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Abstract

Let (E, H, 1) be an abstract Wiener space and H be the class of functions p € L} (E; )
satisfying the ray Hamza condition in every direction £ € E*. For p € H, the closure (€7, F7)
of the symmetric form

EP(u,v) = /E<Vu(z),Vv(z)>H p(2) u(dz), wu,v € FOL.

is a quasi-regular Dirichlet form on L2(F, pdu), (F = Supp[ppu]), yielding an associated
diffusion M” = (X4, P,) on F' called a distorted Ornstein Uhlenbeck process. A function p on
E is called a BV function (p € BV (E) in notation) if p € U,~1 LP(E; 1) and

V(p) = sup [ v Gtz
Ge(FCH = Ga(x)<1/E

is finite. For p € HN BV (E), there exist a positive finite measure || Dpl|| on F' and a weakly
measurable function o, : F' — H such that |o,(2)||g =1 || Dp|-a.e. and

| v G@pen) = [ (G0, ulDold:), V6 € (FCe-.
P F

Further, the sample path of M admits an expression as a sum of E-valued CAF’s:

t t
X, —Xo=W, — 1/ Xods + 1/ 0, (X,)dLIPPl

2 Jo 2 Jo
where W, is an E-valued Brownian motion and LIUDP I'is a PCAF of M with Revuz measure
IDpl|. A measurable set I' C F is called Caccioppoliif Ir € BV (E). In this case, the support
of the measure ||DIp|| is concentrated in OI' and the above equations reduce to the Gauss
formula and the Skorohod equation for the modified reflecting Ornstein Uhlenbeck process
respectively. A related coarea formula is also presented.

*Department of Mathematics, Faculty of Engineering, Kansai University, Suita, Osaka 564-8680, Japan



1 Introduction

The reflecting Brownian motion for a bounded domain D C R% is by definition a symmetric
conservative diffusion process M = (X4, P,) on a compactification D* of D such that its Dirichlet
form (€, F) on L?(D*) = L?(D) is regular and given by

1
E(u,v) = 2/ Vu(z) - Vo(z)de F = HY(D). (1.1)
D
The first construction of such process goes back to [Fu 67]. By the decomposition theorem of
additive functionals formulated in [Fu 80], the sample path of M admits an expression
Xy —Xo=B+ N,

where B, is a d-dimensional Brownian motion and each component of N, is a CAF of zero energy.

Dealing with a reflecting Brownian motion on a Lipschitz domain D (in this case D* = D),
Bass and Hsu [BaHs 90] observed that a semimartingale criteria in [Fu 80] combined with the
Gauss formula

/ div v dx = —/ v-n(z)S(dz) wve CY(RY RY) (1.2)
D oD
leads us to a Skorohod type expression
1 t
Ny = 2/ n(Xs)dLs, (13)
0

by means of a positive continuous additive functional L, of M with Revuz measure being the
surface measure S. Chen, Fitzsimmons and Williams [CFW 93] then treated a general bounded
domain D and proved that the expression (1.3) holds if and only if D is strong Caccioppoli
and in this case L corresponds to a surface measure S on D* \ D appearing in the generalized
Gauss formula. Here a semimartingale criteria in [Fu 80] was considerably improved in that
the smoothness requirement for S was removed by showing that the smoothness is rather a
consequence of the validity of the Gauss formula.

In author’s recent paper [Fu 99al, this sort of improvements of the semimartingale character-
izations of the additive functionals are thoroughly extended to a general quasi-regular Dirichlet
form setting and applied to establishing stochastic characterizations of BV functions and Cac-
cioppoli sets on R? in terms of distorted Brownian motions and modified reflecting Brownian
motions. If a non-negative function p € Llloc(Rd) satisfies the Hamza type condition, then the
form

EP(u,v) = % . Vu(z) - Vo(z) p(z) dz u,v € C(R?) (1.4)
is closable on L?(R%; pdx) and the closure is a regular local Dirichlet form on L?(F; pdz) where
F' is the support of the measure pdx. The associated diffusion process on F' is called a distorted
Brownian motion. The modified reflecting Brownian motion corresponds to the case where
p(z) = Ip(x). In this case, the Dirichlet space P could be a proper subspace of the Sobolev

space H'(D) and hence the term ‘modified’ is added.



In the present paper, we shall apply the general theory in [Fu 99a] to the typical infinite
dimensional situation, namely, the abstract Wiener space setting (F, H,u). Here the coun-
terparts of the form (1.4) have been intensively studied under the name of classical Dirichlet
forms by Albeverio, Réckner, Ma and Schmuland, and their basic properties such as closability,
quasi-regularity, association of diffusions etc. are well understood ([AR 90], [MR 92], [RS 92]).
Furthermore we have here a counterpart of —div the dual V* of the H-derivative V well utilized
in the Malliavin calculus ([M 97], [IW 89]):

/ VG (2)p(2)ldz) = / (G(2),Vo(2)) i wldz), G € (FCy)ps, p € FCy.
E E

Thus we can extend some basic notions and relations in the geometric measure theory ( [Fe 69],
[G 84], [EG 92]) together with their stochastic contents to this infinite dimensional situation.

2 Classical Dirichlet forms and distorted Ornstein Uhlenbeck
processes
Let (E, H, 1) be an abstract Wiener space. By definition, F is a separable Banach space, H is a

separable Hilbert space densely and continuously embedded into B and p is a Gaussian measure
over F satisfying

(2 1 «
| On(az) = exol—5 A1), e B (2.1)

By the identification H* = H, E* is viewed as a dense linear subspace of H so that ¢(z) = (¢, z) g
whenever ¢ € E*,z € H, where (-, ) denotes the H-inner product. We let

FCy ={u:u(2) = f(l1(2),£2(2),++ ,m(2)), 2 € B, l1,la,-++ by € E*, f € CHR™)}. (2.2)
We denote by Vu the H-derivative of u € F Cg, namely, it is a map from E to H such that
<VU(Z),€>H = 8@“(2)7 NS E*7

where 9pu(z) is the derivative of u at z in direction ¢, so that, for u expressed as in (2.2)

m

Opu(z) =Y 0;f(1(2), - () (45, O) -

J=1

For p > 1, LP(E; 1) denotes the space of u-measurable real valued functions u on E such that
|ulP is p-integrable. L% (E; ) denotes the set of all non-negative elements in LP(E; ). We now
introduce a important subfamily of L} (E; p).

A non-negative measurable function h(s) on R! is said to possess Hamza property if h(s) =
0 ds-a.e. on the closed set R! — R(h) where

T+e 1
= R!: — 3 .
R(h) {se /:C_E h(s)ds<oo e>0}



We say that a function p € L}r(E; w) satisfies ray Hamza condition in direction £ € E* (p € Hy
in notation) if there exists a non-negative function p such that

p=pp—ae. p(z+ st) has Hamza property in s € Rt for each z € E. (2.3)

We set
H = Nyep~Hy.

A function in the family H is simply said to satisty ray Hamza condition.

The Hamza property for a function on R! is quite mild; any non-negative lower semicon-
tinuous function has this property. Thus any ray lower semicontinuous function p € L}r(E; 1)
defined in an analogous manner to the above belongs to the family H. If p € L#(E; W) is ray
lower semicontinuous, the indicator function Ig, of the level set of the type

E,={z€ E:p(z) >t}

is also in H for each ¢ > 0. The indicator function It of any open set I' C F is in H.

The notion of ray absolute continuity was first introduced in [K 82]. We denote by D"P(E), r >
0, p > 1 the Sobolev spaces over the abstract Wiener space (E, H, p) (IW 89], [W 84]). The
family of non-negative functions in the respective space will be designated by adding the sub-
script +. It is known that any function in DYP(E), p > 1, is ray absolutely continuous [Su 85].
Furthermore, any function in D"P(E), % < r < 1, is ray Holder continuous [RR|. Therefore we
have the inclusion

1
DP(E) C H, ) <r<1l,p>1. (2.4)

H also contains the indicator functions of level sets of functions in the above spaces.
For each p € H, we let

EP(u,v) = ;/jg(Vu(z),Vv(z»H p(2) p(dz), wu,v, FCL. (2.5)

Owing to the work [AR 90], we know that £” with domain FC} is a well defined and closable
symmetric form on L2(E;p - p). Its closure is denoted by (€7, F?). This is a special case of the
classical Dirichlet forms studied in [AR 90]. We let

F = Supp|p - ], (2.6)

namely, F' is the smallest closed subset of E such that [ B\F p(2)u(dz) = 0.

Theorem 2.1 Let p € H. (EP, FP) is then a quasi-regular local Dirichlet form on L*(F;p - p).

Proof. This has been proved in [MR 92, IV,4b] under the assumption that F' = E. The proof
works without this assumption (see [RS 92| for the proof of capacitary tightness without this
assumption). Thus (€7, F*) is a quasi-regular local Dirichlet form on L?(E; p- ). Since Fr = F
however, E \ F' is an open £-exceptional set according to the definition. Hence we can restrict
the underlying space E to F' without violating the quasi-regularity and the locality of (€7, FP).
O



By fixing a function p € H, let us state some relevant stochastic contents. By virtue of
Theorem 2.1 and [MR 92] (see also [Fu 99a]), there exists a diffusion process M” = (X4, P,) on
F associated with the Dirichlet form (£°, F*). MP? will be called a distorted Ornstein-Uhlenbeck
process. The reason of this naming will be clearer in the next section. Since constant functions
are in F” and £P(1,1) = 0, M” is recurrent and conservative.

The totality of positive continuous additive functionals (PCAF’s) of MP” is denoted by A™*.
The space of CAF’s of bounded variation can be identified with the class

A=At A" (2.7)

For A € A, its total variation process is denoted by {A}, which is an element of AT. We will
be concerned with a subclass of A defined by

Ag={A€A:E,,({A}) <oo, Vt>O0} (2.8)

By the Revuz correspondence, the family AT is in one to one correpondence with the family
ST of positive (£P-)smooth measures on F (see [Fu 99a]). Accordingly A is in one to one
correspondence with S = ST — S*. The element of S is called a smooth signed measure and
particularly it charges no set of zero £f-capacity. The element of A corresponding to v € S will
be denoted by A".

Notice that, for each ¢ € E*, the function u(z) = ¢(z) belongs to the Dirichlet space F* and

EP(L(),v) = ;/Eagv(x)p(z)d,u(z) Vv € FCL. (2.9)

On the other hand, the composite AF ¢(X;) — ¢(X() of M? admits a decomposition into a
sum of a martingale AF of finite energy and CAF of zero energy ([Fu 99a]). Let us write the

decomposition as follows:
U(Xy) — €(Xo) = M{ + Nf. (2.10)

Now, for p € L*(E; ) and £ € E*, we say that p is of bounded variation in direction ¢
( p € BVy(E) in notation) if

/Eagv(z)p(z)du(z) < C|v)loo, Vv € FCL. (2.11)

For some positive constant C.
On account of the above observations, we can use [Fu 99a, Th. 6.2] or its slight modification
[Fu 99b, Th. Th. 2.2] in getting the following:

Theorem 2.2 Let p € H and ¢ € E*.

1. The next three conditions are equivalent each other:

(1) Nt € Ay.

(it) p € BVI(E).

(iii) There exists a finite signed measure vy on F such that

EP(L(-),v) = —/Fv(z)l/g(dz) v € FCy. (2.12)
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In this case, vy is automatically smooth, the equation (2.12) extends to any EP-quasicontinuous
function v € ]:bp and
Nt = A", (2.13)

2. Mt is a martingale AF with the quadratic variation process

(MY = t||||g, t>0. (2.14)

Note that, in view of the expression (2.9), the energy measure py of £(2) € F* equals
||| zp(2) - pt, from which follows the second statement of the theorem ([Fu 99a]).

In the rest of this section, we shall present some explicit description of the Dirichlet form
(&P, FP) for p € H, which will be utilized in §4.
First of all, we fix £ € E* with ||¢||gz = 1 and we set

Hy={sl:scR'}(C H), E,=HGcH,,

where the closure is taken in the Banach space E. We have then the direct sum decomposition
E = H;® E, given by

z=sl+x, z€FE, s=Iz2), z=z—L2)L.

Let 7 be the projection onto the space Ey and py be the image measure of pu by m: puy = mpu.
Then we see ([Shi 80]) for any non-negative measurable function F'(z) that

/EF(z)u(dz) = /Eg /]Rl F(sl+ x)p(s)dspe(dz), (2.15)

2
where p(s) = \/% exp(—%).
By Fubini’s theorem, we see that p € Hy if and only if there exists a Borel set N C Ey with
we(N) = 0 such that
p(sf + x) has the Hamza property in s € R

for each x € Ey\ N. By redefining p(s¢ + z) =0, ¥(z,s) € N x R, we can and we shall assume
that any p € Hy enjoys the above property for every z € F,. With each p € Hjy, we now associate
a symmetric form (£7¢, F7*) defined by

2
= {uELQ(E'pd,u)'E!ﬂ:upd,u—ae
u(sf + x) is absolutely continuous in s on R(p(-¢ 4+ x)) for each z € E;
and / / <du (st+ x)) p(sl + z)p(s)dspe(dr) < oo }, (2.16)
E, (-4+2)) ds
EP(u,v)
dv .
/ / sl +x) di(st+x) p(sl + 2)p(s)dspe(dz), u,v e FPE (2.17)
E, (-b+x)) ds ds

By virtue of [AR 90, Th.3.10], we then have



Proposition 2.1 For p € H, the Dirichlet form (£°, FP) of Theorem 2.1 enjoys the following
properties:

fﬂ C mgeE* ﬁp,g’ (218)

For each choice of H-c.o.n.s. {{;}j=1,,.. C E¥,

o0
EP(u,v) = ZSMJ’ (u,v), u,veFP. (2.19)
j=1

Remark 2.1 [AR 90, Th.3.2] can be read in the present case as follows: For p € L}r(E; i), the
form

1
P (u,v) = 2/ Opu dgvdy,  u,v € FOL, (2.20)
E

is a well defined and closable symmetric form on L?(E; pp) if and only if p € Hy. In this case, the
form (£P%, FP*) defined as above is closed on L?(E; pu) and is an extension of the form (2.20).

Under the assumption that p € Hy, [AR 90] gave a condition for u € L?(E; pdp) to be in the
space P! in an apparently weaker way than (2.16) as follows:

for py—a.efixed z € Ey, Ju(x,s) = u(x + sf) ds—a.e.on R(p(-£ + x))

u(x, s) is absolutely continuous in s on R(p(-£ + x))
- 2
and / (du(:v,s)) p(sl + z)p(s)ds € LY (Eg; ). (2.21)
Rp(t+a) \ 08

Actually this condition is equivalent to the one in (2.16). Indeed, suppose u satisfies condition
(2.21). Take a Borel exceptional set N C Ej for u and let

I'={(z,s):x€ Ey— N, s€ R(p(-L+x))}, v(x,s)=1u(z,s)Ip(z,s).

Then I' is measurable set of E, x R and

e
==

ko[t ko[t
v(z,s) = lim — w(x, t)dt - Ir(z,s) = lim — u(z + tl)dt - Ir(z, s).

k—oo 2 g— 1 k—oo 2 g—1

By the last expression of the above identity, we see that v(z,s) is jointly measurable in (z, s).
We can then readily see that the function defined by

w(z) =v(z — ()L, 4(2))

satisfies condition (2.16).



3 BV functions and distorted Ornstein Uhlenbeck processes

We continue to work with the abstract Wiener space (E, H, ). Let us introduce a family of
E*-valued functions on E by

(FC ) ={G:G(2) =Y gij(2)t;, g; € FCy, L; € E*}. (3.1)
7j=1

Denote by V* the dual of the H-derivative V ([IW 89]): V* is a linear map from (FC})pg~ to
FC} such that

/E V*G(2)pl2)u(dz) = /E (G(2). Vo)) muldz), G € (FCL)p-, pe FCL. (3.2)

V* is an infinite dimensional variant of —div. The formula (3.2) is exhibited in [IW 89, (8.23)]
holding for G in the space of smooth functionals S but it can be readily seen to hold for G € F Cg.
For p € Ups1LP(E; ), we put

Ge(FC ) p=|IGlu(x)<1/E

A function p on FE is said to be of bounded variation (p € BV (E) in notation) if p € Ups1 LP(E; 1)
and V (p) is finite.
Theorem 3.1 (i) BV(E) C Ngep~BVy(E).

(ii) Suppose p € H. If p € BV (E), then there exist a positive finite measure |Dp|| on E and
a weakly measurable function o, : E — H such that ||o,(2)||lg = 1 ||Dpl|-a.e. and the next
equation holds:

| v GEnemn = [[(GEomlDold). Ve e (FChe.  (34)
Further, ||Dp|| is £°-smooth in the sense that it charges no set of zero E -capacity. The domain
of integration E in the both hand sides of (3.4) can be replaced by F' the support of pp.

(iii) Conversely, if the equation (3.4) holds for p € Ups1LP(E; 1) and for some positive finite
measure ||Dpl|| and a function o, with the stated property, then p € BV (E) and V (p) = ||Dpl|(E).

(iv) Up=1DYP(E) € BV(E)NH and, for p € Up=1DYP(E),

1
| Dpll = [IVplla - 1, V(P)_/EHVPHH p(dz), Up(Z):WVP(Z) 19 o) >0y (2)-

Proof. (i) Assume p € BV(E). Then p € LP(E; u) for some p > 1. Take G € (FC})p+ of the
type
G(z)=gx)t geFCL, LeE" |l|g=1. (3.5)



We have then
V*G(z) = —0g+ g - U(2)

by definition ([IW 89], [W 84]). Accordingly,

[ owatz —- [ve udz) + [, (30
For any g € FC} satisfying |g(z)| < 1, the right hand side is not greater than
1 1
Vip) + I6C)lzallpllze < oo ST b

and hence supge a1 |4(2)|<1 S5 0eg(2)p(2)pu(dz) is dominated by the same value, namely, p €
BV(E).

(ii) Suppose p € HN BV (E). By (i) and Thoerem 2.2, there exists, for each ¢ € E*, a finite
signed measure vy on E for which the equation (2.12) holds. We let

Dep = 2vp + U(2) p(z) p (3.7)

In view of (3.6), we have, for any G of the type (3.5), the relation

9766 p2) ) = [ o(e) Dol (3.8)
E
from which follows
VDw)E) = sup [ 9() Dipldz) < Vo), (39)
lg|<1/E
where V(Dyp) denotes the total variation measure of the signed measure Dyp.
Next, choose any H-c.o.n.s. £1,02, -+ £y, --- € E* and let
o dDyp(z)
W= 27 V(Dyp),  wila) =L =120 (3.10)
Vp(2)

=1

7, is a positive finite measure (7,(E) < V(p)) charging no set of zero &f capacity and v; can be
taken to be Borel measurable. We have then, for any

Zgy )l € (FCy)pe, n=1,2---, (3.11)
the equation
[ 97Guta) 0l i) = > [ 911 0y(2) 2tz (3.12)

Since |vj(z)] <27, j=1,2,---, and FC} is dense in L*(E;~,) (MR 92, §I1.3]), we can find
Vjim 6]-'6’&, j=1,---.,n, m=1,2,--- such that

W}gnoovjm( z) =v(z) vp—ae.



Substituting

_ vjm(2) , (3.13)
Vo tkn(2)2 + £
for gj(z) in (3.11) and (3.12), we get a bound

gjm(2)

because ||Gy,(2)[|% = >y gjm(2)? < 1. By letting m — oo, we arrive at a uniform bound in n

Now we let
| Dpl| = vj(2)? - (3.14)
o _wl@ oy g 3 2> 0
o(2) = 2 e e 1 2 o?) (3.15)
0 otherwise
Then,
[Dpll(E) < V(p), lo()|le = 1 [[Dpl-ae., (3.16)

| Dp|| is £P-smooth and o is weakly measurable in the sense that (¢, 0(z)) is measurable in z € E.
By rewriting the right hand side of (3.12), we further see that the desired equation (3.4) holds
for G = G,, expressible as (3.11) for the chosen c.o.n.s. {{;}.

It remains to prove (3.4) for any G of the type (3.5). In view of (3.6), the equation (3.4)
then reads

_ / Bug(2) plz) pldz) + / 9(2)0(2)p(2)u(dz) = / o(2)(l o () Dpl(dz).  (3.17)
E E

E

We put
k=Y (L)l Gu(2) = g(2)kn.
j=1

It holds then that

because
0k, 9(2) — Opg(2)| = [(kn — £,V g(2))u| < |[kn — Ll IVg(2)|lm,

and ||[Vg(z)||z is bounded. Further
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|/Eg(Z)kn(Z)p(Z)M(dZ)—/Eg(Z)f(Z)p(Z)u(dZ)l < Cullpllzel[kn() = €0l e = Callpllrlkn — €,

where C1, Cy are positive constants and % + % =1 for p > 1 with p € LP(E; p).
Therefore, using (3.6) again, the left hand side of (3.17) is seen to coincide with

lim [ V*G,(2) p p(dz).
E

n—o0

Since (3.4) is already proved for G,,, the above expression equals

lim [ g(z) (kn,0(2))m | Dpll(dz) = /EQ(Z) (¢,0(2))m || Dpl|(dz)

n—oo E

the right hand side of (3.17).

(iii) Suppose p € Ups1LP(E; 1) satisfies the equation (3.4) for some positive finite measure || Dpl|
and a function o, with the property stated in the paragraph preceding (3.4). Clearly

V(p) <[IDpl|(E)
and p € BV (E). To obtain the converse inequality, choose any H-c.o.n.s. {{;} from E* and set
oj(2) = {lj;o(2))g G =1,2,---.
Fix an arbitrary n. As in the proof of (ii), we can find functions
vim € FCp, m=1,2,---, with W%iinoovjvm(z) =0j(z) |Dp|l-ae. j=1,--- ,n.

Define then g;,(2) by (3.13) and substitute Gnm(2) = >27_ gj,m(2)¢; for G(2) in (3.4) yielding

- @ @10 < Vo)

By letting m — oo, we get
1
n 2
[Xa@] 1D <v.
T2
We finally let n — oo to obtain || Dpl|(E) < V(p).
(iv) Obviously the duality relation (3.2) extends to p € Up>1D'P(E). By defining || Dpl|| and o(2)

in the stated way, the extended relation (3.2) is reduced to equation (3.4).
O
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In the rest of this section, let us fix p € HN BV (F) and consider the conservative diffusion
process
M? = (Q7 M7 {Mt}7 0157 Xt7 Pz)

over ' C E associated with the classical Dirichlet form (€7, F”) of Theorem 2.1. M is called the
distorted Ornstein Uhlenbeck process associated with p and its state space F is the topological
support of pu. Without loss of generality, we may assume that the sample path

Xt(W) — F

is continuous in t € [0, 00) for each w € 2. We now present a semimartingale decomposition of
M which legitimates the use of the term ‘distorted Ornstein Uhlenbeck process’.

Recall that the notion of a (real valued) additive functional (AF in abbreviation) of M”
involves a defining set A € M, and an exceptional set N C F with

0,(A) C A, P, (A)=1Vze F\N.

N is a properly exceptional set of M and for each w € A the AF is required to satisfy due
porperties ([Fu 99a]). The notion of E-valued continuous additive functional can be defined in
the same way.
A mapping
Ai(w) :[0,00) x Q — E

is called an E-valued CAF of MP if
0(Ay(w)) is My-measurable for each ¢ > 0 and each ¢ € E*,
there exist a defining set A and exceptional set N as above and, for each w € A,

Ap(w) =0, A¢(w) is continuous in ¢ € [0,00) and

Apys(w) = Ay(w) + As(Ow), t,s > 0.
Two E-valued CAF’s A® A® are regarded to be equivalent if
for each t > 0, PZ(Agl) = A?)) =1 &P—qezeF.
In this case, we can find a common defining set A and exceptional set IV such that Agl) = A§2)
for any t > 0, w € A. For any E-valued CAF A;(w), ¢(A¢(w)) is obviously a real valued CAF

with the same defining set and exceptional set.
Simple examples of F-valued CAF’s with full defining set €2 and with no exceptional set are

t
A(w) = Xy(w) — Xp(w), A(w) = /0 Xs(w)ds (Riemann integral).

Consider next a function
7T:F—H
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such that 7 is H-bounded and weakly measurable in the sense that sup,cp ||7(2)||# is finite and
(¢, 7(2))p is Borel measurable for any ¢ € H* = H. Then 7 is, as a mapping from E into itself,
also E-bounded and weakly measurable. Therefore the composite process 7(X¢(w)) enjoys the
same property as a mapping from [0, 00) to E for each fixed w € Q.

Let L¢(w) be a real valued PCAF with defining set A and exceptional set N. Then we see
that, for each w € A, 7(X¢(w)) is Bochner integrable in ¢ with respect to dL;(w) and the Bochner
integral (cf. [Y 68])

/t T(Xs(w))dLs(w), t>0, weA
0

becomes an E-valued CAF with the same defining and exceptional sets as L;.
An FE-valued stochastic process Wi(w) is called an {M;}-Brownian motion on E under a
probability measure @ on (2, M) if
W4 is continuous in ¢ > 0 Q-almost surely and,
for each ¢ € E*, {(W;(w)) is M;-measurable and further

EQ (ex/fl(z(wt)—e(ws)”/\/ls) — exp(—%(t —s)|e%), t>s>0.

The second condition above is equivalent to the requirement that the real valued process
¢(Wy) is a one dimensional {M;}-Brownian motion for each ¢ € E* with ||¢|z = 1. Keeping
these notions in mind, let us proceed to a decomposition theorem.

Theorem 3.2 Let p € HNBV(E) and consider the EP-smooth measure || Dpl| and an H-valued
function o, appearing in Theorem 3.1 (ii). Then the sample path of the associated distorted

Ornstein Uhlenbeck process MP admits the following expression as a sum of three E-valued
CAF’s:

Xy(w) - Xo(w) = Wi — ;/;Xs(w)ds + % /Ot o (Xo(w) dLIPPI (@), >0, (3.18)

Here, LLlell(w) is a real valued PCAF associated with ||Dp|| by the Revuz correspondence. The

E-valued CAF Wy has the same defining set and exceptional set as LLIDPH.
Moreover, Wi(w) is an {My}-Brownian motion on E under P, for each EP-smooth probability
measure vy on F.

Proof. Since the left hand side and the last two terms of the right hand side of equation (3.18)
are F-valued CAF as described above, W; can be defined by this equation as an F-valued CAF
with the same defining set and exceptional set as LL'DP I From (3.18) follows a decomposition of

real valued AF
t t
(X)) = 0X0) = (%) = 5 [ eXaas + 5 [ o @)n dr? ). (319)

Let us compare (3.19) with the decomposition (2.10):

E(Xt) — E(X()) = M; + Ny.
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Since (2.9) and (3.17) lead us to the identity

e(t0).) = 5 [ o) — 5 [ @)t IDpl:)

holding for any g € FC}, we have by Theorem 2.2 that

1 [t 1
Nf=—3 / (Xs)ds + 5 / (6, 0(X))m dLlP7. (3.:20)
2 Jo 2 g

Hence we get from (3.19) and (3.20) that
(W,) = M} P,-as. for E-qe. z € F, (3.21)

the £P-exceptional set depending on ¢ in general.

By virtue of Theorem 2.2, ¢/(W;) is a martingale AF with quadratic variation ¢||¢||g P.-a.s.
for £P-q.e. z € F. Owing to the martingale characterization of Brownian motion ([IW 89]),we
see that, for any ¢ € E* with ||¢||z = 1, the real valued process ¢(W) is an {M;}-Brownian
motion under P, for each £-smooth probability measure v on F'. Hence W; is an M;-Brownian
motion on E under P,.

O

4 Caccioppoli sets and modified reflecting Ornstein Uhlenbeck
processes

We still work with the abstract Wiener space (E, H, p1).

Lemma 4.1 (lower semicontinuity) Let p > 1. If p € BV(E) N LP(E;u) is LP(E;u)-
convergent to p € LP(E; u) as k — oo, then

V(p) < liminf V(py).
k—o00
Proof. For any G(z) € (FC}) g~ with ||G||g < 1,

/EV*G(Z)p(Z)M(dZ) = lim | V'G(2)pk(2)u(dz) < liminfV(py).

k—o00 E
O
Lemma 4.2 Let {T;,t > 0} be the Ornstein Uhlenbeck semigroup.
Then for any p € Ups1LP(E; 1),
/ VG () Tip(2)u(dz) = e~ / VTG (2)p(2)u(dz), VG € (FCL) . (4.1)
E E

14



Proof. Tt suffices to prove (4.1) for G = 2?21 gjl; with any polynomials g; and for any
polynomial p. Using (3.2), symmetry of T; and the well known identity ([W 84])

u(Typ) = e "T1(9p),

we see that the left hand side of (4.1) equals

/E<G(2),V(Ttp)(2)>H p(dz) = Z/E 9i(2)0¢;(Typ)(2) p(dz)

=1

- oy [ om0 Entdz) = [ (TG Vo i),

which coincides with the right hand side of (4.1) by virtue of (3.2) again. O

Proposition 4.1 For any p € BV(E) N LP(E;u) (p > 1), there exists a sequence of functions
pr € DYP(E) such that

lim py = pin LP(E;p),  lim V(pg) = V(p).
k—o0 k—o0

Proof. Let {T;,t > 0} be the Ornstein Uhlenbeck semigroup. It is known ([Su 88]) that, for
any p € LP(E;p) for p > 1,

T,peDYP, Typ— pin LP(E;p) t 0.

By Lemma 4.1, we have V(p) < liminf;;o V(Tip). On the other hand, for any G € (FC}) g+ with
|Gl (z) <1, we get from Lemma 4.2,

/ V*G(2)Tup(2)u(dz) = e~ / VHT,0)(2)p()uldz) < eV (p),
E E

which implies
V(Typ) < e 'V(p) and limsupV(Typ) < V(p).

tl0
g
For a function p(z) on E, we consider its level sets defined by
El ={z€ E:p(z) >t} (4.2)
Theorem 4.1 (coarea formula) For any non-negative p € BV (E),
o0
Vip) = /0 V(Igp) dt. (4.3)

15



Proof. V(p) admits an expression as in Theorem 3.1 (iv) when p € DYP(E) for some p > 1. The
identity (4.3) is first proved in this case and then extended to a general p € BV (E) by using the
approximation in Proposition 4.1. Full proof is exactly analogous to the proof of [EG 92, §5.5,
Th. 1] in the finite dimensional case. O

An p-measurable subset I' of E is said to be Caccioppoli if It € BV (E). Theorem 4.1 means
that a.e. level sets of a non-negative BV function are Caccioppoli. In virtue of Thoerem 3.1
(iv), we have

Corollary 4.1 For any p € Up>1]D)fr’p(E),

Iy € HN BV(E) for a.e. t > 0.

Consider now a p-measurable set I' C F satisfying condition
Ir e HN BV (E). (4.4)

Denote the corresponding objects oy, ||DIr|| in Theorem 3.1 (ii) by —np, ||OL'|| respectively.
Then formula (3.4) reads

/ VG(2)u(dz) = - / (G(2).nr) g |00 (d2), ¥G € (FCL)-,
T F

where the domain of integration F' of the right hand side is the support of It - u. F' is contained
in I but we shall further show that the domain of integration of the right hand side can be
restricted to OI'. In doing so, we need to utilize the associated distorted Ornstein Uhlenbeck
process M = (X;, P,) on F , which will be called the modified reflecting Ornstein Uhlenbeck
process for T.

Theorem 4.2 Suppose a p-measurable set I' C E satisfies condition (4.4). Then the support of
||OT|| is contained in the boundary O of T', and accordingly a generalized Gauss formula holds:

/ VG(2)u(dz) = - / (G(2)nr) g OT]|(d2), VG € (FCL)pe. (4.5)
T or

Proof. For any G of the type (3.5), we have from (2.9), (3.6) and (3.8) that

1

e (60)0) — 5 [ 9 == [ 9l2) Defr(do). (16)

Since the finite signed measure DIt charges no set of zero E{F—capacity, the equation (4.6)
readily extends to any £/r-quasicontinuous function g € ]-"bIF.

Denote by I'’ the interior of I'. Then I' ¢ F' C I'. In view of the construction of the measure
|DIr|| in Theorem 3.1, it suffices to show that, for any fixed ¢ € E* with ||¢||g =1,

DyIp(T% = 0. (4.7)

16



Take an arbitrary € > 0 and set
U={2€E:d(z,E\T% > ¢},

V={:2€E:d(z,E\T" > ¢},

where d is the metric distance of the space E. Then U C V and V is a closed set contained in the
open set I'?. By making use of the modified reflecting Ornstein Uhlenbeck process M'T' = (X;, P,)
on F', we define a non-negative bounded function h by

hz)=1—-E, (™) z € F, (4.8)

where 7 denotes the first exit time from the set V. h is in the space ]:bIF and further £r
quasicontinuous because it is M/ finely continuous. Moreover

h(z) >0 Vzel, h(z)=0 Vze F\V. (4.9)
Let
v(dz) = h(z)DIr(dz), (4.10)
and
I, =€t 1) = 5 [ a@hEAE):) (4.11)

Equation (4.6) for £7-quasicontinuous function g - h € ]-"I)IF then leads us to

1
I, = —/ g(z)v(dz), Vg € FC}.
F

2
In order to prove (4.7), it is enough to show that I, = 0 for any function g(z) of z € E of the
type
g(z):f(é(z)v‘€2(z)7 7€m(z))7 62,--- 7‘€m EE*a fEC%(Rm), (412)
because we have then I, = 0 for any g € F Cg, and consequently ¥ = 0 by virtue of the fact that

FC} is a determining class of a finite signed measure ([ST 92]).
On account of Proposition 2.1, we have the expression

0900 =g m = [ [ S g,

where R, = R(Ip(-£ + z)) and h is a p-version of h appearing in the description of (2.16). Let
Ve={sl:sl+zecV}, TV={st:sl+xecT, F,={sl:sl{+zcF}

We then have the inclusion V,, C T C R, C F,. By (4.9), h(s{+z) = 0 for any x € E; and for
any s € R, \ V;. On the other hand, by selecting a Borel set N C Ey with py(IN) = 0, we have
for each x € Ey \ N,

h(st+x) =h(sl +x) ds—a.e.
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Since h(-¢ + x) is absolutely continuous in s, we can conclude that

h(st+z)=0 VexeE/\N, VseR;\V;.

Fix z € Ey \ N and let I be any connected component of the one dimensional open set R,.
Further, for any function g of the type (4.12), we denote by K, the support of g(-¢ + z) and
choose a finite open interval J containing K,. Then I NV, N K, is a closed set contained in a
finite open interval I N J and

(gh)(st+2)=0 Vs (InJ)\(INV,NKy).

Therefore an integration by part gives

/ d(gh)(st + x)p
nJ

ds

(s)ds = /IHJ(glNz)(SE + x)sp(s)ds.

Combining this with (4.11) and (4.13), we arrive at

1 N 1
=3 . / (gh)(ot + aop(s)dspa(d) — [ @ m @ud) =0
O

We say that two p-measurable sets ', T'y are equivalent if u(I'; ©T'9) = 0. Neither condition
(4.4) nor the topological support of Ir - u depends on the choice of a representative from the
same equivalence class, while the topological boundary OI" does depend on the choice. Theorem
4.2 says that, the support of this measure sits in the intersection of JI' for every choice of the
representative I'.

Finally we state Theorem 3.2 for p = Ir.

Theorem 4.3 Suppose a p-measurable set I' satisfies condition (4.4). Then the sample path of
the corresponding modified reflecting Ornstein Uhlenbeck process M'T = (Q, {M;}, X, P.) for T
admits the following expression as a sum of three E-valued CAF’s:

I I
Xu(w) ~ Xolw) = Wi — o / X(w)ds — / nr(Xa(@) LI (W), > 0. (4.14)
0 0
Here, th‘arH(w) is a real valued PCAF associated with ||OT|| by the Revuz correspondence and
enjoys the property

/ t Ior(Xs(w))dLIM (W) = LIV, ¢ > 0. (4.15)
0

The E-valued CAF W, has the same defining set and exceptional set as LLlaFH. Moreover, Wi(w)
is an {M;}-Brownian motion on E under P, for each E _smooth probability measure v on F.
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