion). By (B.1), 27 K 17721(1 x,y) <
ri(x,y), X,y € E. Suppose Cap(y) = ¢ > 0 for some y € E. According to [15],
Ex[e™®] = ¢ - ri(x,y) for gq.e. x € E, which contradicts to the unboundedness of the
righthand side due to the above inequality. O

For any Borel set B C E, a point X € E is called regular for B if Px(cp = 0) =
1. For an open set G C E, a point X € 9dG is said to be regular for the Dirich-
let problem on G if, for any bounded Borel function ¢ on dG that is continuous at X,
limz s x zeG Ez[¢0(Xo,5): 096 < 00] = ¢(x).

Proposition 4.3 Let G be an open subset of E. In the case that E = H, we assume that
G C H. Then, a point x € 3G is regular for E\ G if and only if x is regular for the Dirichlet
problem on G.

Proof. When G is bounded, the ‘only if* part follows from E.B. Dynkin [10, Th.13.1].
We reproduce a proof for a general open G under the current setting. For simplicity, we only
consider the case that E = C.

As the proof of [9, Lem.6.3], we have for any u > O and ¢ > 0

Px(IX; —x| =26, I €[0,ulNQ) <2 sup Pi(y,C\B(y, ), ¥xeC. (43)

t<u,yeC
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The righthand side tends to zero as u |, 0 by the assumption (B.1). Since Px(sup, [0, 1 Xe —
x| > ¢) is dominated by the lefthand side of Eq. 4.3 with £/2 in place of ¢, we obtain for
any ¢ > 0

lim sup Px(sup | X; — x| > ¢) = 0. “4.4)

ul0xeG  t=u
On the other hand, assumption (B.1) along with Proposition 4.1 (i) implies that M is
strong Feller in the sense that P; f € Cs(C) for any bounded Borel function f on C.
According to Lemma 13.1 of [10], this means that for u > 0 and 7¢ = oc\¢

Px(tg > u) 1is upper semi continuous in x € C. 4.5)

Assume that ¢ € dG is regular for C \ G, namely, P.(r¢ = 0) = 1. Take any bounded
Borel function ¢ on dG which is continuous at ¢ so that, for any ¢ > 0, there is @ > 0 with
lo(y) — @(c)| < & forany y € B(c, a). We then get, for f(x) = Ex[p(X;)], x € G,

[fX) — ()] <&+ 2ll¢lloo(l = Px(X¢; € Ble,@))), X€G. (4.6)
By Eq. 4.4, we can find u > 0 with
Px(sup | X; — x| > a/2) <e, VxeG. “4.7)
t<u

As P.(tg > u) =0, Eq. 4.5 implies
Px(tg > u) <e, Vxe B(c,8), forsomed € (0,x/2). 4.8)
It follows from Eqgs. 4.7 and 4.8 that, for any x € G N B(c, §),

Px(tg < u, sup|X; — x| < a/2) > 1—2e.
t<u

Since the lefthand side is dominated by Px(|x — X;| < «/2), we obtain Px(|lc — X;| <
a) > 1 —2¢, which combined with Eq. 4.6 leads us to | f (x) — ¢(¢)| < & +4¢||¢|lc0, VX €
G N B(c, §).

The ‘if” part can be proved in exactly the same manner as [26, Prop.3.6, Th.2.2] by noting
that each one point set is polar by Lemma 4.2. ]

We further make the next assumption:

(B.2) Let B = B(x,r) N E forany x € E, r > 0. In the case tIEt E = H, we assume
that » # Jx. Then every point of 9 B is regular for B and for E \ B.

The property derived in Proposition 4.1(i) is much stronger than the absolute continuity
(igndition (AC) which now holds with N = (. For any set B as in the assumption (B.2), let
B the quasi-support of 15 - m specified by Eq. 3.4. Then, by (B.2)

B = B, and Py(og =o3p) =1, foreveryxe E \ B. 4.9)

Define ry(x,y) = [ e “p(x,y)dt, x;y € E, and R f(x) =
fE ro (X, y) f(y)m(dy), x € E. Then {Ry, ¢ > 0} is the resolvent of M satisfying the
conditions (A.1), (A.2) in Section 3. Further, r (x, y) is positive and lower semi-continuous
in (x,y) € E x E so that infyer yer r1(X,y) > O for any compact set I C E. Therefore
any compact set F' C E with positive Lebesgue measure m (F) can be an admissible set in
the sense of Eq. 2.17. We make a special choice of it; for a fixed S > 2,

F=BS+D\B(S)when E=C; F=(BS+1)\B(S)NHwhen E =H. (4.10)

By the assumption (B.2), we see that F=F.
In what follows, we only deal with the case that E = C for simplicity of presentation
and we aim at constructing the Gaussian multiplicative chaos on B(S — 1). But, in the case
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that £ = H, all the statements below hold only by changing B(S — 1) into B(S — 1) N{x €
H: 3x > 1}.

For the annulus F in C defined by Eq. 4.10, its indicator function 1 will be denoted by
g. Recall the related objects £8, FE, Sg ’(O), M8, RéE, introduced in Sections 2.3 and 3. We
shall also use the notations mg(A) = m(F N A), A € B(C), mr = mp/m(F). As the
transition function Ptg of M satisfies the absolute continuity condition (AC) with N = @,
there exists a non-negative symmetric Borel measurable function ré(x,y), x,y € C, such
that it is Mi8-excessive in each variable and

RS f(x) = / ré(x,y) f(y)m(dy) < oo VxeC, 4.11)
C

for any non-negative bounded Borel function f on C vanishing outside a bounded set by
virtue of Lemma 3.1 and the definition [14, (2.12)] of 8 (x, y). Eq. 4.11 particularly implies
that, for each x € C, ré(x,y) < oo for g.e. y € C on account of [5, Th.A.2.13 (v)]. Further,
for any € S, the function R%u define by REu(x) = [ r&(x, y)u(dy), x € C, is
M2&-excessive and a quasi continuous version of the 0-order potential USy € F5 of u in
view of [14, Prop.2.5].

Recall the space of signed measures M defined by Eq. 2.18. For any u € My, the
recurrent potential Ry of w relative to the admissible set F' has been constructed in [14,
Th.3.5] explicitly by the formula

Ru = HpR(1pRE ) + REp — M © (4.12)

m(F)
which is a specific quasi continuous function in F3 satisfying the condition Eq. 2.19. Here
Hp is defined by Hru(x) = E,[u(Xs.)], x € C, and R is a bounded operator on
L*(F; mF) to be explained below.
Let (R p) p>0 be the resolvent of the time changed process M = (X+,, {Px}xer) on F of
M by its positive continuous additive functional C; = fo 1r(Xs)ds. t; is the right contin-

uous inverse of C;. F coincides with the support of C,. We note that 1?1 (x, -) is absolutely
continuous with resepct to m g and satisfies

ﬁlw(X)=/FF1(X, VeMmpdy), rxy =r’xylr({y), xeF. (4.13)

Define R1 = Ry and R" Tox) = [ Ri(x, dy)]é;‘_lq)(y), n > 2. Then
Ry = }:ue — (fiF. @), @€ LXF;mp), (4.14)

is convergent in L2(F:; mp). We also note that R admits the bounds (cf. [14, (3.7),(3.10)]):
IRell2 < cillglla.  [1R@llso < c2ll@lloo.  for some constants ¢ > 0, ¢ > 0. (4.15)

We have seen in Theorem 3.4 that, for any B € B(C) with m(B) > 0, the quasi-support
B of 15 - m admits the equilibrium measure 2 € Sg " defined by Eq. 3.5. Let B(x, r) be
any open disk with center x € B(S — 1) and radius 0 < r < 1. Its closure will be denoted
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by B(x,r). By Eq. 4.9, we have B/(_X\;) = B(x,r). We denote the equilibrium measure
uB®) by 7. We then see from Theorem 3.4 that
1 (A) = Piip (Xoypery €A)y A€ BOB(, 1)),
Ru*"(y) = f(x,r) — ﬁEy [fogﬁ(x‘” lp(X,)dt] , qeyeC, where (4.16)
07 = B [ Jy " 1 (Xt ]
where 71 F is the probability measure defined by Eq. 3.15. Thus u*" is a probability measure

concentrated on 9 B(x, r) and its potential Ru™" takes a constant value f (X, r) (called the
Robin constant for B(x, r)) q.e. on B(X, r).

Lemma 4.4 Define I)Q\M"”(y), y e C, by
1
m(F)

o~ UE(x.r)

RuS" () = f(x,r) — v(y), where v(y) = E, |:/ lp(Xt)dt] . 4.17)
0

I’?\M"” is a quasi continuous version of Ru*". Further I?pL’“ (v) is continuous iny € B(S),

&-harmonic on B(S) \ B(x, r) and identically equal to f(x,r) on B(x,r).

Proof. Eq. 4.16 implies the first statement. v € F, by Eq. 4.16 and v is bounded on C
in view of Eq. 3.7. Take any disk B with B C B(S) \ B(x, r). Then v is M-harmonic on
B in the sence that, for any open O with O C B, Ex[v(X:,)] = v(x), x € O. Therefore,
by virtue of [5, Th.6.7.13], v is £-harmonic on B, and by Proosition 4.1 (ii), there exists an
m-version v of v which is continuous on B.

On the other hand, v is excessive relative to the part MC\E(X, " of Mon C\ B(x, r) and so
relative to the part Mg of M on B. Denote by P/ the transition function of Mg. By taking
the assumption (B.1) into account, we have ¥(y) = lim,—.o PE%(y) = lim;—o PBu(y) =
v(y), for ally € B, namely, v(y) is continuous iny € B.

Denote v by v,. v, is identically zero on B(x, 1) by assumption (B.2). So it remains to
prove that, for any y, € dB(x, 1),

lim v-(y) =0. (4.18)
Y—Yo. YEB(H\B(x,r)

Take s € (0, r). Then vy (z) is continuous in z € B(S) \ B(x, s) and
Uy (Y) = Vr (Y) + IE’y[vs (XUaB(er))]7 ye C \E(X, r),

Hence Eq. 4.18 follows from assumption (B.2) and Proposition 4.3. |
We first study the relation between the next two properties (P.1), (P.2) of the equilibrium
potentials {Ru*"}:
(P.1) There exist constants x > 1 and C; > 0 such that for all x € B(S — 1) and
0<d4r<t=<i,

max{Ru*" (y) : y € dB(x, 1)} < k min{Ru™"(y) : y € dB(x, 1)} + C1. (4.19)

(P.2) There exist constants k > 1 and C; > 0 such that, for all x,y € B(S — 1) and
0<e<déwith6s <|x—y| < 1/3,

(W, RY®) < icf(y, Ix—y| — (e +8) + C1. (4.20)

Lemma 4.5 (i) Forr € (g, 1/2),
max{Ri*(y) :y € B(S)\ B(x,r)} = max{Ru*4(y) : y € dB(x, r)}. 4.21)
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(ii) If property (P.1) holds for some constant k > 0 and C1 > 0, then so does property
(P.2) for the same constants k, Cj.

Proof. (i) Let v(y), y € B(S)\B(x, &), be the function defined by Eq. 4.17 for ¢ in place
of r. Then, for r € (¢,1/2) and for any y € B(S) \ B, r), Py(03Bx,r) < 03B(x,¢)) = 1
and so

O3B(x,e)
v(y) > Ey [ / 1 F(X,)dti| =Ey [v(Xoyp4,,)] = min (),

IB(X.r) z€dB(x,r)

yielding Eq. 4.21.
(ii) Foranyz € B(x,¢),wehave 1/2 > |x—y|+e>|z—y| > |x—y|—e—5 >4 s0
that (i), Eq. 4.19 withr = 4,1 = [x —y| — (¢ +§) < 1/3 and Eq. 2.20 imply
R (z) < max{Ru??(z) 1z € 9B(y, [x —y| — (¢ + 8)))
cmin{R* (@) 1z € IB(y. Ix — ¥ — (e + 8)} + Cy

* / Ru¥ S (wyp¥ XY=+ (gw) + €y = kf(y, Ix — y| — (¢ + 8)) + C1,

=
=

IA

yielding Eq. 4.20. O

Lemma 4.6 (i) For any 0 < ro < 1/3, there exists a constant My depending only on rg
such that

R (x) < My, for allye B(S—1), x e C\ B(y,r9), 0 <r < rp/2. (4.22)
(i) Forany O < ro < 1/3, there exists a constant M, depending only on rqo such that
IR (x)| < M, forally e B(S—1), x € B(S)\ B(y,rg), 0 <r <rg/2. (4.23)

(iii) Property (P.1) holds true for some constant k > 0 and C1 > 0.

Proof. (i) Let G = B(S—1/2)\ B(y, ro/2) forany y € B(S—1). Take any r € (0, r9/2).
Then, for any v € Cg, E(REuY",v) = ES(REW".v) = (u", v) = 0, namely, RS u¥-"
is £-harmonic on G. As R8uY-" is M8-excessive on C, we can use Proposition 4.1 (ii) in
the same way as the proof of Lemma 4.4 to conclude that it is continuous on G. We can
then apply the Harnack inequality Eq. 4.2 to R8Y"" to obtain for any z € G, s > 0, with
B(z,s) C G that

max{REuY" (W) : w € B(z,5/2)} < Cy min{RSu¥" (W) : w € B(z, s/2)}.
In particular, for any z € d B(y, ro), B(z, ro/2) C G and consequently,
max{Réu¥"(w) : w € B(z,ro/4)} < Cy min{Ru¥"(w) : w € B(z, ro/4)}.

Since the length of the circle dB(y, ro) is 2mrg, dB(y, ro) can be covered by k =
[2rcro/(ro/2)] + 1 = 13 disks B(z;, ro/4) with center z; € dB(y,ro), i = 1,2,---,13
such that B(z;, ro/4) N B(zi+1,r0/4) # ¥ for any 1 < i < 13 with the convention that
214 = z1. If we denote the maximum and the minimum of R&u¥"" on B(z;, ro/4) by M; and
m;, respectively, then M;/m; < Cy forany 1 <i < 13.

Without loss of generality, we may assume that M| = maxi<;<13 M;. As B(z1,r9/4) N
B(z2, ro/4) is non-empty, we have m| < Mp and M} < Cygm| < CgM, < C%{mg so that
M, < C%I(ml/\mz). Similarly, one can get, forany 1 <i <7, M; < C;I(ml/\mg/\- - Am;)
and M| < Cf,_,(m13Am12A- --Ami4—;). If the number k such that m| AmaA---Ami3 = my
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satisfies 1 < k < 7 (resp. 7 = k < 13), theg the first (resp. second) relation with i = 7
yields that M < C;{mk. Let D(y, rg) = Ul.lil B(z;, ro/4). We thus obtain, for any r < ro/2,
max{REu¥" (W) : w € D(y, r0)} < Cj; min{RSu¥"" (w) : w € D(y, r9)}. (4.24)
Because of the inclusion 8 B(y, ro) C D(y, ro), we also have for any r < ro/2
max{REuY"(w) : w € 9B(y, ro)} < CZI min{REu¥"(w) : w € dB(y, ro)}. (4.25)
Since R8uY" € F¥ is £%-harmonic on C \ B(y, ro), REuY’ (x) = H%’(y rO)Rguy”(x)
for q.e.x € C \ B(y, ro) by [15, Th.4.3.2], which holds for every x € C \ B(y, ro) because
the both hand sides are M -excessive and consequently excessive relative to the part of M#
on C\ B(y, r9). Accordingly we get, for any x € C \ B(y, ro),

REpY(x) = HE  REuY(x) < max{RSp¥"(2) 1 z € D(y, ro)}

D(y.ro)
_ c?
= Cmin(RE ) 1 € D)) = -l [ rewr@man)
, 1o D(y,ro)
Ch
= —— Y R814 .
m(D(y, r)) B!

As the proof of Lemma 3.1 (i), RS lﬁ(y,ro) (z) < 1/¢(D(y, ro)) on C for

(D(y, ro)) = inf{Rpg(x) : x € D(y, r9)} > inf{r2(x,z) : x € D(y, r0), 2z € F}m(F).
By the Gaussian lower bound in Eq. 4.1, the last term in the above is larger than M m(F)
with M| = fooo(Kl/t)e’z”k'(25’1/2)2/%# < oo. Further m(D(y, ry)) takes a positive
value m,, independent of y € B(S — 1) and Eq. 4.22 holds for M; = CL/(Mlm(F)mm).

(ii) Eq. 4.22 particularly implies that RS u¥-"(x) < M foranyx € F,y € B(S — 1) and
r < ro/2. Hence, in view of Egs. 4.12 and 4.15, we have

1
IR e\proy < 2Mi+ M+ S o= M.y € B = 1), 7€ 0.ro/2).

By Lemma 4.4, R\uy" is a version of RuY>" and continuous on B(S) so that we obtain the
desired bound Eq. 4.23.

(iii) Take any ro € (0, 1/6) and let G; = B(S — 1/2) \ B(y, ro). For r < ro, I?,u” is
&-harmonic and con&nuous on G| by Lemma4.4. For r < r9/2, |Ru¥"| < M, on G| by
(i) so that R/ﬂ” = RuY" 4+ M, is non-negative continuous and £-harmonic on G. Hence
the same method as in (i) works to obtain Eq. 4.25 for Rp,y*r and 2rg in place of RS u*”
and rg, respectively. Accordingly,

max{Ru¥" (z) : z € dB(y, 2r0)} < CJy min{Ru¥" (z) : z € dB(y, 2r0)}+C1,  Vr < ro/2,
for some constant C; > 0, yielding Eq. 4.19 with x = CZ,. O

Proposition 4.7 (i) There exists a symmetric Borel measurable function t(x,y), x,y € C,
such that, for eachx € C, it is a difference of M8 -excessive functions ofy € C finite q.e. and

Ru(x) = / t(x,y)u(dy), xeC, foranyp e My. (4.26)
C

(ii) For any fixed 0 < n < 1/2, (u*"1, R?""2) is uniformly bounded in r1, r, € (0, n/8)
andx,y € B(S — 1) with |x —y| > n.

lim (™", Ru?"?) = v(x,y), (4.27)

r1,r240
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form x m-a.e. (x,y) € B(S—1)x B(S—1)N{(x,y):|x—y|l>n}L

A proof of this proposition will be given in Appendix (Section 7.1). In the proof of the
second assertion (ii), we shall make a full use of the upper Gaussian bound in assumption
(B.1) along with Lemma 4.6.

Before going into our task of constructing Gaussian multiplicative chaos, we need to
make an additional assumption that

(B.3) There exist a constant C, > 0 such that

sup{f(y,r):ye B(S— 1)} <Crinf{f(z,r):z€ B(S—1)}, re(0,1). (4.28)
4.2 Construction of Gaussian multiplicative chaos from {u*", f(x, r)}

Let {X,; u € F.} be the centered Gaussian field defined on a probability space (2, B, P)
with covariance E[ X, X,]1 = E(u, v) u, v € F,. Define

YX = Xppxr, xeBS—-1), 0<r<l, (4.29)

for the equilbrium potential Ru*" e F, with respect to the closed disk B(x, r).

On account of the probabilistic expression Eq. 4.16 of the Robin constant f(x, r), we
readily see that f(x, r) is a strictly decreasing continuous function of » € (0, 1). We denote
its inverse function by f~!(x, r). Forany r € (0,1/2),let7 = 7(x) = f~'(x, [f(x, )]),
where [ f(x, r)] is the integer part of f(x, r).

Givena > 0and 0 < € < gy < 1/2, we shall consider the set Gi;i“ (w) defined by

GLO(w) = {Y* <af(x,7), Vr € (s, &)}. (4.30)
For a fixed y > 0, put
2
Frey = yee _ V?V(yw), 4.31)

where V (Y*¢) = f(x, ¢) is the variance of Y*¢.
The following estimate is well known for a centered Gaussian random variable & with
variance V (§) (see [22; Lem.5.1.3]):

2

PlI&] > a] < exp <_2\f(§)> Ya > 0. (4.32)

Proposition 4.8 For any o > y and gy > 0, there exists p(a, v, 9) > 0 independent of €
and x such that limg, .0 p(a, y, &0) = 0 and

E [e?”'y - Q\ G;‘;j"] < pla,y,e0), foralle e (0,e0) andx € B(S —1).

Proof. Put My . .o = E [e?“” L2\ G;’;;?]. Then

Myoyq = e~ VVITIR | o™, U PR L g
ke(f (x.e0)].Lf (x.e1)

Since, for any ¢ < Fhx, k),

cov(y YXE, Y ST Ry =y e R STy =y p(x, £N(x, K)) = pk,
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the Cameron-Martin formula Eq. 2.25 applies in getting

MX,E,)/,O! =P U {YX,f_l(x,k) + yk > ak}
ke(Lf (x,e0)],[f (x,8)])

Z P (Yx’ffl(x’k) > (o — y)k) .
ke([f(x,e0)].[f(x,8)])

IA

As Y%/~ &K ig a centered Gaussian random variable with variance k, we get from Eq. 4.32,

 Q— (@ — y)k)? - (@ — )%k
Mxera Sy D eXp<_2k =3, 2 e""(‘f)’
k=[f(x,e0)] k=ko(e0)

where ko (o) = inf{[ f (z, g9)] : z € B(S — 1)}.
We let p(a, y, &) = Z,fiko(so) e_("‘_y)zk/z. By Eq. 4.16, Lemma 4.2 and the recurrence
of £, it holds that

1 o0
lriin(}f(x’ r)= ﬁEﬁF |:/0 1F(Xt)dt] =00, VxeB(S-—-1).

On the other hand, the assumption (B.3) yields that, for a fixed ¢ € B(S — 1),
fe,r) <Crinf{f(z,r):z€ B(S—1)}, foreveryr € (0,1).

Therefore limg, .0 ko(0) = 00 and limg,—¢ p(e, ¥, &9) = 0. O

Before proceeding further, let us prepare the following proposition about the existence
of a measurable version in two variables (X, w) of the random variable Y*" (w) defined by
Eq. 4.29 for each r > 0.

Proposition 4.9 For any r € (0, 1/2) and finite positive measure o on B(S — 1), there
exists a measurable function Y (x, w) on B(S — 1) x Q such that, for o-a.e.x € B(S — 1),
Y'(x, w) = Y5 (w) P-a.s.

Proof. Let us fix r € (0, 1/2) and a finite positive measure ¢ on B(S — 1). We shall first
prove that the map from x € B(S — 1) to Ru*" € F, is continuous. Since

ERu®" — Ry, Ru™" — Ru¥") = f(x,r) + f(y,r) = 2(u>", Ru™"),
it is enough to show that lim,,_, o f(¥,,r) = f (X, r) and lim,_, oo (u¥", RU*") = f(x, 1)
for any sequence y, € B(S — 1) converging to x € B(S — 1), In view of Eq. 4.16, these
two relations are equivalent to lim, oo (1F, RENBGOWN1 ), = (1p, RE\B®N 1) and
1imy,_y oo (u¥n", RENB& ] 1) = , respectively. But by Eq. 4.16 again,

= OB(x,r)
(u¥n’, RE\B(x,r)g> = ErﬁFHB(y 9 |:/ IF(Xt)dl]
" 0

OBy, TOBxN 0 OBy, )
Esip

1F(Xt)dt:| .

TB(y,.r)

Therefore, if we can show that, for any sequence y, € (S — 1) converging tox € B(S — 1),
Pa(lim 0y, = M @5, )+ O8er) ©0Chy,.) = OBxr) =1, V2E E, (4.33)

n— 00

the desired continuity follows.
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Forany 0 < ¢ < r,if x —y,| < ¢ then B(x,r —¢e) C §(yn,r) N B(x,r) C
B(y,,r)UB(x,r) C B(x,r+¢). Hence opx,rts) < liimn_)ooaé(ywr) < limn%ooaé(ymr) <
OB (x.r—e)" The same relation also holds for %B(y,.r) +05x.r) Oe(aé(y,,,r)) instead of OBy, .r)
Therefore, for the proof of Eq. 4.33, it only remains to show that P, (limk— o0 OB(x,r+5,) =
limg_s o0 OB(xr—er) = GE(XJ)) =1, Vz € E for some sequence & |, 0.

By (B.2), OB xr) = OB(x,r) 5. Clearly OB(x.r—;) = OBX.r)- Further, if opx ) (0) < t,
then X, (w) € B(x, r) for some s < ¢ and hence X, (w) € B(x, r—sx) for some k > 1, that is
OBxr—p) < 1I- Therefore limy_, oo OB(x.r—g) = OB(X,r) and hence P, (lim_, oo OBxr—er) =
OB(x,r) = Gé(x,r)) = 1. To show another relation, put o = limg_, 00 OB(x,r4¢,) < OB(x.r)-
Since Xo = iMoo Xopey sy € MkB(x,r +¢&r) = B(X,r),0 > OFx.r)- Hence we also
have P, (limg— o0 OB(x,r+¢;) = JE(XJ)) = 1. Thus we have the desired continuity.

AsE[(Y*" —YY¥7")2] = E(Ru®" — RuY", Ru®" — RuY""), the continuity verified in the
above implies that x — Y*7 is a continuous map from B(S— 1) to L>(P), and consequently,
a uniformly continuous map from K to L?(P) for any compact sunset K of B(S — 1). For
n > 1, express B(S — 1) as a finite disjoint sum B(S — 1) = ), C,, x, where C,, x is an
intersection of B(S — 1) and a square of side length 1/n. Pick the unique point ¢, ; from
Cy.x with shortest distance from the origin and let ¥ (x, w) = ), e, ()Y E"(w). Then
Y] (X, ) is measurable in (X, ®) € B(S — 1) x Q and, by the stated uniform continuity, we
have for any compact subset K of B(S — 1)

lim sup E[(Y, (x, w) — Y® (w)*] = 0. (4.34)
n—o0o xeK
Consequently,
lim ¥, (x, w) — Y/ (x, ))*P(dw)o (dx)

nt—oo JoxK

<o(K) lim sup E[(Y(x,®) — Y} (X, w))*] =0,
n,€—>00 xe K
namely, {Y, (X, w)} is a Cauchy sequence in L*(Q x K,P x o).

By choosing a suitable subsequence {n’} of {n}, Y,/ (X, w) conveges to a P x o-
measurable function Y”(x,w) on K x € as n’ — oo. In particular, for o-a.e. x € K,
limy 0 ¥, (X, w) = Y"(X, w), P-a.s., which combined with Eq. 4.34 yields E[(Y" (x, w) -
Y®" (w))?] = 0 and Y' (x, w) = Y*"(w) P-as., for o-a.e. x € K. Since K is an arbitrary
compact subset of B(S — 1), the proof of Proposition 4.9 is complete. g

Throughout the rest of this subsection, we shall consider a positive measure o on B(S—1)
absolutely continuous with respect to the Lebesgue measure with an integrable density on
B(S —1). Forany A € B(B(S — 1)) and for 0 < ¢ < &g, define

I (0) = / e adx),  Je(w) = / " e o (dx), (4.35)
A A X, &
where the random variable Y*¢ (w) involved in Y7 and Ggfo is taken to be its measurable
version in Proposition 4.9 so that the integrals in Eq. 4.35 make a perfect sense and they can
be regarded as a random measures on (B(S — 1), B(B(S — 1))).

We aim at deriving the convergence in probability of the random measure I, as ¢ |, 0
toward a non-degenerate random measure on B(S — 1) in the topology of the weak conver-
gence. To this end, we adopt the strategy taken by Berestycki [2]; we fix A € B(B(S — 1))
and look for conditions given in terms of y, o, o and the Robin constant f(x, r) to ensure
the L*(PP)-convergence of J., which will then be combined with Proposition 4.8 to obtain
the L' (P)-convergence of I, as well as its uniform integrability. Notice that, by the Fubini

@ Springer



312 M. Fukushima, Y. Oshima

theorem,

E[J}] = / fAXA E [eyx,s,ywy.g,y 1gesn lc;ﬁo] o (dx)o (dy).

Proposition 4.10 Assume that the following two conditions are fulfilled for some a €
0,2y):

lim / exp (—%m — )2 f . T+ 72 f 0, r)) a(By,6r)o(dy) =0  (4.36)
r A

and

lim sup /f exp (—l(Zy—a)zf(y, |x—y|+8\/5)>
n=>0p5<yJ Jaxan(x—yi<n) 2
X exp (yzkf(y, (I —yl— (e +8)V (e V 5)) o(dx)o(dy) =0, (4.37)

where k is a constant appearing in Eq. 4.20. Then,

lim sup / / E[eY"’S‘“Yy"S’VlG:ﬁO1Ga,go]a(dx)a(dy)=o. (4.38)
M0 g s<p AxAN{lx—y|<n} .

Proof. Put

{5$:§°<y, 8) = (Y™ < af(x,7) — yCov(Y™ + Y¥3 Y*7) Vr € (¢, £0) ],

G ’ B 4.39
e, 0) = {17 < af @.7) — yCoV(Y™e + V¥ Ve e e} )

Then, by the Cameron-Martin formula Eq. 2.25, we have

E I:e?x,s.r+)7yv8.r 1 sl wo] o (dx)o (dy)
AxAN{|x—y|<n} Oxe " Oy
= / / . }eVZCov<Y“,Yy"S>P (Eg;go (v.8) NG (x, g)) o (dx)o (dy}4.40)
AxAN{|x—=y|<n

We may assume that ¢ < § <7 because if otherwise we may exchange (y, §) and (x, ). If
0 <& <8 < e, then cov(Y®¢ 4+ ¥Y¥0 Y¥T)y = f(y,7) + (u®¢, Ru¥") so that

PGyt e) < P (VY7 < (@ = ) f ) =y (™, Ri™™)).

Let us make a special choice of r satisfying f(y, [x —y|+¢&) — 1 < [f(y,r)] = f(y, |x—
y| + ¢). Then |x — y| + & < ¥ and hence (u*¢, Ru¥Y") = f(y,7). Since @ — 2y < 0, we
get from Eq. 4.32,

IA

P(Grom.onGyime) < P(Grixe) <P (X7 < @—20)f.7)

A

1
= exp (—5(23/ — ) (fy, Ix—yl+8) — 1)) :

If x—y| < 68, then f(y, [x—y|+&) = f(y,78). As Cov(Y*¢, Y¥9) = (u*¢ Ru¥®) <
f(y, 8) by Eq. 4.16, we have

/ / eVZCOV(Y"»E,YY"S)]P) (5?:50 (y’ 5) N 6;;(?0 (X, 8)) (T(dX)G (dy)
AxAN{|x—y| <68}

1
< /AeXP (—5(21/ —a)?(f(y,78) — 1) + > f(y, 6)) o (B(y, 65))o (dy).
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On the other hand, if 65 < |x — y|, then

Cov(Y™, YY) < kf(y, (Ix —yl — (¢ +8)) v §) + C1,

by Eq. 4.20 and accordingly the integral over the domain resricted to [x — y| > 66 of the

righthand side of Eq. 4.40 is dominated by

1
/f exp <—5(2y —a)? f(y, Ix =yl +8)
AxAN{65<|x—y|<n}

+y2Cov(Y*?, YWS)) o (dx)o (dy)
< o7’ / / exp (—3<2y — @ f @y -yl + 6))
AxAN{x—y|<n} 2
xexp (2 f (v, (X = ¥] = (& +8) V 8)) 0 (dx)o (dy).

Therefore we have Eq. 4.38 under Eqs. 4.36 and 4.37.

Proposition 4.11 Fix n > 0 and o > y. For any Borel subset A of B(S — 1),

. Tx.e,y L Y.8,
lim f/ E [eY Py lGﬁo lGa,SO:I o (dx)o (dy)
&5=>0J JaxAn{lx—y|zn} 8
- / /Axmux Y= }eyzr(x’y)lp <5$:80 n 5;’50) o (dx)o(dy) < oo,
—yl=n

where

Gy’ = (V" < (@ =) f.7) =y R (). Vr € 0. €0))
Gyo' =7 < @ =) f@.7) = y R (), ¥r € (0. 0))

Proof. Similarly to Eq. 4.40, we have
f / E I:eYX,s.V+YY-5-)/ lG“vSU lGu,So:I U(dX)O’ (dy)
AXAN{x=y|=n} e

2 X,& yy.0
_ E [ y“Cov(Y®®Y )] ~a,g, ~a,g ]
//AXAQ{XYZU} e G0 (NG (x.e) o(dx)o(dy)

(4.41)

(4.42)

_ / / U RIIP (Gao(y, 5) N G (x, ) ) o ()0 (dy)(443)
AxAN{|x—y|=n} ’ ’

By rewriting Eq. 4.39, we also have

G2y, 8) = {Y¥ < (a — y) f(x, F) — y (¥, RuXT), Vr € (e, &)},
Gyt (x,e) = (Y < (@ = ) f(y. ) — y (u™*, Ru¥T), Vr & (8, £0)).

Since §MX’7(Z) is continuous on B(S) by Lemma 4.4,

gfolw’é, Ri*") = Ru¥"(y), yeB(S—1).

(4.44)

(4.45)
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We now let v(e, €9, X, y, €,8) =P <5§§° (y,8) N 5;;0 (x, 8)) . It follows from Eq. 4.45
and the continuity of the finite dimensional Gaussian distribution function that

limsup v(«, €9, X, Y, €, 8)
€10, 810

=P (X < @=9)f 7 =y R (W), ¥r € (1, 60))
NPT < @ =) f @7 — YRR ®), ¥r e (1, 20)))
for arbitrarily fixed &1 < €9, 81 < €9. We then let §; | 0, &1 | O to obtain

limsup v(a, €9, X,y, €,8) < IP’(GO‘ 00 Ga o). (4.46)
10, 810

Fix any n > 0. By taking ro = g A % in Lemma 4.6, we find, for x,y € B(S — 1)

with |x — y| > 7, a constant M> > 0 depending only on 7 such that | (@Y%, ﬁux*7)| <M
forany 6 € (0,7/2) and 7 € (0, % A %). According to the fine properties of the function
f(x,r) in r stated in the first part of this subsection, we see that ¢; | O implies €] =
F7Yx, [f(x.e1)]) | 0. Hence one can choose ¢; > 0 with & < A % sothat 7 < 7 A é
whenever r < e1. Further, if we let D(x,e1) = {[f(x,r)] : r € (0,e1)}(C N), then
D(x,e1) ={keN:k>[f(x,e)]}

By using the tail distribution estimate Eq. 4.32, we therefore have for any § € (0, n/2)

P(GLE (v, 8)) < P U 0> @-nf&m -y Ru*)
ref~1(x,D(x,e1))

Y B(Y s @—nfen -yt Rit))

ref~1(x,D(x,e1))

N2 N N2
51\7[ Z exp[—%f(x,?)}:M Z exp[—%k],

ref~1(x,D(x,e1)) k>[f(x,e1)]

IA

where M = expl(e — y)yMz] Hence limg, o IP’(G“ 8'(y, 8)¢) = 0 uniformly in § €
(0, n/2). Similarly limg, o ]P)(é l(X €)¢) = 0 uniformly in ¢ € (0, n/2).
We just saw that, for any small a > 0, there is b > 0 such that P(Ga El(y, 8)°) < a for

any &1 < b uniformly in § € (0, n/2), and IP’(G;:;‘ (x, £)°) < a for any §; < b uniformly in
e € (0,n/2).

Let A, = {(x,y) € B(S — D2 x— y| > n}. It follows from
v(a, £0, X, ¥, £, 8) > v(a, £0, X, ¥, €1, 81) — P(GLE (y, 8)° )—]P’(GO‘ Bl(x )°) that

li f , ,e,0)1
al%l?i v(e, €0, X, Y, &, 8)14,((X,¥))

=P (I < (@ =) f&F) = y R (), ¥r € (o1, 0))
MY < @ =) fF) = YR ®), ¥r € (1.20))) 1a, ((x,¥) — 20,
forany 1 < b, 61 < b. By letting ¢; | 0,8 | 0 and thena | 0, we arrive at

%nnf v(a, €0, X, Y, & 8)14, (X, ) = P(Gjé‘) mG“ oD 14, (X, ). (4.47)
&
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On the set (B(S — 1) x B(S — 1)) N{|x —y| > n}, (u®%, Ru¥?) is uniformly bounded
and convergestor(x,y)ase | 0,8 | Oa.e. 0 x o by Proposition 4.7. Further 0 x o (B(S —
1) x B(S — 1)) < oo. Therefore we obtain Eq. 4.41 from Eqs. 4.43, 4.46 and 4.47. O

Recall the random variables /I (w) and J; (w) defined by Eq. 4.35.

Theorem 4.12 Assume that the conditions Eqs. 4.36 and 4.37 in Proposition 4.10 are ful-
filled for some a € (y,2y). Then J;(w) converges in L2(2:;P) as ¢ — 0. Furthermore,
I (w) is uniformly integrable with respectto 0 < ¢ < 1 and A € B(B(S — 1)), and it
converges in LY (Q,P)ase — 0.

Proof. For any ¢, § € (0, &),

E |:|J£ (w) _ JB (CU) |2:| — / / E I:e?X,E.V—F‘}\;y-S:}/ IG“*SO IG;VSO:I O'(dX)U(dy)
AxA X o
N / / E [e?x,a,yﬁy.a,y o] Ga,eo] o (dx)o (dy)
AxA LU

) / / E[eyx,s,v+yyv”le,golG;,go]o(dx)d(dy)‘
AxA ? »

Express each of three integrals on A x A in the righthand side as a sum of integrals over
(Ax A)N{x—yl <n}and (A x A) N {|x —y| > n}. For an arbitrarily small a > 0,
there exists 7, > 0 such that each integral over (A x A) N {|x —y| < n} with n = n, is
smaller than a uniformly in ¢ > 0, § > 0 by virtue of Proposition 4.10. On the other hand,
the limits of the integrals over (A x A) N {|x —y| > n,} as &, § — 0 exist and cancel each
others by Proposition 4.11, resulting in limsup,_ s_ o E [|Js(®) — Js(w)[*] < 4a. Since a
is arbitrary, we obtain the Lz-convergence of Je(w).

Proposition 4.8 says that, by taking small o, E(e?™"” IQ\G;‘Z’E’O) becomes arbitrarily small

uniformly in 0 < ¢ < gg and x € B(S — 1). Since E[(Js)?] is uniformly bounded relative to
g, {J:} is uniformly integrable. Hence {/:} is also uniformly integrable. As J; converges in
L2(Q,P), it also converges in LY(Q,P). Noting that E[I; — J.] is small uniformly relative
to & < gg by taking small &g, we also see that I, converges in LY(Q,P). O

In formulating the following theorem, we put D = B(S — 1). Consider the family M (D)
of all finite positive measures on (D, B(D)) equipped with the topology of weak conver-
gence: u, (D) € M(D) converges to u € M(D) as n — 00 if limy— oo { f, tn) = {f, i)
for any f € Cp(D), where (f, n) = fD S (x)(dx). This topology is induced by the metric
p on M(D) defined by

,O(M,U):ZZ_" (|<gn7 “’)_(glh]})'/\l)v /L,UEM(D), (448)
n=1

where {g,} is a countable dense subfamily of C £5) (cf. [16, Prop.2.5]).

For each set A € B(D), the integral fA eV @g (dx) will be denoted by wue(A, w)
instead of I, (w). Notice that ps (-, ) € M(D) as.

Theorem 4.13 Assume that the conditions Eqs. 4.36 and 4.37 in Proposition 4.10 are ful-
filled for some a € (y,2y). Then there exists (-, w) € M(D) uniquely a.s. such that
We (-, w) converges in probability to i(-, w) as € | 0 relative to the metric p on M(D): for
any § > 0,

13&@ (o(ue, 1) > 8) = 0. (4.49)
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Proof. Denote by A the family of rectangles in D of the form [ry, s1) X [r2, s2) with
rational numbers r; < s1 and r, < sp. We also put Dy = B(S — 1 —1/k), k > 1. By
virtue of Theorem 4.12, for each A € B(D), (A, w) converges in probability as ¢ | 0 to
arandom variable which we denote by ©(A, w).

First we will prove that there exists a family of random variables {ft(A, w); A € B(D)}
such that z(-, ) € M(D) for almost all ® € Q2 and

(A, w) = u(A,w) forany A € A, a.s. (4.50)

Further we will prove that any sequence &, | 0 admits a subsequence {g),} such that
Me! (-, w) is weakly convergent to 7z(-, w) as n — 00 a.s.

Take any sequence &, | 0. As the family A is countable, there exists its subsequence
{e),} such that limn_mousfq (D, w) = u(D,w), lim,_, Ms;(Dk, w) = u(Dg, w) for all
k > 1 and limy o0 47 (A, w) = (A, @) forall A € A a.s. say for all w € @/ C Q with
P(/) = 1. Since lim,— 00 e/ (D, @) = u(D, o) for all @ € 27 and {u:(D); ¢ > 0} is
uniformly integrable by Theorem 4.12,

E[u(D, )] = lim E[u, (D, »)] = 0(D) < oc.
n—o00 n
Hence (D, w) < oo a.s. Similarly, since ;(Dy, @) is non-decreasing relative to k and
lim E[u(D, ®) — p(Dg, @)] = lim lim Elp, (D, ©) — g, (Dg, )]
k—o00 k— 00 n—>00
= lim o(D\ D) =0,
k—00

it follows that limg_, oo 1 (Dg, ®) = (D, w) a.s. Therefore, we may and shall assume that
w(D, w) < oo and limg_, oo (D, w) = u(D, w) for all w € /.

For any A € A, let A° and A be the interior and the closure of A, respectively. Since
e (A° @) < pe(A, ) < pe(A, w) and E[ue(A°)] = 0(A) = E[uc(A)] by the stated
assumption that o (dA) = 0, E[u(A°)] = E[u(A)]. Hence u(A°, w) = p(A, o) =
w(A, w) for almost all @ and we may assume that this holds for all w € .

Fix w € Q. For any § > 0, take a number ko such that u(D, w) — u(Di, w) <
du(D, w)/2 for any k > k¢. Further, there exists ng such that |Ms;, (D\ Dy, @) —((D, ) —
w(Dyy, w))| < $pu(D, w)/2 for any n > ng. Therefore Me, (D \ Di) < per (D \ Dyy) <
3 (D, w) for any n > ng and k > ko. By taking large & if necessary, this holds foralln > 1
and k > ko. Since Dy C Dy C D and Dy is a compact subset of D, this means the uni-
form tightness of {u (-, w)}. As a consequence, any subsequence of {e),} admits a further
subsequence {e,//} such that {ue,, (-, w)} converges weakly to some measure (-, ®).

For any A € A, choose Ci, By € A, k > 1, such that C; increases to A° and B
decreases to A as k — oo. Then

1(Cr) = u(Cr) = lim pr; (Cp) < limsup ey (Ci) < W(Cr) < A(A%) < Ji(A),

w(By) = n(By) = lir{n te (Bi) = liH}linfMe;;(B;f) > (BY) = m(A) = 1(A),
and so - -
w(Cp) <m(A®) < (A <u(A) < uw(By), k=1 4.51)
It also follows from
]E[li;n n(Col = lilzna(fk) =0(A°) =E[u(Ad)] =0(A) = lilan(B/f) = E[lilgn w(BY)],
that
lim n(Cr) = u(A) = lim (BY), s,
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which combined with Eq. 4.51 yields Eq. 4.50.

Since this holds for any subsequence of {g],} and A generates the Borel o-field B(D),
e, converges weakly to i a.s. Actually every A € A is a ft-continuity set a.s.

We have seen that any sequence &, | O admits a subsequence {e} such that
lim,, 00 p(1ter . @) = 0 a.s. and consequently lim, oo P (0(ite; . ) > 8) = 0 for any
8 > 0. This means Eq. 4.49. g

We call {it(A, w); A € B(D)} in the above theorem the Gaussian multiplicative chaos
associated with the Gaussian field G(£). We notice that, due to the uniform integrability of
I, in Theorem 4.12 and Eq. 4.50, E[x(A)] = o (A) for any A € A, so that i is no-trivial if
and only if so is o. We further notice that the validity of the conditions Eqgs. 4.36 and 4.37
in Proposition 4.10 depends on the choice of the measure o and the value ¥ > 0 in Eq. 4.20.
In examples in the next section, we examine the possible range of the value y to ensure the
validity of these conditions.

5 Examples of Gaussian multiplicative chaos for recurrent forms

Example 5.1 We consider the case that E = C, m is the Lebesgue measure on C and (£, F)
is the regular recurrent Dirichlet form (%D@, HY(©)) on L%(C) = L*(C; m), where

Dc(u, v) = / Vu(x) - Vo(x)dx, H'(C)={u € L*(C); |Vu| € L*(C)}.
C
The associated diffusion Ml = (X, P,) is the planar Brownian motion.
Clearly the conditions (B.1) and (B.2) are satisfied. We take
F=B(S+1)\ B(S)

as an admissible set and let {Ru : u € M(C)} be the family of recurrent potentials relative
to F and u®" be the equilibrium measure for B(x, r)(C B(S)) relatove to F. The uniform
probability measure on d B(X, r) will be denoted by v*”. The logarithmic potential U u of

a measure u € Mo (C) on C is defined in §2.4 (III). nmp will designate the probability
measure defined by Eq. 3.15.

It holds then that
MX,I‘ — UX,V’ (5.1)
and, for the version Ru®" of Ru®" introduced in Lemma 4.4,
~ 1 1 ~ ~
Ru™"(z) = —log ————— —20(8) + (mp,Ump), foreveryz e B(S), (5.2)
b4 x—z|Vr
where £(S) is a constant defined by
2
1 1
£(S) = ——————1log(1 + =) — —[log(S + 1) — 1/2]. 5.3
(S) n(25+1)0g(+5) n[Og(+) /2] (5.3)

A proof will be given in the last part of this example. Eq. 5.2 means that the Robin constant
for B(x, r) equals
1 1 ~ ~
f&x,r)= ;bg; —20(8) + (mp, Ump), (5.4
which is independent of x € B(S), and consequently the condition (B.3) is trivially fulfilled.
Further Eq. 5.2 implies Eq. 4.19 with k = 1 so that Eq. 4.20 with k = 1 is fulfilled by
Lemma 4.5.

The extended Dirichlet space F, is now the Beppo Levi space BL(C) as was mentioned
in §2.4 (IIT). Let {X,,; u € BL(C)} be the centered Gaussian field defined on a probability
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space (€2, B, P) with covariance E[X, X,] = %Dc(u, v) u, v € BL(C). Define yxey by
Eq. 4.31. We now check for what y > 0 the conditions Eqgs. 4.36 and 4.37 with k = 1
are satisfied to ensure the convergence in probability of random measures 1. (A, w) =
fA eyx’s'yo(dx), A € B(B(§ —1)) as ¢ | 0toward a non-trivial random measure on B(S —
1). Let o (dx) be a non-trivial positive finite measure on B(S — 1) absolutely continuous
with respect to the Lebesgue measure satisfying

/ o(B(y,r)o(dy) < Csr2,  for some constant C3 > 0, 5.5)
B(S—1)

1 ~
//(S DxB(s—1) X —y[2F o(dx)a(dy) < oo, foranyé > 0. (5.6)
B(S—1)xB(S— —

o fulfills Egs. 5.5 and 5.6 if its density function with respect to the Lebesgue measure is
bounded.
For a given y > 0, we choose « such that
1 2 y?
y <a <2y, —QRy —a) ——+2>0. 5.7
2 b4
We can actually find o sufficiently close to y and satisfying the property Eq. 5.7 provided
that

y <247, (5.8)
In this section, K1 ~ K9 will denote some positive constants. By virtue of the simple

expression Eq. 5.4 of the Robin constant f(x, r), the integral in Eq. 4.36 is, under the
o2 2
assumption Eq. 5.5, dominated by Kr Qs 119

the property Eq. 5.7, yielding Eq. 4.36.
Substituting Eq. 5.4 into the integral of the left hand side of Eq. 4.37 with x = 1 by
assuming that ¢ < §, we see that the integral equals

1
K> / / exp (—(2)/ —a)*log(]x — y| + 5))
AxAN(Ix—y|<n} 2

2
X exp (—V; log((|x — ¥ — (£ + &) v 8)> o (dx)o (dy)

, which tends to 0 as r | 0 in view of

2
) (1x— ¥l 485" 7% 0 (dx)o dy)
AxAN{|x—y|<2(e+3)}

+K2/f (Ix — y| + 8) 2 =)’
AxAN{2(e+8)<|x—y|<n}

y2
x(Ix =yl = (e +8))” 7 o (dx)o (dy)
=1+1I

Taking & € (0, 2) with =2y — )2 — £ +2 -7 > 0, we let

Ky = / f 1l -y o (dx)o (dy)
B(S—1)x B(S—1)

which is finite by Eq. 5.6. Since [x — y| < 2(¢ + §) < 46 in the integrand of I,

I= Kzf/ (Ix =yl + 8)FCrar | _ yp% 5= 7@V @y)
AxAN{|x—y|<e+5} |x — y|2—5

L2 2
KaK4(58)2 @r=0 (48)2-F 5= < K, 52 Qr—al’ =1 +2-F

IA
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Since 2(e + §) < |x — y| < n in the integrand of II,

_2
wf ] i er-er (B2) T g D
AxAN{|x—y|<n} 2 |X—y|2_5

Qy— a)27—+2

II

IA

IA

Ks 772”

Hence Eq. 4.37 holds true.

Thus, by virtue of Theorem 4.13, the convergence in probability of random measures
Ue(-, ) as € | 0 to a non-trivial random measure ;& on B(S — 1) relative to the metric
Eq. 4.48 has been verified for y € (0, 2/7).

Finally, in order to verify Eqgs. 5.1 and 5.2, we consider the spaces _/C/[o (C) of measures
on C stated in §2.4 (IIT). By [26, Prop.3.4.9],

o 1 1
v eMp (C), and Uv¥ (z) = —log———, zeC. (5.9)
kg x—z|Vvr
Furtherhmore, by virtue of [26, Prop.3.4.11,Th.3.4.12], we see that, for B(x,r) C B(S),
v*" admits a probabilistic expression, by using the uniform probability measure s3p() on
the circle 0 B(t),

VYT (A) = f Py(Xoyper € A)sani(dy), A€ B@BX,r), Vi =S,
3B(t)

in terms of the planar Brownian motion M = (X, Py). By integrating the both hand sides
by tdt from S to S + 1 and deviding by %(28 + 1), we obtain the identity Eq. 5.1 from the
probabilistic expression Eq. 4.16 of u*”

By Eq. 5.9, we have Usp()(z) = % log

|Z|]W. Consequently, by the same compu-

tation as above, we see that mp € /\O/lo (C) and Ump(z) takes a constant value £ =
2 SH tlog ; Ldt for z € B(S). It then follows from Lemma 3.7 and (i, Uv®") =

2Sthr
Ump, v’”) = Zthat for z € B(S),

Rp,x"(z) =Uv™(z) —Ump(z) — L+ (mp, Ump) = Uv™"(z) — 20+ (mp, Ump),
yielding Eq. 5.2. O

Example 5.2 We next examine the case that £ = H, m is the Lebes&ue measure on H and
(€, F) is the regular recurrent Dirichlet form (%DH, H! (H)) on L*(H) = LQ(H; m), where

Dy (u, v) :/ Vu(x) - Vox)dx, H'(H) = {u € L>(H); |Vu| € L*(H))}.
H

The associated diffusion M = (f,,ﬁx) is the reflecting Brownian motion (RBM in
abbreviation) on H.

Clearly the conditions (B.1) and (B.2) are satisfied. We take Fy = {x € H:S < x| <
S + 1} as an admissible set. Let {Ru : u € Mo(H)} be the family of recurrent potentials
relative to Fy and, forx € Eg ={x e H: |x| < S—1, Ix > 1} andr € (0, 1), let u*" be
the equilibrium measure for B(x, r)(C B+(S) = {y € H, |y| < S}) relative to F.

For a finite signed measure ;& on H with compact support, its logarithmic potential U n
for RBM is defined by

1 1
+ —log — (5.10)

Ou(x) = f Rex, iy, x €T, fork(x,y) =  log
x—yl =« |x —y*|
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where, fory = (y1, y2), y* = (y1, —y2) denotes its reflection relative to oH. The collection
of finite s1gned measures 4 on H with compact support and with (||, U |y < oo will be

denoted by Mo (H).
Foreachx € Egand r € (0, 1), define a function Rpf‘ " on H by Eq. 4.17 in terms ofM
which is a version of Ru*” and continuous on B (S). It then holds that for every z € B (S)

-~ 1
RuX (z) = - log ] + Cx(5,11)

Z—xvr 7 fE—x| [ 51X, —x

where  Cx, = (u*", log ) —46(S) + (Air,, Unir,). (5.12)

1
|- —x*|
Here, o is the hitting time OBx.r) of M for B(x,r), £(S) is the constant defined by Eq. 5.3

and 171F+ (A) = m(ANFL), A€ B(H). A proof will be given in the last part of this
example.
Eq. 5.11 means that the Robin constant f(x, r) for B(x, r) C B4+(S) equals

m(F m(Fy)

1 1
f(x,r) = —log— 4+ Cx,,. (5.13)
T r

In view of Eq. 5.12, Cy,, is uniformly bounded in (x,r) € Ep x (0, 1), and consequently
the condition (B.3) with Ey in place of B(S — 1) is fulfilled by virtue of Eq. 5.13. Since the
second and third terms on the right hand side of Eq. 5.11 are bounded inx € Eg, z € B4 (S)
and r € (0, 1), Eq. 5.11 implies Eq. 4.19 with ¥ = 1 so that Eq. 4.20 with « = 1 and with
Eo, B4 (S) in place of B(S — 1), B(S), respectively, is also fulfilled.

The extended Dirichlet space F, is now the Beppo Levi space BL(HH) over H defined by

BL(H) = {u € L} (H) : |Vu| € L*(H)}.

Let {X,;u € BL(H)} be the centered Gaussian field defined on a probability space
(2, B, P) with covariance E[ X, X,] = %DH(u, v) u, v € BL(H). Define Y*” by Eq. 4.29.
As the Robin constant f(x, r) differs from ]Tllog% by Cyx,, that is uniformly bounded in
(x,r) € Ep x (0, 1), we can repeat the same argument as in the preceding example to con-
clude that, for any non-trivial positive finite measure ¢ on Eq absolutely continuous with
respect to the Lebesgue measure satisfying Eqs. 5.5 and 5.6 with Ej in place of B(S — 1),
the random measures

2
me(A, w) = / exp (J’Y” - %f(x, 8)) o(dx), A € B(B(Eo)),
A

on Ey is convergent in probability to a non-trivial random measure @z on Ey relative to the
present counterpart of the metric Eq. 4.48 as ¢ |, 0 when y € (0, 24/7).

Finally, in order to verify Egs. 5.11 and 5.12, we first note two facts. It follows from
Egs. 5.9 and5.10 and [13, Lem.3.4] that

P ~ oy 1 1 1 1
eEMo (), Uv'(z)=—log—— + —log————, z € BL(9).
b4 lz—x|vr = |z —x*|Vr
R . (5.14)
By [13, Lem. 3.4] again, Ump, (z) = Ump(z), z € H so that
mr, e,/\o/lo (H), l/j%ﬂ(z) =2£(S) foreveryz e By(S), (5.15)

where £(S) is the constant defined by Eq. 5.3.
By the RBM version [13, Prop.3.2] of the fundamental identity for the logarithmic

potentials, we have, for any compact set K C H, Up(z) = HxUp(z) + REK y(z) —
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Wk (z) (1, 1). Substituting u = v*" — mr,, K= B(x, r) and taking Eq. 5.14 and Eq. 5.15
into account, we get

-~

Uv*'(z)

~ 1 1 1~ —~
mF+(Z)+7T Ogr+n Z[Og|XO.—X*|] mF+(z)
H\B(x,r)
— R\ (Xr)mF+(Z)

1 I 1= 1 B (x.r) ~
—log—-+ —E,; |:10g Ai| - RH\B(x’r)m& (z), z€ B(S),
b4 room | Xo — X*|

where o = OBx.r) On the other hand, we have by definition

RiX @) = fx,r) — RTVBED G0 @), z€ By(S).
It follows from the above two identities that
o, X 7. X7 1 1 1~ 1
Ru™>" (@) =Uv>" @)+ f(x,r)——log — — —E; [log—=——|, z € BL(S). (5.16)
b4 roomw | Xs — x*|

We next show that the uniform probability measure v®" on 3 B(x, r) belongs to the space
Mo (H) when B(x, r) C B4 (S). We know from Eq. 5.1 that v®" € M (C), or equivalently,
there eixists a constant C > 0 with

2
1
( / |<p|dv’”> <c <§DC(¢,</)) +f demF), forany p € C/(©).  (5.17)

Define C(H) = C Cl ((C)|ﬁ and extend any ¢ € C M tog e C Ll (C) by reflection relative
to dH: @(y) = ¢(y*), Sy < 0. We then get from Eq. 5.17 the same inequality holding
forp € C (H) with 2C, Dy, m F, in place of C, D¢, mp, respectively, which means that
v¥" e Mo(H) on account of [15, Lem.6.1.1].

Lemma 3.7 applied to v°" € Mo(H)N ./\O/lo (H) along with Eq. 5.15 leads us to
Rv¥"(z) = Uv¥"(2) 4 C, with C = —4£(S) + (i p,.Unir, ),
for g.e. z € H. This combined with Eq. 5.14 yields
FO ) = (RXWRT) = (WX, RV) = (%7, D) + C = %log} + Cxr.
By substituting this into Eq. 5.16, we arrive at Egs. 5.11 and 5.12.

Example 5.3 Finally in this subsection, we consider the case that E = C, m is the Lebesgue
measure on C and (&, F) is the regular recurrent Dirichlet form (a, H L)) on L3(C) =
L?(C; m), where the form a is defined by Eq. 1.2 by means of measurable coefficients
a;j(x), 1 <i,j < 2, on C satisfying the uniform ellipticity Eq. 1.3 for some positive
constants A < A. The associated diffusion on C will be denoted by M = (X;, P,) (cf.
[15, Exa.4.5.2]).

It is well known that the condition (B.1) is fulfilled by this example (see [1] and ref-
erences therein). According to [20], the regularity of the boundary point for the Dirichlet
problem on an open set is equivalent to that for the case of Example 5.1. Therefore condition
(B.2) is also fulfilled by Proposition 4.3.

Analogously to Example 5.1, we take F' = B(S + 1) \ B(S) as an admissible set and
let {Ru : u € Mp(C)} be the family of recurrent potentials relative to F, u*" be the
equilibrium measure for B(x, r)(C B(S)) relative to F and f (X, r) be the corresponding
Robin constant.
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Example 5.1 is a special case of the present one where a;;(x) = %8,- j. According to
Eq. 5.4, the Robin constant for B(x, r) in this special case is given by % log % + £1(S) for
a constant £1(S) = —2£(S) + (mp, Umg) with £(S) of Eq. 5.3. Therefore we obtain from
Proposition 3.6 the bound

1
2A

which particularly means that the condition (B.3) is fulfilled with C, = A/A.

We have verified by Lemma 4.6 (iii) that Eq. 4.19 is valid for x = CL in a general setting
so that Eq. 4.20 is fulfilled with this big constant « accordong to Lemma 4.5 (ii). However,
if we make some smoothness assumption on the coefficients a;;(x), 1 < i, j < 2 in the
present case, we can attain a much better choice of x: k = A /A which equals 1 in the case
that g;; (x) = C4;; for a constant C > 0 as in Example 5.1.

( log - +z1(5)) < fr) < — (llog1+z1(s>). (5.18)
20\ r

Proposition 5.4 If a;;(x) and their first derivatives are Hoélder continuous on C, then
Eq. 4.19 holds for k = A /A so that Eq. 4.20 is filfilled with this constant k.

A proof of this proposition will be given in Appendix (Section 7.2) by making use of a
construction of a fundamental solution for a from a parametrix

1
Fo(x,y) = ————————— log Zaf(y)(x,—y,xx,—y,) . (19

(4rdet(a'l (y)) i

as is stated in [11, §5.6]. Here (a%/ (y)) denotes the inverse matrix of (a; ().

The conditions Eqgs. 4.36 and 4.37 (for the constant « in Eq. 4.20) can be verified to hold
for certain values of y > 0 as Example 5.1 by using Eq. 5.18. In fact, if 0 < y <« < 2y
and o satisfies Egs. 5.5 and 5.6, then

1
/; exp (—5(21/ — )’ f(y,78) + ¥ £ (¥, 5)) o (B(y, 68))o (dy)

76 2mA T4
< K75(2y—ot)2/471A—y2/27r)u+2. (5.20)

1 y? 1
< Kgexp (——(2;/ —0)?log — + X 1o g7>82

Similarly, the integral in Eq. 4.37 is estimated as
1
/ exp (500 ~?r . x=y1+9)
AxAN(x-yl<n}
xexp (2 f (v, (1x = y] = (e +8) v §) ) o (d)a (@y)

<Ks f exp (—(zy — e loa(lx —¥1 +8) ~ L X log 3) o (dx)o (dy)
AxAN{[x—y|<2(e+5)) 4 A

1 K
+Kg / exp (7(2)/ —a)?log(x —y| +8) — L log(]x —y| — (e + 5))) o (dx)o (dy)
AXAN{2(e+8) <|x—y|<n} 4T A 27 A

=I+1I.
In the same way as in Example 5.1, we see that, for € € (0, 2),

_ 2 2 - ~
1 < Ksexp [ 2% 10a(58) — V5 logs ) (46)2F < Kos@r—w?/dmA—y?c/2mit2=7
4w A 2w A

@ Springer



Gaussian fields, equilibrium potentials and multiplicative chaos... 323

Furthermore, we can see that

I < Koy®y—o*/4mA=y?ic/2mit2—F

provided that the exponent appearing on the righthand side is positive for some g > 0.

1 2
Therefore Eqs. 4.36 and 4.37 are satisfied if the inequality Y Qy —a)>— % +2>0
T b4
holds for some @ € (y, 2y) with « > 1. This condition is fulfilled provided that

[ 2mAA

Let {X,;u € BL(C)} be the centered Gaussian field defined on a probability space
(2, B, P) with covariance E[X, X,] = a(u, v) u,v € BL(C). Define Y*" by Eq. 4.29.
Define u. (A, w) = f A exp(yY®® — ”72 f(x, &))o (dx) for a non-trivial positive finite mea-
sure o on B(S — 1) satisfying Egs. 5.5 and 5.6 and for A € B(B(S — 1)), w € Q by
taking Proposition 4.9 into account. As in Example 5.1, the convergence in probability of
the random measures (. (-, w) toward a non-trivial random measure it relative to the met-
ric Eq. 448 as ¢ | 0 is legitimate for y in this region according to Theorem 4.13. If

ajj € C?(C), then, by Propostion 5.4, the range Eq. 5.21 equals (0, 2,/ 27324 ) which

2A2-)2
reduces to (0, 2,/7) when a;; (X) = %(Sij.

6 GMCs via equilibrium potentials for transient forms
6.1 Construction of Gaussian multiplicative chaos for transient forms

In this subtsection, we assume that E is an open subset of C and m is the Lebesgue measure
on E. We consider a regular transient strongly local Dirichlet form (£, F) on L?(E; m) and
the associated diffusion process M = (X;, P,) on E. We fix a bounded open set Egy with
E( C E and aim at constructing Gaussian multiplicative chas on Ey. We choose a > 0 such
that the a-neighborhood of Ey is contained in E.

The transition function {P;, ¢t > 0} of M is assumed to satisfy the absolute continuity
condition (AC) with N = ¢ and some more:

(C.1) (i) Pi(x,-) is absolutely continuous with respect to m for eacht > O and x € E
with a density function p; (X, y) jointly continuous int > 0, X,y € E.
(ii) p;(x,y) admits a Gaussian upper bound: for some constants K > 0, k > 0,

K
pr(x,y) < Te"“"‘y‘z/’, x,ye E,t>0.

The resolvent kernel {R,, « > 0} of M then admits a density function ry (X, y), X,y € E,
with respect to m possessing properties [14, (2.10),(2.11)]. We let r(x, y) = limg o 7o (X, y)
and write Ru(x) = f r(x,y)u(dy), x € E, for a positive Radon measure w on E. Let S(()O)
be the family of positive Radon measures on E of finite 0-order energy and Up € F, be
the 0-order potential of u € S(()O). As the proof of [14, Prop.2,5 (ii)], we see that ¢ € S(go) if
and only if (i, Ru) < oo and in this case Rpu is the excessive version of U u.
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Consider a compact set B C E whose 0-order capacity Cap® (B) is positive. As has been
explained in the last part of Section 3, there exists a unique measure yup € S(()O) supported
by B such that

Rup(y) = Py(op <00), foreveryy € E. (6.1)

The equality holds for every y € E because the both hand sides are excessive functions of
y. g has been called the 0-order equilibrium measure of B, but we consider instead the
renormalized equlibrium measure 18 of B defined by Eq. 3.20. u® is a probability measure
concentrated on B (actually on 9 B) and

RuP(y) = Py(op < 00), foreveryy e E,

1
Cap?(B)
so that present counterpart of the Robin constant of B equals 1/ Cap® (B).

Let us denote the closed disk {y € C : |y — x| < r} by B(x,r). For B(x,r) C E, define

p =P ) = 1/Cap® (B(x, 1)), 62)
We then have
Ru™"(y) = f(x, rPy(0g ) < 00), foreveryye€ E. (6.3)
We now make the following additional assumptions.

(C.2)  Any non-negative £-harmonic function ¥ € F, on an open set G C E has an
m-version # that is continuous on G and satisfies the Harnack inequality (4.2) for any
Bix,r) CG.

(C.3) Forany x € Ep, the one-point set {x} is of zero capacity relative to £.

(C.4) Forany disk B with B C E, every point of 3 B is regular for B and for the Dirichlet
problem on E \ B.

(C.5) There exists a constant C, > 0 such that

sup{f(y.7) 1y € Eo} < C2inf{f(y,r) 1y € Eo}, r € (0,a).

We state important properties of {u*”, f(x,r)} defined by Eq. 6.2 under the above
assumptions.

Proposition 6.1 (i) lim, o f(x,r) = oo foranyx € E.

(ii) For any ro € (0, a/3),the uniform bound Eq. 4.22 holds true for R and Ey in place
of R8 and B(S — 1), respectively.

(iii) There exist constants k > 1 and C1 > 0 such that, for allx,y € Eg and0 < ¢ <4
with4s < |x —y| < a/3,

(W™, R’ < kf (. Ix —yl — (e +8) + C1. (6.4)

@iv) For any n € (0, a/2), Proposition 4.7 (ii) holds true for Ey and r(x,y) in place of
B(S — 1) and v(x,y), respectively.

(V) For eachx € E, f(x,r) is strictly decreasing and continuous in r > 0.

(vi) The mapping x € Ey — Ru*" € F, is continuous.

Proof. (i) follows directly from Eq. 6.2 and the assumption (C.3).
(ii). As in the proof of Lemma 4.6, the assumption (C.2) implies that, for y € E( and
0<2r<rg<a/3,

max{Ru¥"(w) : w € 9B(y, ro)} < CZI min{RuY"(w) : w € dB(y, ro)}. (6.5)
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By a similar argument made below Eq. 4.25, we have Ru¥"(X) = Hpp(y,r) Ru¥" (x) for
any x € E \ B(y, rg), so that Ry’ (X) < maxwess(y,ry) RUY" (W) < CL(RPY", p¥70) =
C;If(y, ro), which is bounded in y € Ey by (C.5).

(iii). Eq. 6.4 for k = CZ,, C1 = 0 follows from Eq. 6.5 as Lemma 4.5 (ii) using the
similar argument to the above.

(iv) can be proved as in subsection 7.1 using (C.1) and (ii).

(v). For C € B(E), denote by pc(y) the the hitting probability Py(oc < o0), y € E.
In particular, we consider the function v = PBx.r) for B(x,r) C E. Thenv € F, and

E(ww) = Cap(o) (B(x, r)). In the same way as the proof of Lemma 4.4, we can deduce from
the assumption (C.2) that v is £-harmonic and continuous on E \ E(X, r). Moreover, the
assumption (C.4) implies that v is equal to 1 on B(x, r) and continuous on E. But v is not
identically 1 on E. If v were identically equals 1 on E, we see, by choosing v, € F,NC(E)
that is £-convergent to 1, £(1, 1) = lim,—, & € (v, 1) which vanishes by the strong locality,
contradicting to a transience criterion [15, (1.5.8)].

In view of Eq. 6.2, it suffices to show that Cap(o) (B(x, r)) is strictly increasing and
continuous in r. Obviously it is non-decreasing. If Cap¥ (B(x, r1)) = Cap? (B(x, r»)) for
some 0 < r; < rp, then, by the 0-order version of [15, Th.2.1.5], PBx.r) equals PBx.ry)
identically, contradicting to the maximum principle for the non-constant harmonic function
PBx.ry) ON E \ B(x, r1). Its right continuity follows from [15, §A.1 (¢)]. If r, 1 r, then

Cap @ (B(x,ry)) 1 Cap® (B(x,r)). Since op(x,r) = 0y, 5. by the assumption (C.4),
we have from [15, Th.4.3.3], Cap(o)(B(X, r) = E(PBx.r)> PBx.r)) = S(PE(x,r)’ PE(x,r)) =

Cap(o) (B(x, 1)), yielding the left continuity.
(vi), It follows from Egs. 6.2 and 6.3 that

ERuY" — R, Ru>* — Ru™") = f(y, r) + f(x,r) = 2(u™", Ru¥").

Denote p Bxr) and Bxr) by px,r and uy ,, repectively. Define
o7 E\B(x,r) 7Bn)
ex,r(z) =[E,le "8xn], R () =Ky f(Xs)ds].
0

Then we have the identity py , = ex,+ R ENB(x.r )ex,r, because the bothhand sides are equal
to 1 on B(x, r) on account (C.4) and £-harmonic on E \ B(x, r) (see [15, §2,84]).

On the other hand, we have from Eq. 4.33, P,(lim, OBy,r) = Ué(x,r)) =1, zc¢€
E, for any sequence y, € Eq converging to x € Ep. The above identity then implies
lim,— o0 py,.r(2) = px,r(z), z € E, and consequently,

lim py ,(z) = px,(z), foreveryze E. (6.6)
y—)X

Now take a disk B C E containing B(x,r)U B(y, r). It follows from Eq. 6.6 that, asy — x,
Cap P (B(y, 7)) = pay,r(B(y, 7)) = (ityr» Riz) = (py,r, i) tends to Cap® (B(x, r)) =
Mx,r(B(X, 1)) = {uxr, Rug) = (pxr, ). Namely, f(y,r) — f(x,r) asy — x. By
taking B = B(X, r), we also have (uy ,, Rux ) — {ux,r, Ruxr), ¥ — X, arriving at the
desired continuity (vi). O

Thus all the assertions made in Section 4.2 for recurrent cases can be carried over to
the present transient cases straightforwardly. To be more precise, for the centered Gaussian
field {X, : u € F,} with covariance E[X,X,] = £(u, v), u,v € F,, define

2
YO = Xpyxe, YOOV =py*f — %f(x, g), Xe€Ep e€(0,1),y>0. (67
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by using present transient equilibrium potential Ru®" and the Robin constant f (X, r) in
Eqs. 6.2 and 6.3. Note that E[(Y*?)?] = f(x, €).

For a positive Radon measure o on Eg absolutely continuous with respect to the
Lebesgue measure with a strictly positive bounded density, put

we(A, w) = / 7 o(dx), A e B(Ey). (6.8)
A

Owing to Proposition 6.1 (vi), for each ¢, one can choose as Proposition 4.9 a measurable
function Y (x, &, w) on (X, w) € Eg x L such that, for o-a.e. X € Eg, Y(X, €, ) = Y**(w)
P-a.e. The integral in the above makes sense for this version and gives a random measure
on Eg.

Analogously to Theorem 4.13, we obtain

Theorem 6.2 Assume that, for some o € (y, 2y), conditions Eqs. 4.36 and 4.37 with the
constant k in Eq. 6.4 are fulfilled. Then, as ¢ | 0, ue(-, w) converges in probability to a
non-degenerate random measure Ji(-, w) on (Eo, B(Ey)) relative to the metric p defined by
Eq. 4.48 for Ey in place of D = B(S — 1).

In the rest of this subsection and in the next subsection as well, we shall work with
transient Dirichlet forms associated with absorbing Brownian motions on planar domains.
Let M = (X/, Px) be the Brownian motion on the complex plane C. Let D be a domain in
C with C \ D being non-polar and MP be the absorbing Brownian motion on D obtained
from M by killing upon its leaving time tp from D. Then MP is transient and (£, F) =
(%D D> H(} (D)) is the regular transient strongly regular Dirichlet form on L2(D) of MP.
Here

Dp(u, v) :f Vu(x) - Vo(x)dx, HY(D)={u € L*(D) :|Vu| € L*>(D)},
D

and H& (D) is the closure of Ccl. (D) in this space. The extended Dirichlet space F, of (£, F)
equals the extended Sobolev space H(} (D) that can be obtained by completing the space

C CI (D) with respect to the 0-order Dirichlet norm /D p («, u). In the following example, we
apply Theorem 6.2 to the case that D is a bounded domain of C.

Example 6.3 Assuming that D is a bounded domain of C, we consider the absorbing Brow-
nian motion M p on D and the associated Dirichlet form (%D D.H(} (D)) on L3(D) as above.

Due to a Poincaré inequality ([15, Example 1.5.1], the extended Dirichlet space HOI, (D)
is the space HOl (D) itself which is a real Hilbert space with the 0O-order inner product
1
5Dp(u, v).

Using the planar BM M = (X, Px), the resolvent density {r,(x,y), « > 0, X,y € D}
of MP is defined by

1 _xy?

00
ra(X,Y) = gu(X,¥) — Ex[e ™™gy (X7, V)], gu(X,Y) Z/ 67&1%6 2 dt.
0

The 0-order resolvent density of MP is defined by r(x,y) =limy o7 (X,y), X,y€ D.
The fundamental identity for logarithmic potentials due to S.C. Port and C.J. Stone [26,
Th.3.4.2] says that

r(x,y) =kx,y) — Ex[k(X¢,, )], xyeC, (6.9)
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where k is the logarithmic kernel defiend by k(x,y) = %log h(lfyl x,y € C. Generally
the righthand side involves an extra additional term W\ p(x) which disappears under the
present assumption on the boundedness of D.

The present Dirichlet form (%D D, HO1 (D)) on L%(D) and the associated diffusion MP
obviously satisfy the conditions (C.1) (ii), (C.2), (C.3) and (C.4). The condition (C.1) (i)
follows from Theorem 3.1 in [1] by taking X = C, (€, F) = (%DD, HY(C))and Q = D.
We let Dy = {x € D : dist(x,dD) > 1}, and consider for the closed disk B(x, r)
with x € Dy, r € (0, 1) its renormalized equilibrium measure u*” and the Robin con-
stant f(x, r) defined by Eq. 6.2. Then, by Eq. 6.3, the renormalized equilibrium potential
Ru*" € H(} (D) has the expression Ru*"(y) = f(x, r)Py(UE(x,r) < tp), Yy € D, in
terms of the planar Brownian motion M = (X;, Px).

We consider again the uniform probability measure v*” on 9 B(x, r). It follows from
Egs. 6.9 and 5.9 that

1 1 1 1
eSO Ry (z) = —log———— — —E, |log——— |,
T x—z|vr =w [ Xep — X|

and so
1 1
(u™", RV®"y = —log — + £(x, 1), (6.10)
11 r
where
1
Lx,r) = ——FE xr [log——|. 6.11
(x,r) p— |:0g|XrD_X|] ( )
Since the left hand side of Eq. 6.10 equals (Ru™", v®") = f(x, r), we obtain
1 1
fx,r)y=—log—+4(x,r) xe Dy, re(0.l). (6.12)
T r

for £(x, r) given by Eq. 6.11. By Eq. 6.11, £(x,r) is bounded in X € Dg uniformly in
r € (0, 1). Therefore, by Eq. 6.12, the condition (C.5) is fulfilled.

Property Eq. 6.4 now holds with k = 1. In order to verify this, take any X,y € Dy, and
any &, 6 € (0,1/2) with 1 > |x —y| > & + 4. It then follows from Eq. 6.9 that

(W8, Ru¥%y =1—11, where
1 L_x )8

1= = fBB(x,E)XBB(YJS) IOg ﬁﬂx S(dZ)/,Ly (dz/)a (613)
1 1 .8

=% fapxan.» 108 g Puve (Xep € dE)u"*(d2).

As|z—17|>|x—y|—e—8forz c dB(x,¢) and Z € dB(y, 8), we have

1 1
I < —log

_ 6.14
T x—yl—e—3§ ( )

Since dist(0D, 0B(y,8)) > 1/2, and D is bounded, II is uniformly bounded. Hence
Eqgs. 6.12 and 6.14 imply that the property Eq. 6.4 with « = 1 is fulfilled.

Let {X,;u € H(} (D)} be the centered Gaussian field defined on a probability space
(2, B, P) with covariance E(X, X,) = %DD(u, V), u,v € HO1 (D). Define Y*" and yxevy
by Eq. 6.7. Define 1. (A, w) by Eq. 6.8 for a positive finite measure o on Dg specified there.
Then we can use Theorem 6.2 along with the expression Eq. 6.12 of f(x, r) in the same
way as in Example 5.1 to get the stated convergence of . (-, w) as e | 0 for y € (0,2/7).
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6.2 Transformations of GMCs by conformal maps

Let D and D be domains of C with C \ D and C\ D being non-polar with respect to the
Brownian motion on C, and ¥ be a conformal map from D onto D. We write

w(x+iy)=u+iv65, x+iyeD.

We consider the Dirichlet form £ = (%DD, H& (D)) (resp.g = (%Dﬁ, H& (5))) on L?(D)
(resp.Lz(D)) and its extended Dirichlet space H(i (D) (resp.Holy .(D)) as was described

preceding to Example 6.3. For a function f on D, define a function W f on D by (Wf)(u +
iv)= foy l(u+iv), u+ive D. Wethen readily obtain

H, (D) ={Vf : f € Hy (D)}, %Df)(‘ljf’ vg) = %DD(f, g, f.ge€H, D).
(6.15)
W is a bijection between Hol,e(D) and H&e(ﬁ).
We first note the conformal invariance of potential theoretic notions. For any subset
A of D, Cap®(A) denotes its 0-order capacity with respect to the Dirichlet form £ and,
for A € B(D), pa denotes its hitting probability of the absorbing Brownian motion MP:
paX) = ]PXD (04 < 00), x € D. The correponding notions for D will be designated with ~.

Lemma 6.4 (i) It holds for any set A C D that

Cap®(A) = Cap"” (¥ (A)). (6.16)
Aset A C Dis E-polar iff Y (A) is g—polar. A function f on D is E-quasi-continuous iff
W is £-quasi-continuous.
(ii) For any A € B(D) with Cap® (A) < oo.

Ypa®) = Pyy®). forE —qe.y e D. (6.17)

Proof. (i). It suffices to show Eq. 6.16 for any open set A C D. Then, Cap®(4) =
inf{%DD(f, f): fe Hol’e(D), f > la.e.on A}, which combined with Eq. 6.15 yields
Eq. 6.16.

(ii). By the O-order version of [15, Th.2.1.5] and [15, Th.4.3.3], p4 is £-quasi-continuous
function in H({E(D) and characterized by the conditions that py = 1 £-q.e. on A and
%DD (pa,v) = 0, forany v € H(},e(D) with 7 > 0 £-q.e. on A, which combined with (i)
and Eq. 6.15 yields Eq. 6.17. O

For any compact set B C D with Cap(o)(B) > 0, the (renormalized) equilibrium
potential p® and the Robin constant ¢(B) of B are given by p? = pp /Cap(o)(B) and
c(B)=1/ Cap(O) (B), respectively. The above lemma implies

WpB =pV B o(B) =Ty (B)). (6.18)

Let G(&) = {Xy; f € Holye(D)} be the centered Gaussian field indexed by Holye(D)
defined on a probability space (2, B, P) with E[X s X,] = %DD (f,9), f.g € H()I,Q(D)~
For any f € Hol,e(ﬁ)’ \D_lf € Hol,e(D) by Eq. 6.15 so that one may define the random
variable

Xp=Xy7 (6.19)
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Equation 6.15 then implies that (G(g) = {5(\]? : fe Hol’e(/D\)} becomes a centered Gaussian
field indexed by H (D) with E[X 7Xz] = 3D5(f.8). .8 € H{ (D). It further follows
from Eq. 6.18 that, for any compact set B C D with Cap® (B) > 0,

i’pﬁ//(B) = XpB. (6.20)

We now consider a bounded open set Dy with Do C D and choose, for each x € Dy, a
family {B(x, ¢), ¢ > 0} of compact sets with

X € B’(x,¢), B(x,e) C D, Cap®(B(x,£)) >0Ve >0, and B(x,¢) | {x}ase | 0,
where B?(x, €) denotes the interior of B(x, ¢). We assume that for each ¢ > 0
themap xe€ Dy to pP*® ¢ H(}’e(D) is continuous. (6.21)

Define
Y =X pee.  f(x.8) =1/CapP(B(x,2)), x€ Dy, ¢ >0. (6.22)

We fix a constant y > 0. Given a finite positive measure o on Dy, we introduce a random
measure (e (-, @) on Dy by

2
e (A, ) = / exp <y yxe % fx, g)> o@dx), AeB(Dy.  (623)
A

Here Y*? in Eq. 6.22 is chosen to be its measurable version of x, namely, a function ¥ (x, )
measurable in (X, @) € Dy x 2 such that, for o-a.e. x € Dy, Y (X, w) = Y*¢(w) for P-a.e.
w € Q. The existence of such a version is ensured by the assumption Eq. 6.21 as in the
proof of Proposition 4.9.

Let M (Dy) be the space of all finite positive measures on Dy equipped with the topology
of the weak convergence, which can be induced by the metric p(u, v), u,v € M(Dy),
defined by Eq. 4.48 using any countable dense subfamily {g,} of C (D).

Notice that u (-, w) € M(Dyp) for almost all w € . If there exists v(-, w) € M (Dy)
such that limg o P(o (e, v) > ) = 0 for any § > 0, then we say that the Gaussian field
G(E) admits a multiplicative chaos v(-, w) on Dy relative to o and {B(x, €), x € Dy, & >
0}.

Put 50 = ¥ (Dy). Let us define, fory € 50, e >0,

B(y.o) =y (B 'y, 8), Y =X, [v.e)=1/CapP(B(y.e). (6.24)

{§(y, gy € 50, & > 0} is then a family of compact subsets of 50 containing y in the
interior with B(y, €) | {y} as ¢ | 0. We further let

G=vy-0: 6(C)=0@ 1(C), CeBDy). (6.25)
For instance, when o is the Lebegue measure dxdx; on Dy, 6 (dy dy;) = W dyidys.
Theorem 6.5 Let i be a conformal map from D onto D. G(&) admits a multiplicative
chaos v on Dy relative too and {B(x,¢),x € Do, ¢ > 0} if and only ifG(Q admits a
multiplicative chaos Von Dy = (D) relative to & defined by Eq. 6.25 and {B(y, €),y €

Dy, & > 0} defined by Eq. 6.24. R
In this case, V is the image measure of v by ¥: 7(C) = v(y¥~1(C)), C € B(Dy).

Proof. It follows from Egs. 6.20 and 6.24 that
YYo=y e Ffiye)=f(y.e), yeD, e>0. (6.26)
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Therefore
_ Y.e _
(gn 1e) = /DO 8n(X) exp (VY AL e)) ly—p i @@
= /A g, (y) exp (VY” ERAL s)) o (dy) = (Vgu, le)-
Do

We also have (g,, v) = (Wg,, D) for the image measure U of v by . The assertion of the-
orem follows by noting that {¥'g,, n > 1} is dense in the space of all continuous functions
on the closure of Dy. O

Appendix: Proof of Proposition 4.7
Proof of Proposition 4.7 (i)

Using the function 7| (x, y), X,y € F, in Eq. 4.13, define
rlxy) =f&y)., rixy = f A 2)F " (2, y)mp(dz), n > 2.

r1 (x,y) is the density function of the kernel R" (x,dy) on (F, B(E)) with respect to mp.
R” (x, dy) is m p-symmetric and R” lp(x) =1,x € F, so that mFR1 = mp. Consequently,

RI(X, A) — i p(A) = [F[zi';(x, A) = RI(X, Aliip(dx), A e B(F).

Denote by ||u¢]| the total variation of a signed measure @ on F, We then get from the above
identity and an estimate [14, (3.4)]

sup ||Rv;'(x, ) —mp()|| <2y", forsome constant y € (0, 1). (7.1)

xeF

Therefore, if we let
v 00 M
PP A) = f > 1Y) = 1/m(F)*mp(dy), x€ F, AeB(F),  (12)
L=

then, ™M (x,A), F)(x,A) are positive kernels on (F,B(F)) satisfying
SUPye F#) (x, F) < oo and, for any ¢ € L®(F; mp),

Ro(x) = /F?(Jr)(x, dy)e(y) — /Ff(’)(x, dy)e(y) for m-ae.x € F. (7.3)

on account of Eq. 4.14. This identity can be readily verified to hold also for ¢ € L>(F; mp).

Define r®(x,y) = S pypri(x, 2)F® (z, dw)ré(w,y)mr(dz) for x,y €
C, r@® (x,y) are symmetric and MS8-excessive for each variable x and y.
f Cr(+) (x, y)h(y)m(dy) is finite for each x € C for any non-negative bounded Borel func-
tion & on C vanishing outside a bounded set, because R&h is bounded on C by Lemma 3.1
and so Y (z) = f F?(+) (z, dw) R8h(w) is bounded on F' by a constant C > 0, and further-
more f(cr(+)(x, Yh(y)m(dy) = R8(1r - ¥)(x) < CR8g(x) = C in view of [14, (3.28)].
Therefore r*) (x, y) is finite for m-a.e.y and hence g.e.y € C.
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We see from Eq. 4.14 that, for ¢ € LZ(F; mr), Ié(p = Iélgo —(mF, @) + Iélléga. Con-
sider any p € Sg’(o) with u(C) < oo. Since Répu € L*(C,mp) and (g, R8pu) =
i (REg, ) = w(C)/m(F), we have

Hp RO FRS 1) (x) = RE(1pRE ) (x) — w(C)/m(F) + RE(1pR(1FRE ) (%), x€C,

which combined with Eqs. 4.12 and 7.3 implies that Ru admits an expression Eq. 4.26 by
a kernel tv(x, y) defined by

dxy)=‘/'gﬁlﬂﬁmeFM@+¢HN&w—¢“K&w
F
+ré(x,y) —2/m(F), x,yecC. (7.4)

t(x,y) is symmetric and, for each x € C, it is a difference of M&-excessive func-
tions finite for q.e. y € C. This property for the first term of the righthand side
can be verified in a similar way to the proof for other terms given previously.

Proof of Proposition 4.7 (ii)

We take x,y € B(S — 1) with |[x — y| > 7. Since there exists a constant M, such
that |§,uy"2| < M, on B(x,n/8) for any r; < n/8 by Lemma 4.6, the stated uniform
boundedness of (u*"1, RuY"2) = (u*", RuY"2) holds true. To prove Eq. 4.27, we first
show that

lim (%7, REUY) = r8(x, y), (7.5)
r1,r240

form x m-a.e. (x,y) € B(S—1) x B(S— 1) N{x,y):|x—y| > n}
Since e p;(z, w) < pf(z, w) < p:(z,w), we can use Eq. 4.1 to find for any ¢ > 0 a
positive fp satisfying

t t

K .

/ pS(z, wyds < / 22 =k 165 g g (7.6)
0 oS

forany ¢t < tgp and z, w € E such that |[z—w| > 3n/4. In particular, fg(,ux”l, PEY2)ds <
€.

Let M| be a constant satisfying RS u¥"2 < M on C\ B(y, n/2) for all r, < n/8. Such
constant M exists by Lemma 4.6. By Eq. 4.1 and the tail estimate Eq. 4.32, we may assume
that, by taking smaller #p > O if necessary,

K &
/ pE (. wym(dw) < / 2okl gvy < Ko7 kate O k2 /04 o =
C\B(x,1/2) {Iw>3n/8) 1 M,

for all t < tp and z € B(x, n/8). In particular,
(W PE 1o\ B(s—1/2 REWY™)

Z//ptg(Z, wW)le\as—1/2) (W) RE Y2 (W)m (dw)u™ " (dz)
<M / w*" (dz) f pi(z, wm(dw) < e. (7.7
B(x,1/8) C\B(x,1/2)

Put D(y) = B(S — 1/2) \ B(y, 1/2). Since pf(z, w) < (K2/t)e=9%7/6% for any z €
B(x,n/8) and w € B(y, n/2) and R81p(s—1) < M4 on C for some constant M4 by Lemma
3.1(3),

KaM, e—9k2n2/64t <e

ﬁe—%znz/mz(
t t
(7.8)

(X P geyy2) - RERYT) < 1Y, RELp(y.n/2)) <
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for any ¢ < fo by taking smaller 7 if necessary. Further, since the distance between F and
B(x, n/8) exceeds 1/2, we get by putting A; = f:)lF(XS)ds,

Py (z, D(y)) — P; (z, D(y))

1o
E, [(1 - e*f‘fo)lmy)(Xm)] <E, [ / 0 1F<Xs>ds]

o K F
/0 %()e_kﬂ“ds for any z € B(x, 1/8).

Hence we may also assume that
(W, (P — PEY(IpREuY ™)) <& forallt < 1, (7.9)

because Réu*"2 < My on D(y).
Therefore, in the decomposition

t
U Ry = [ G PSR ds B R

t
N / (W, PEPY2)ds + (uXPE L Te\ps—172) - REUT?)
0

W PE Ly ) - REWYT) + (X (P = PO (I REpY™))
" Pi(Ipy) REuY"™)),

the sum of the first four terms of the righthand side is smaller than 4¢ for any ri,r, €
(0,n/8) and 1 < ty.

Since p;(z, w) is uniformly continuous relative to (z, w) on B(X, 1/8) X 5(y), by
putting 8(¢, r1) = sup{|p;(z, w) — p;(X, w)| : z € B(x,r1),w € D(y)}, we can see that
the difference of the last term of the righthand side and f py) Pt X, W) RS Y "2 (W)ym(dw)
is smaller than M;é(¢, r;) which converges to zero as r; | O for each r < fy.
Furthermore, for fX(w) = lpy(W)p,(X,w), R8fX is E-harmonic on B(y,n/8)
by Lemma 3.1 and continuous there as in the proof of Lemma 4.4. Consequently,
1y, 0 J gy Pr (X WYRS 272 (W)m(dw) = limy, o (%72, RS ) = RS fX(y). Accord-
ingly

limsup [{(u™"", REuY") — RS fX(y)| < 4¢ (7.10)
r1,r240
forany t < fpand any x,y € B(S — 1) with [x —y| > 7.
Thus, to verify Eq. 7.5, it suffices to show that lim,_,o R® f*(y) = lim; 0 P (1p(y)
r8(,y)(x) = ré8(x,y) form x m-a.e.(x,y) € B(S—1) x B(S—1)N{|x —y| > n}. For
anyy € B(S — 1), let E1(y) = {x: r8(x,y) < oo}. As C\ E(y) is polar and

PE(ApmprsC.y))X) < P(IpmréC, y)(X) < e PE(1pmri ¢, y)(X),

it is enough to show that lim;_, ¢ P,g(l py) T8¢, Y))(X) =ré(x,y) forany x € D(y)NE(y).
Since ré(-,y) is Mé&-excessive and 1pcy)(X;)ré8(X;,y) is right continuous at t = 0 a.s.]Px
for x € D(y) N E1(y), we have

ré(x,y) An = tli_r)l(l)Ei (1) (XO)rf(Xe,y) An] < lim Ef [1pg) (X)ré (X;,y)]
t—0

IA

1im B [1p¢) (X)ré8 (X, p)] < m ES [r$ (X, y)] =ré(x,y), n>1.
t—0 =0

By letting n — oo, we arrive at Eq. 7.5.
We shall next show that, for the kernels r*(x, y) and r~ (x, y) appearing in the proof of
Proposition 4.7 (i),

lim (1, RE ¥y = rH(x,y), (7.11)
r1,r240
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for m x m-ae. (x,y) € B(S — 1) x B(S — 1). Here we let RPpu(x) =
f Cr(i) (x,z)u(dz), x € C. Consider the function on C defined by xzy (z) =
1F(Z)R(+)(1FRg/Ly ""2)(z), z € C. Since RS u¥"2(z) is bounded in z € F and r, by Lemma
4.6 (i) and R™ is a bounded linear operator on L°°(F'; mF), there exists a constant M > 0
such that for any z € C, r, € (0, n/8),

xi’ "2 (z) < M, Réxi}"(z) = / r&(z, w)xiy > (W)ym(dw) = Hp(R®xi}"?)(z) < M.
F
(7.12)
In view of definition, we have the identity R“P u¥"2 = R&xi%"?. Accordingly, as in the

previous proof of Eq. 7.5, we can decompose {u*’1, R Y2} as
t

(e, R by = f (X, PEXIY)ds + (WM PE Levgs-172) - RExiY™)
0

H(uX", (PE = P)(1ps—1/2) RExiL™))

(", Pr(1ps—1/2) RExi%T™)).
For any ¢ > 0, we can take # such that the first term of the righthand side is less than ¢
for any ¢ € (0, 1) as Eq. 7.6 because of dist(F, B(x,r1)) > 1/2 and the bound Eq. 7.12.
Because also of the bound Eq. 7.12, we can take #; such that the second term is less than &
for any ¢ € (0, t1) as Eq. 7.7. Further, as Eq. 7.9, we may suppose that the third term is less
than ¢ for all r < ¢;.

Since sup{|p;(z, w) — p;(x,w)| :z € B(x,r1),we B(S—-1/2)} - 0asr; — 0,
lim, o (*", Pi(1ps—1/2 Réxi}"?)) = Pi(1ps—1/2Réxi}"?)(x) uniformly in r, <
n/8. Put hf (w) = lp(w)lé(Jr)Rg(l B(s—12) P+ (-, X))(W). Since h} vanishes outside of F, we
can see as before that R84} (w) is continuous on B(S — 1) and consequently

limo P,(lB(S_l/z)RgXl+ )(x) = 11m (u¥ "2, Rgh?) = Rgh;((y).
n—

Therefore, as Eq. 7.10, limsup,, ,, o [{1*"", RH');LY”Z) — R8h¥(y)| < 3eforanyt <1t.
As RER¥(y) = R (1ps—1/2)pi (- X)) (¥) = Pr(Ips—172) - r™P ¢, y)(x), and r P (. y)
is M8-excessive and finite g.e., we obtain similarly to the above proof of Eq. 7.5, that
lim; 0 REA}(y) = r(x, y) forq.e.x € B(S—1) foreachy € B(S—1), and consequently,
the validity of Eq. 7.11 for R™ and r*). In the same way Eq. 7.11 for R©) and ) is
valid.
It remains to prove

lim (™™, Qu¥"?) = q(x,y), (7.13)
r1,r2l0

form x m-a.e. (x,y) € B(S—1) x B(S — 1). Here g(x, y) is the first term of the righthand
side of Eq. 7.4 and Qu(x) = f cd X, 2)u(z),z € C. But this can be shown in exactly the
same way as the proof of Eq. 7.11 using 1z (z) RS u¥"2(z) in place of xz "2 (2).

Appendix: Proof of Proposition 5.4
Assume that (a;;(x)) is a family of C ! functions on C with Hélder continuous derivative

satisfying Eq. 1.3. Let b;(x) = le j=10a;j(x)/dx; and L be the infinitesimal generator
corresponding to the form a:

2 d ou 2 ou
Lu(x) = Zi’jzla—xl’ (ai,-(x)axj) =D M Z b5
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Let us fix an open disk G containing B(S + 1). A function I'(x, y) is said to be a fun-
damental solution of L on G if it satisfies —LI'(x,y) = 8(x — y) weakly, that is, for all
ueCclG),

fGZizj:Iaij(x)au(’_‘) de = u(y), VyeG. (7.14)

For any fixedy € G, let Lou(x) = Zl j=1ij (y) 3x M . Then I'p(x, y) defined by Eq. 5.19 is
a fundamental solution of Lo on G. We shall briefly descrlbe a construction of a fundamental
solution of L from the parametrix I'g(x, y) as is stated in [11, §5.6] under the condition that
the coefficients of L are Holder continuous.

Since a;; € C,l (G), the function ko(x,y) = (L — Lo)T9(x, y) satisfies, for some constant
Ki > 0, ko, y)| < Ki/Ix —yl, ¥x,y € G. Define k" (x,y) by ko’ (x,¥) = ko(x, y)
and k§V (x, y) = [ skox, Dk{" ™" (2, y)dz. Then |k§” (x, y)| < K2 log(1/|x — y|) + K3 and
|k((]3) (X, y)| < K4 for some constants K>, K3 and K4. Put Ké")f(x) = ka(()n)(x, y) f (y)dy.

A fundamental solution I'(x, y) of L on G can be constructed by

F(x.y) =To(x.y) + / _Tox. )@ ydz+ 3B () (1.15)

for suitable continuous functions ®(x, y), «;(x) and B;(y). In order to make I' to satisfy
—LT(x,y) = 8(x—y), P(x,y) needs to be a solution of the following Fredholm integral
equation.

o0y =k + [ b 0@z + Y LBy, (16

Note that k(()") (x, y) is continuous on G for any n > 3. Let us take a continuous function
4 6 3 4 5
2 y) = ko (%, ¥) + kG % ¥) + k7 3) + D (KeY + K + K (La)0Bi ().

Here o; = B; = O for all / if A = 1 is not an eigenvalue of the dual operator (Ka‘)(3) on
Ch(G) of Ky defined by (K)® f(x) = [ () (x, y) £ (v)dy with k5 (x, ¥) = ko(y, %),
while, if A = 1 is an eigenvalue, then «;, B; are chosen to satisfy (g(-, y), ¥ j) = 0 for all
eigenfunctions {y;} corresponding to the eigenvalue A = 1 of (KS‘)(3). Then the Fredholm
equation w(x,y) = K(g3)w(x, y) + g(x,y) has a unique continuous solution w(x,y) for
any y € G. Using this solution, the unique solution of Eq. 7.16 is given by ®(x,y) =
ko(x,y) + k(()z) x,y)+ k(()3) (x,y) + w(x, y). We notice that, according to the construction of
I" from I'g by Eq. 7.15,

I'(y,z) — T'g(y, z)is bounded in (y, z) € G x G. (7.17)

We now proceed to a proof of Eq. 4.19 with k = A/A. Forx € B(S —1) and 0 <
5r <t < 1/3, let u*" be the equilibrium measure for B(x, r) relative to the admissible set
F = B(S 4 1)\ B(S) for the Dirichlet form a on H L(C). We first show that the logarithmic
potential

1 1 -
Up*'(y) = /log y lu"” (dz), y € C,
—z
of u®7” has the properties
(WX, UpXy <00 and Up® € L2 (C). (7.18)

Since u*” is a measure of 0-order finite energy for the perturbed form a8 ofaby g = 1,
so it is for the perturbed Dirichlet integral (1/2)D(u, u) + (u, u)g.
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Denote by M the planar Brownian ,motion. RS (x,y) and RC\F (x,y) denote the O-Qrder
resolvent density of the subproces of M by exp[— |’ 6 Ir(Xy)ds] and that of the part of M on

the set C \ F, respectively. Then RO\F x,y) < RS (X, y) so that
(", RO ") < (7, R$ ™) <00, and RV u*" € Hy ,(C\ F) CBL(C) C L, (C).

loc

According to the fundamental identity of the logarithmic potential (cf. [13, (2.13)]),
Up*(y) = ROV 1™ (y) + Hr U™ (y) — Wr(y),  y€C,
which readily implies Eq. 7.18.
Define Cu®" (y) = [T'(y, z)u*"(dz), y € C.Tou™" is defined similarly. Since I'g(x, y)
is bounded by Kslog(1/|x — y|) + K¢ for some constants K5 and K¢, we have Tou®" €
L? (C) by Eq. 7.18. By Eq. 7.17, this also holds for I" in place of I'.

loc

Put A™! (y) = (a¥ (y)). Since the weak derivative VI ou®" is given by

1 ANy (w—y)
¢ (det(A~T (N2 1w — ) A~ (y)(w —y)

VIou®" (w) = / w"(dy),

we get

IA

X,r 2 1 X,r X,r
f [VTou™" (w)|“dw K7///7dwu Tdy)u™' (dz)
G [w—yllw —z|

1
< Ky [ [ 1og >ty @ + K.
y—1z
which is finite by Eq. 7.18. Consequently I'ou®" € BL(G). By Eq. 7.15, ' u®" also belongs
to the space BL(G). Since the disk G is an extendable domain for BL-functions ([18]), there
exists W € BL(C) such that W| . = [u™".
In what follows, we let T = S — 1/4. By virtue of Lemma 3.8, it holds that

A

ﬁﬂx,r _ H(C\B(T)ﬁﬂx'r — RB(T)Mx,r qe.
Further, if we let F, g(ry = {u € BL(C) : ' = 0q.e. on C \ B(T)}, then
REBD X" e F, pry, and a(RBD > vy = (u*", %), Vv € Fo (1)

Define ‘I/B(T)(y) = \I’(y) — H(C\B(T)\I/(Y)»y e C.As V¥ ¢ BL((C), “IIB(T) S ]:e,B(T)
and Hc\p(ryV is a-harmonic on B(T), namely, a(Hc\ ) ¥, v) = 0, Yv € F, p(1). Since
W equals I'u®" on G and I' is a fundamental solution of L on G, we have a(Wg(r), v) =
(U*", v),Vv € ]—'e,B(T)ﬂCC(B(T)). Therefore a(RB(T),LLX’r—\IJB(T), RB(T)/,LX’r—\IJB(T)) =
0, which in turn implies

Ru™ (y) — T (y) = HaB(T)R\MX'r(Y) — Hyp '™’ (y), forae.y € B(T) \ B(x, r),

(7.19)
where Ru*" is a version of Ru®" introduced in Lemma 4.4.
By Lemma 4.6,
sup sup |HypryR™" (y)| < sup sup |Ru™" (z)]
yeB(T) xe B(S—1),0<r<1/8 2€dB(T) x€B(S—1),0<r<1/8

=: {1 < oo.
By Eq. 7.15, I'(y, z) is jointly continuous on G x G off the diagonal set, and consequently
sup sup |Hypry T ™" (Y] < sup IT(y, 2)| =: €2 < o0.
yeB(T) xeB(S—1),0<r<1/8 yedB(T),zeB(S—1/2)
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Therefore, it follows from Eq. 7.19 and Lemma 4.4 that

sup sup RN (y) = T ()] < €1+ £ < oo
xeB(S—1),0<r<1/8 yeB(T)\B(x,r)

By taking Eq. 7.17 into account, it holds further that I'u*" (y) — Tou™” (y) is bounded
uniformly inx € B(S—1)and 0 <r < 1/2.
Hence, there exists a constant Kg such that, forx € B(S — 1) and 0 < 4r <t < 1/2,

max {ﬁux’r(y) 1y € 0B(x, t)} < max {Foux”(y) 1y € 0B(x, t)} + Ko
A A

< — max {/ log 72,ux’r(dz) 1y € 0B(x, t)} + Ko.
b4 Bxr) |y—zl

Since (3/4)t < |y —z| < (5/4)t forany y € 0B(x, ) and z € d B(X, r), the last expression
in the above display is dominated by

A 25A r
— min log P re— (dz) :y € 0B(x,1); + Ko.
b4 Bxr)  Oly—1z|

A o [A A <r
< —min{ — log " (dz) :y € 0B(x,1)
A 7J Bxr) 1Y —2Zl

A
+—(og(25A/9) —logi) + K9
T

IA

é . X,r .
; min{Cou™"(y) : y € 0B(x, 1)} + K10

IA

A _~
- min{Ru™*"(y) :y € 0B(x, 1)} + K9 + K19

for K19o = K9 + (A/m)(log(25A/9) — log A). Therefore Eq. 4.19 holds for k = A/A and
Cy = K9+ Kjp.
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