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Abstract

Functions of bounded variation (BV functions) are defined on an abstract Wiener
space (E,H, µ) in a way similar to that in finite dimensions. Some characterizations
are given, which justify describing a BV function as a function in L(log L)1/2 with
the first order derivative being an H-valued measure. It is also shown that the
space of BV functions is obtained by a natural extension of the Sobolev space D1,1.
Moreover, some stochastic formulae related to BV functions are investigated.
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1 Introduction

A real valued function ρ defined on an open set U ⊂ Rd is said to be of bounded variation
(ρ ∈ BV (U) in notation) if the distributional derivatives ∂iρ, 1 ≤ i ≤ d, are finite signed
measures on U , or equivalently, if

V (ρ) = sup
{∫

U
ρ divϕ dx

∣∣∣∣ ϕ ∈ C1
0(U ; Rd), ‖ϕ‖∞ ≤ 1

}
< ∞. (1.1)

Thus the space BV (U) is a natural extension of the classical Sobolev space W 1,1(U)
with V (ρ) = ‖∇ρ‖1 and it has played important roles in solving diverse fine variational
problems in finite dimensions ([9, 15, 8, 3]).

In a recent paper [13], the notion of a BV function on an abstract Wiener space
(E,H, µ) was introduced as a function ρ on E for which a quantity analogous to (1.1) is
finite. However, ρ was required to be in

⋃
p>1 Lp(E; µ), excluding the Malliavin Sobolev

space D1,1 from the space BV (E). Furthermore, in order to formulate an analogue to the
Gauss formula holding for ρ and an associated measure ‖Dρ‖ on E, the closability of a
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pre-Dirichlet form Eρ related to ρ was crucially assumed. Then, under the last assumption,
a semimartingale decomposition of the associated distorted Ornstein-Uhlenbeck process
living on the support of ρ dµ was also presented in [13].

A purpose of the present paper is to extend the analytical part of [13] considerably by
requiring a BV function to sit in a broader Orlicz space L(log L)1/2 and by establishing
an associated Green formula without any closability assumption (§3). The space BV (E)
will now contain the Sobolev space D1,1 as a proper subspace and the structures of those
spaces will be characterized in terms of the measures ‖Dρ‖, ρ ∈ BV (E). Moreover, we
shall give in §3 a refinement of a theorem in [13] concerning the support of the measure
‖Dρ‖ by showing that it vanishes outside a quasi support of 1{ρ6=a} · µ for every a ∈ R.

In §4, we shall assume that ρ ∈ BV (E) is non-negative and Eρ is closable. The mar-
tingale part of the associated distorted Ornstein-Uhlenbeck process Mρ = (Xt,Mt, Pz)
will then be shown to be a Brownian motion on E under Pz for quasi-every starting point
z. This fact was proven in [13] only under Pγ for smooth probability measures γ. By
making use of an analogue to the classical Green formula obtained in §3, we shall then
show in §4 a generalized Itô’s formula for Mρ, which has been formulated in [12] in finite
dimensions.

When ρ ∈ BV (E) is an indicator function of a set A, a Green formula (Theorem 3.12)
and a result on the support of ‖Dρ‖ (Theorem 3.15) indicate that ‖Dρ‖ and σρ in the
formula are regarded as a surface measure and a normal vector field of a ‘boundary’ of
A, respectively. Such notions in infinite dimensions have been investigated in various
contexts, such as in [16, 28, 17, 18, 19, 2, 4, 10]. Our approach is based on a theory of
Dirichlet forms and aims at applications to stochastic analysis on sets whose boundaries
do not have good smoothness.

2 Preliminaries

Let (E,H, µ) be an abstract Wiener space. Namely, E is a separable Banach space, H is
a separable Hilbert space densely and continuously embedded in E, and µ is a Gaussian
measure on E which satisfies that∫

E
exp

(√
−1`(z)

)
µ(dz) = exp

(
−‖`‖2

H/2
)
, ` ∈ E∗.

Here, we regard the topological dual E∗ of E as a subspace of H by the natural inclusion
E∗ ⊂ H∗ and the identification H∗ ' H. The inner product and the norm of H is denoted
by 〈·, ·〉 and ‖ · ‖H , respectively. Let for each k ∈ N ∪ {∞},

FCk
b =

{
u : E → R

∣∣∣∣∣ u(z) = f(`1(z), . . . , `m(z)), `1, . . . , `m ∈ E∗, f ∈ Ck
b (Rm)

for some m ∈ N

}
.

For u ∈ FC1
b , the H-derivative of u, denoted by ∇u, is a map from E to H defined by

the relation
〈∇u(z), `〉 = ∂`u(z), ` ∈ E∗ ⊂ H,

where ∂`u(z) = limε→0(u(z + ε`) − u(z))/ε, ` ∈ E∗ ⊂ H ⊂ E.
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For a separable Hilbert space K, a Borel measure ν on a metric space X and p ∈ [1,∞],
Lp(X → K; ν) denotes the usual Lp space consisting of K-valued functions on X. We
shall often omit each symbol X, K and ν if X = E, K = R, and ν = µ, respectively.
Also, Lp

+(ν) denotes the space of all nonnegative functions belonging to Lp(ν). The norm
‖ · ‖p always means Lp(E → K; µ)-norm. For ρ ∈ L1, we define a symmetric bilinear form
Eρ : FC1

b ×FC1
b → R by

Eρ(u, v) =
1

2

∫
E
〈∇u(z),∇v(z)〉ρ(z) µ(dz), u, v ∈ FC1

b .

Eρ can be regarded as a bilinear form on L2(F ρ; |ρ| · µ) where F ρ is a support of |ρ| · µ,
since ∇ has the following consistency property by Proposition 7.1.4 in [6, Chapter I]: if
u ∈ FC1

b and v ∈ FC1
b coincide on a measurable set A, then ∇u = ∇v on A µ-a.e.

In the following, a measurable function on E is also regarded as a function on F ρ by
the natural restriction. The set of all functions ρ ∈ L1

+ such that (Eρ,FC1
b ) is closable

on L2(F ρ; ρ · µ) will be denoted by QR(E). Its closure (Eρ,Fρ) is then automatically a
quasi-regular local Dirichlet form by the results of [22, 25] (see also [13, Theorem 2.1]).
Functions belonging to H defined in [13], especially positive L1-functions bounded away
from 0, are elements of QR(E). We denote by Fρ

b the set of all bounded functions
in Fρ. Following [27, 14], we denote by Fρ

e the extended Dirichlet space of (Eρ,Fρ):
u ∈ Fρ

e if and only if |u| < ∞ ρ · µ-a.e. and there exists a sequence {un} in Fρ such
that Eρ(um − un, um − un) → 0 as n ≥ m → ∞ and un → u ρ · µ-a.e. as n → ∞. For
example, a function `(·) : z ∈ E 7→ `(z) ∈ R belongs to Fρ

e for every ` ∈ E∗. Indeed,
when Φn is a smooth function on R such that 0 ≤ Φ′

n ≤ 1 on R, Φn(x) = x on [−n, n] and
|Φn(x)| = n + 1 on R \ [−n− 2, n + 2], {Φn ◦ `(·)}n∈N is the desired sequence. Eρ extends
to a bilinear form on Fρ

e in a natural way.
For each ρ ∈ QR(E), there exists an associated diffusion process Mρ = (Xt,Mt, Pz) on

F ρ with (Eρ,Fρ). We denote by Aρ
+ the set of all positive continuous additive functionals

(PCAF in abbreviation) of Mρ, and define Aρ = Aρ
+−Aρ

+. For A ∈ Aρ, its total variation
process is denoted by {A}. We also define Aρ

0 = {A ∈ Aρ | Eρ·µ({A}t) < ∞ for all t > 0}.
Each element in Aρ

+ has a corresponding positive Eρ-smooth measure on F ρ by the Revuz
correspondence. The totality of such measures will be denoted by Sρ

+. Accordingly, Aρ

has a correspondence with Sρ = Sρ
+ − Sρ

+, the set of Eρ-smooth signed measures.
For each u ∈ Fρ

e , we have the following decomposition:

ũ(Xt) − ũ(X0) = M
[u]
t + N

[u]
t ,

where ũ is an Eρ-quasicontinuous modification of u, M [u] is a martingale AF of finite
energy and N [u] is a CAF of zero energy. Also, M [u] and N [u] are uniquely determined.
When u = `(·) for some ` ∈ E∗, we also write M [`] and N [`], instead of M [u] and N [u],
respectively.

Let ρ ∈ L1 and ` ∈ E∗. Following [13], we say that ρ is of bounded variation in
direction ` (ρ ∈ BV`(E) in notation) if there is a positive constant C such that∣∣∣∣∫

E
∂`v(z)ρ(z) µ(dz)

∣∣∣∣ ≤ C‖v‖∞ for every v ∈ FC1
b .
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Theorem 2.1 Let ρ ∈ L1
+ and ` ∈ E∗.

(i) The following conditions are mutually equivalent.

(a) ρ ∈ BV`(E).

(b) There exists a finite signed measure ν` on E such that for every v ∈ FC1
b ,

1

2

∫
E

∂`v(z)ρ(z) µ(dz) = −
∫

E
v(z) ν`(dz). (2.1)

In this case, ν` necessarily belongs to Sρ+1.

(ii) Suppose further that ρ ∈ QR(E). Then the following condition is also equivalent to
the above.

(c) N [`] ∈ Aρ
0.

In this case, ν` in (b) necessarily satisfies that ν`|E\F ρ = 0, ν`|F ρ ∈ Sρ and N [`] is
in Revuz correspondence with it. Furthermore, it holds for any Eρ-quasicontinuous
function v in Fρ

b that

Eρ(v, `(·)) = −
∫

F ρ
v(z) ν`(dz).

Proof. We shall use Theorem 6.2 in [11] for the proof. We remark that Proposition 3.1 in
[11] holds for u in the extended Dirichlet space. Then Theorems 3.2, 4.2 and 6.2 in [11]
also hold for such u.

Since

1

2

∫
E

∂`v(z)(ρ(z) + 1)µ(dz) =
1

2

∫
E

∂`v(z)ρ(z)µ(dz) +
1

2

∫
E

v(z)`(z)µ(dz),

ρ ∈ BV`(E) if and only if ρ + 1 ∈ BV`(E). Obviously, ρ + 1 ∈ QR(E) for any ρ ∈ L1
+.

The assertion (i) follows from Theorem 6.2 in [11] because `(·) ∈ Fρ+1
e and Eρ+1(v, `(·)) =

1
2

∫
E ∂`v(z)(ρ(z) + 1)µ(dz). For the proof of the assertion (ii), consider the following

condition:

(b’) There exists some ν ′
` ∈ Sρ such that for every v ∈ FC1

b ,

Eρ(v, `(·)) = −
∫

F ρ
v(z) ν ′

`(dz).

From Theorem 6.2 in [11], (a), (b’), and (c) are mutually equivalent and N [`] is in Revuz
correspondence with ν ′

`. Suppose (b’). By considering a measure ν` on E defined by
ν`|F ρ = ν ′

` and ν`|E\F ρ = 0, the condition (b) holds. Since ν` in (b) is uniquely determined
if it exists, we get the rest of the assertions.
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3 Structures of BV space

First, we introduce three function spaces on E. The H-derivative ∇ defined on FC1
b is

closable as an operator from L1 to L1(E → H). The domain of its closure is denoted by
D1,1, equipped with the norm ‖f‖1,1 = ‖f‖1 + ‖∇f‖1. The closure of ∇ is denoted by the
same symbol.

Let
A1/2(x) =

∫ x

0
(log(1 + s))1/2 ds, x ≥ 0,

and let Ψ be its complementary function, namely,

Ψ(y) :=
∫ y

0
(A′

1/2)
−1(t) dt =

∫ y

0
(exp(t2) − 1) dt.

Then it holds for x ≥ 0 and y ≥ 0 that

xy ≤ A1/2(x) + Ψ(y). (3.1)

Define

L(log L)1/2 = {f | A1/2(|f |) ∈ L1},
LΨ = {g | Ψ(c|g|) ∈ L1 for some c > 0}.

From the general theory of Orlicz spaces (see e.g. [24, Chapter 3]), we have the following
properties.

(i) L(log L)1/2 and LΨ are Banach spaces under the norms ‖f‖L(log L)1/2 = inf{α > 0 |∫
E A1/2(|f |/α) dµ ≤ 1} and ‖g‖LΨ = inf{α > 0 |

∫
E Ψ(|g|/α) dµ ≤ 1}, respectively.

(Note: we adopt a terminology different from [24]; e.g. NΨ(·) is used in [24] instead
of ‖ · ‖LΨ).

(ii) For f ∈ L(log L)1/2 and g ∈ LΨ, we have

‖fg‖1 ≤ 2‖f‖L(log L)1/2‖g‖LΨ , (3.2)

‖fg‖1 ≤ (‖A1/2(|f |)‖1 + 1)‖g‖LΨ . (3.3)

We give only a proof of (ii) here. Taking x = |f(z)|/‖f‖L(log L)1/2 and y = |g(z)|/‖g‖LΨ in
(3.1) and integrating both sides, we get (3.2). Taking x = |f(z)| and y = |g(z)|/‖g‖LΨ in
(3.1) and integrating both sides, we obtain (3.3). We state a direct implication of (3.2)
as a next lemma.

Lemma 3.1 Suppose ϕ ∈ LΨ. Then, ϕf ∈ L1 for any f ∈ L(log L)1/2. If a sequence
{fn} converges to f in L(log L)1/2, then limn→∞

∫
E ϕfn dµ =

∫
E ϕf dµ.

Letting g ≡ 1 in (3.2), we see that L(log L)1/2 is continuously embedded in L1. The
following observation is also useful: as a set, L(log L)1/2 = {f | |f |(log+ |f |)1/2 ∈ L1} and
LΨ = {g | exp(c|g|2) ∈ L1 for some c > 0}, where log+ x = max(log x, 0). This is because
the next estimates hold for some positive constants C1 and C2:

C1x(log+ x)1/2 ≤ A1/2(x) ≤ x + x(log+ x)1/2, x ≥ 0,

exp(y2/2) − C2 ≤ Ψ(y) ≤ exp(2y2), y ≥ 0.

Also, we have the following embedding theorem.
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Proposition 3.2 The space D1,1 is continuously embedded in L(log L)1/2.

Proof. The proof is based on the argument in [21, p. 272]. Let Φ(r) = (2π)−1/2
∫ r
−∞ exp(−t2/2) dt,

r ∈ R and U(x) = Φ′ ◦ Φ−1(x), 0 < x < 1. Then limx↓0
U(x)

x
√

2 log 1/x
= 1 (cf. [21, p. 271]).

We can take a constant δ > 0 such that U(x) ≥ x
√

log(1 + 1/x) for all x ∈ (0, δ]. We

may also take δ ≤ 1/(e − 1).

Suppose f ∈ FC1
b and ‖f‖1,1 ≤ 1

/√
log(1 + 1/δ) (≤ 1). The isoperimetric inequality

for Gaussian measure implies that

‖∇f‖1 ≥
∫ ∞

0
U(µ({|f | ≥ s})) ds.

If s ≥ 1/δ, then µ({|f | ≥ s}) ≤ ‖f‖1/s ≤ 1/s ≤ δ and

U(µ({|f | ≥ s})) ≥ µ({|f | ≥ s})
√

log(1 + 1/µ({|f | ≥ s}))

≥ µ({|f | ≥ s})
√

log(1 + s).

Therefore,

1 ≥
√

log(1 + 1/δ)‖f‖1,1 ≥
√

log(1 + 1/δ)‖f‖1 + ‖∇f‖1

≥
√

log(1 + 1/δ)
∫ ∞

0
µ({|f | ≥ s}) ds +

∫ ∞

1/δ
µ({|f | ≥ s})

√
log(1 + s) ds

≥
∫ ∞

0
µ({|f | ≥ s})

(√
log(1 + 1/δ) +

√
log(1 + s) · 1{s≥1/δ}

)
ds

≥
∫ ∞

0
µ({|f | ≥ s})

√
log(1 + s) ds

=
∫

E
dµ

∫ ∞

0
ds1{|f |≥s}

√
log(1 + s)

=
∫

E
dµ

∫ |f |

0

√
log(1 + s) ds = ‖A1/2(|f |)‖1.

Therefore, ‖f‖L(log L)1/2 ≤ 1. This concludes the claim.

We denote by (FC1
b )E∗ the set of all E∗-valued functions on E expressed as

∑m
j=1 gj(z)`j

with gj ∈ FC1
b and `j ∈ E∗, j = 1, . . . ,m for some m ∈ N. We also denote by ∇∗

the (formal) dual operator with domain (FC1
b )E∗ of ∇. When G(z) = g(z)`, g ∈ FC1

b ,
` ∈ E∗, we have ∇∗G(z) = −∂`g(z) + g(z)`(z).

For ρ ∈ L(log L)1/2, define

V (ρ) = sup
{∫

E
(∇∗G)ρ dµ

∣∣∣ G ∈ (FC1
b )E∗ , ‖G(z)‖H ≤ 1 for every z ∈ E

}
(≤ ∞).

Since ∇∗G ∈ LΨ for each G ∈ (FC1
b )E∗ , the integral above is well-defined from Lemma 3.1.

Definition 3.3 Let BV (E) = {ρ ∈ L(log L)1/2 | V (ρ) < ∞}. We say that ρ in BV (E)
is of bounded variation.
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By Proposition 3.2 and Lemma 3.1, we see that the next duality relation holds for any
ρ ∈ D1,1, ∫

E
∇∗G(z)ρ(z)µ(dz) =

∫
E
〈G(z),∇ρ(z)〉µ(dz), G ∈ (FC1

b )E∗ ,

and hence, we have as in [13],

Lemma 3.4 For ρ ∈ D1,1, V (ρ) = ‖∇ρ‖1. In particular, D1,1 ⊂ BV (E).

The Ornstein-Uhlenbeck semigroup {Tt} is defined as usual: Ttf(x) =
∫
E f(e−tx +√

1 − e−2ty) µ(dy), where f is a function on E taking values in a separable Hilbert space.

Proposition 3.5 For every t > 0, the operator ∇Tt : FC1
b → L1(E → H) extends

uniquely to a bounded operator from L(log L)1/2 to L1(E → H).

Proof. This result is implicitly proved in [20] , but we give a proof for readers’ convenience.
Let ϕ ∈ FC1

b with ‖ϕ‖L(log L)1/2 ≤ 1, ` ∈ E∗ with ‖`‖H = 1, and t > 0. Note that ‖`(·)‖LΨ

is independent of the choice of `. From a direct computation (see e.g. [29]),

∂`Ttϕ(x) =
e−t

(1 − e−2t)1/2

∫
E

ϕ(e−tx + (1 − e−2t)1/2y)`(y) µ(dy).

Set θ = arccos(e−t) and Rθ(x, y) = (x cos θ + y sin θ,−x sin θ + y cos θ). Then,

|∂`Ttϕ(x)| = cot θ
∣∣∣∣∫

E
(ϕ ⊗ 1)(Rθ(x, y))`(y) µ(dy)

∣∣∣∣
≤ c

(
‖A1/2(|(ϕ ⊗ 1)(Rθ(x, ·))|)‖1 + 1

)
.

Here, (3.3) was used in the second line and c is a constant depending only on t. Then,

‖∇Ttϕ(x)‖H = sup
`∈E∗, ‖`‖H=1

|∂`Ttϕ(x)|

≤ c(‖A1/2(|(ϕ ⊗ 1)(Rθ(x, ·))|)‖1 + 1).

From the rotational invariance of µ ⊗ µ,

‖∇Ttϕ‖1 ≤ c
(∫∫

E×E
A1/2(|(ϕ ⊗ 1)(Rθ(x, y))|)µ(dx)µ(dy) + 1

)
= c

(∫∫
E×E

A1/2(|(ϕ ⊗ 1)(x, y)|)µ(dx)µ(dy) + 1
)

= c
(∫

E
A1/2(|ϕ(x)|)µ(dx) + 1

)
≤ 2c.

Since FC1
b is dense in L(log L)1/2, we get the conclusion.

Proposition 3.6 Take any f ∈ L(log L)1/2.

(i) Ttf ∈ D1,1, t > 0.

(ii) Ttf converges to f in L(log L)1/2 as t ↓ 0.
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(iii) V (Ttf) ≤ e−tV (f) ≤ ∞, t > 0.

(iv) limt↓0 V (Ttf) = V (f).

Proof. (i) Take a sequence of functions {fn} in FC1
b such that fn converges to f in

L(log L)1/2. From Proposition 3.5, {∇Ttfn} converges in L1(E → H). On the other
hand, {Ttfn} converges to Ttf in L1. By the closedness of ∇ on D1,1, we conclude that
Ttf ∈ D1,1.

(ii) This is clear when f is bounded continuous. For a general f , we have by the Jensen
inequality

A1/2(|Ttf(x)|/α) ≤
∫

E
A1/2(|f(e−tx +

√
1 − e−2ty)|/α) µ(dy), α > 0.

Integrating the both hand sides by µ(dx), we get

‖A1/2(|Ttf |/α)‖1 ≤ ‖A1/2(|f |/α)‖1, α > 0,

which means that ‖Ttf‖L(log L)1/2 ≤ ‖f‖L(log L)1/2 . The claim follows from a usual approx-
imation argument.

(iii) By (i), we get the following formula in the same way as in [13]:∫
E
∇∗G(z)Ttf(z)µ(dz) = e−t

∫
E
∇∗(TtG)(z)f(z)µ(dz), G ∈ (FC1

b )E∗ , f ∈ L(log L)1/2,

which immediately implies (iii).

(iv) As in Lemma 4.1 in [13], we can prove that V (f) ≤ limt↓0 V (Ttf). By combining (iii),
the claim follows.

Now we can give a characterization of the space BV (E) as follows.

Theorem 3.7 It holds that

BV (E) =

{
ρ ∈ L1

∣∣∣∣∣ there exists a sequence {ρn} ⊂ D1,1 such that
ρn → ρ in L1 and supn ‖∇ρn‖1 < ∞.

}
. (3.4)

Moreover, if ρn and ρ are as in the right hand side of (3.4), then V (ρ) ≤ limn→∞ ‖∇ρn‖1.

Proof. Let the right-hand side of (3.4) be denoted by BV1. First, we prove BV (E) ⊂ BV1.
This is proved in the same way as in Proposition 4.1 in [13]. Let ρn = T1/nρ, n ∈ N.
Then ρn → ρ in L1 as n → ∞, and from Proposition 3.6 and Lemma 3.4, ρn ∈ D1,1,
‖∇ρn‖1 = V (ρn) ≤ V (ρ) for every n. Therefore, ρ ∈ BV1.

Next, we prove BV1 ⊂ BV (E). For ρ ∈ BV1, let {ρn} be as in the definition of BV1.
Let M = limn→∞ ‖∇ρn‖1 < ∞. From Proposition 3.2, {ρn} is bounded in L(log L)1/2. By
taking a subsequence, we may assume that ρn converges to ρ µ-a.e. From Fatou’s lemma,
ρ ∈ L(log L)1/2.
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Let Φm be a smooth function on R such that 0 ≤ Φ′
m ≤ 1 on R, Φm(x) = x on [−m,m]

and |Φm(x)| = m + 1 on R \ [−m − 2,m + 2]. Then for G ∈ (FC1
b )E∗ ,∣∣∣∣∫

E
(∇∗G)Φm ◦ ρ dµ

∣∣∣∣ = lim
n→∞

∣∣∣∣∫
E
(∇∗G)Φm ◦ ρn dµ

∣∣∣∣ = lim
n→∞

∣∣∣∣∫
E
〈G,∇(Φm ◦ ρn)〉 dµ

∣∣∣∣
≤ lim

n→∞
‖G‖∞‖∇(Φm ◦ ρn)‖1 ≤ lim

n→∞
‖G‖∞‖∇ρn‖1 ≤ M‖G‖∞.

Since Φm ◦ ρ → ρ as m → ∞ in L(log L)1/2,
∫
E(∇∗G)Φm ◦ ρ dµ →

∫
E(∇∗G)ρ dµ by

Lemma 3.1. Therefore, |
∫
E(∇∗G)ρ dµ| ≤ M‖G‖∞. Hence, ρ ∈ BV (E) and V (ρ) ≤ M .

Corollary 3.8 Let Λ be a function on R so that |Λ(x)−Λ(y)| ≤ |x− y| for all x, y ∈ R.
Then for every ρ ∈ BV (E), Λ ◦ ρ also belongs to BV (E) and V (Λ ◦ ρ) ≤ V (ρ). In
particular, the space BV (E) is a vector lattice.

Proof. Let ρn = T1/nρ, n ∈ N. Then {Λ ◦ ρn} ⊂ D1,1, Λ ◦ ρn → Λ ◦ ρ in L1 as n → ∞,
and

sup
n

‖∇(Λ ◦ ρn)‖1 ≤ sup
n

‖∇ρn‖1 ≤ V (ρ)

by Lemma 3.4 and Proposition 3.6. This implies that Λ◦ρ ∈ BV (E) and V (Λ◦ρ) ≤ V (ρ)
by virtue of Theorem 3.7.

We now extend Theorem 3.1 (ii) in [13] together with a uniqueness statement.

Theorem 3.9 For each ρ ∈ BV (E), there exists a positive finite measure ν on E and an
H-valued Borel function σ on E such that ‖σ‖H = 1 ν-a.e. and for every G ∈ (FC1

b )E∗,∫
E
(∇∗G)ρ dµ =

∫
E
〈G, σ〉 dν. (3.5)

The measure ν belongs to S|ρ|+1. If moreover ρ ∈ QR(E), then ν|E\F ρ = 0 and ν|F ρ ∈ Sρ.
Also, ν and σ are uniquely determined; namely, if ν ′ and σ′ are another pair satisfying
the relation (3.5) for all G ∈ (FC1

b )E∗, then ν = ν ′ and σ = σ′ ν-a.e.

Proof. First, suppose ρ ≥ 0 µ-a.e. By Theorem 2.1, for each ` ∈ E∗, there exists a signed
measure ν` on E which belongs to Sρ+1 (resp. such that ν`|E\F ρ = 0 and ν`|F ρ ∈ Sρ if
ρ ∈ BV (E) ∩ QR(E)) satisfying

1

2

∫
E

∂`v(z)ρ(z)µ(dz) = −
∫

E
v(z) ν`(dz), v ∈ FC1

b .

Define D`ρ = 2ν` + `(·)ρ · µ. Then for an H-valued function G expressed as G(z) = g(z)`
with g ∈ FC1

b , ` ∈ E∗ and ‖`‖H = 1, we have∫
E
(∇∗G)ρ dµ =

∫
E
(−∂`g + g`(·))ρ dµ =

∫
E

g(z) D`ρ(dz).

Therefore, V (D`ρ), the total variation measure of D`ρ, satisfies V (D`ρ)(E) ≤ V (ρ).
For a general ρ, let ρ+ and ρ− be the positive part and the negative part of ρ, re-

spectively. Then from Corollary 3.8, ρ± ∈ BV (E) and V (ρ±) ≤ V (ρ). Therefore,
V (D`ρ±)(E) ≤ V (ρ). Define D`ρ = D`ρ+ − D`ρ−. Then V (D`ρ)(E) ≤ 2V (ρ).
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Take {hj}∞j=1 ⊂ E∗ as a c.o.n.s. of H. Let γ =
∑∞

j=1 2−jV (Dhj
ρ) and vj(z) =

dDhj
ρ

dγ
(z),

j ∈ N. Then γ is a positive finite measure, γ(E) ≤ 2V (ρ), and γ ∈ S|ρ|+1 (resp. γ|E\F ρ = 0
and γ|F ρ ∈ Sρ if ρ ∈ BV (E)∩QR(E)). We may assume that each vj is Borel measurable.
From the same argument as in the proof of Theorem 3.1 (ii) in [13], we can construct ν
and σ from γ and vj so that (3.5) holds for all G expressed as G(z) =

∑n
j=1 gj(z)hj with

gj ∈ FC1
b , j = 1, . . . , n for some n ∈ N. In order to finish the proof of the first claim, it

suffices to prove the validity of (3.5) for G(z) = g(z)`, where g ∈ FC1
b and ` ∈ E∗ with

‖`‖H = 1. The relation to prove is

−
∫

E
(∂`g)ρ dµ +

∫
E

g`(·)ρ dµ =
∫

E
g〈`, σ〉 dν. (3.6)

Let `n =
∑n

j=1〈`, hj〉hj, n ∈ N. Denote the linear span of {`n, `} in H by Hn, and its
orthogonal complement by H⊥

n . Take a unitary operator Un on H satisfying that Hn is
Un-invariant, Un(`n) = `, and Un|H⊥

n
is an identity mapping. Un can be extended to a

continuous operator on E, leaving µ invariant. Set gn(z) = g(Un(z)), z ∈ E. We already
know that (3.6) holds if ` and g are replaced by `n and gn, respectively. We shall observe
that each term converges appropriately as n → ∞. Since ∂`ngn(z) = (∂`g)(Un(z)), it
holds by the dominated convergence theorem that

lim
n→∞

∫
E
(∂`ngn)ρ dµ =

∫
E
(∂`g)ρ dµ

and
lim

n→∞

∫
E

gn〈`n, σ〉 dν =
∫

E
g〈`, σ〉 dν.

From the Un-invariance of µ, it holds that ρ ◦U−1
n → ρ in L(log L)1/2 as n → ∞. Indeed,

this is proved by approximating ρ by bounded continuous functions and using a triangle
inequality. Then from Lemma 3.1,∫

E
gn`n(·)ρ dµ =

∫
E

g`(·)(ρ ◦ U−1
n ) dµ →

∫
E

g`(·)ρ dµ as n → ∞.

Therefore, (3.6) holds.
We shall proceed to the proof of uniqueness. Suppose that σ′ and ν ′ are another pair.

Then, ∫
E
〈G, γ〉 dξ = 0 for every G ∈ (FC1

b )E∗ ,

where ξ = ν + ν ′ and γ = σ
dν

dξ
− σ′dν ′

dξ
. Taking a uniformly bounded sequence {Gn} ⊂

(FC1
b )E∗ so that 〈Gn, γ〉 → ‖γ‖H ξ-a.e., we get γ = 0 ξ-a.e. Therefore, ‖σ‖H

dν

dξ
=

‖σ′‖H
dν ′

dξ
ξ-a.e. Since ‖σ‖H = 1 ν-a.e., ‖σ‖H

dν

dξ
=

dν

dξ
ξ-a.e. Similarly, ‖σ′‖H

dν ′

dξ
=

dν ′

dξ

ξ-a.e. Then,
dν

dξ
=

dν ′

dξ
ξ-a.e., which implies ν = ν ′. Also, it follows that σ = σ′ ν-a.e.

from γ = 0 ξ-a.e. and ν = ν ′.

We shall hereafter write ‖Dρ‖ and σρ in place of ν and σ, respectively.
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Corollary 3.10 It holds that

BV (E) =


ρ ∈ L(log L)1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

there exist a sequence {ρn} ⊂ D1,1, a positive finite
measure ν on E and an H-valued Borel function σ on E
such that ρn → ρ in L(log L)1/2,
sup

n
‖∇ρn‖1 < ∞, ‖σ‖H = 1 ν-a.e., and

lim
n→∞

∫
E
〈G,∇ρn〉 dµ =

∫
E
〈G, σ〉 dν for all G ∈ (FC1

b )E∗ .


.

(3.7)
Furthermore, σ and ν in the right-hand side coincide with σρ and ‖Dρ‖, respectively.

Proof. Let the right-hand side in (3.7) be denoted by BV2. Take ρ ∈ BV (E), and let
ρn = T1/nρ for n ∈ N. Then ρn ∈ D1,1, ρn → ρ in L(log L)1/2, and V (ρn) ≤ V (ρ) by
Proposition 3.6. For any G ∈ (FC1

b )E∗ ,∫
E
〈G,∇ρn〉 dµ =

∫
E
(∇∗G)ρn dµ →

∫
E
(∇∗G)ρ dµ =

∫
E
〈G(z), σρ(z)〉 ‖Dρ‖(dz) as n → ∞.

Therefore, ρ ∈ BV2. The inverse inclusion is trivial from Theorem 3.7. The latter assertion
follows from Theorem 3.9.

Remark 3.11 We can also replace D1,1 by FC1
b and two L(log L)1/2’s by L1 in the right-

hand side of (3.7). Compare (3.7) with characterizations of D1,1:

D1,1 =

{
ρ ∈ L1

∣∣∣∣∣ there exist a sequence {ρn} ⊂ FC1
b and J ∈ L1(E → H) such

that ρn → ρ in L1 and ∇ρn → J in L1(E → H).

}

=

ρ ∈ L(log L)1/2

∣∣∣∣∣∣∣
there exist a sequence {ρn} ⊂ FC1

b and
J ∈ L1(E → H) such that ρn → ρ in L(log L)1/2

and ∇ρn → J in L1(E → H).

 .

We can now present a formula analogous to the classical Green formula. We consider
the Ornstein-Uhlenbeck operator L = −∇∗∇, which can be expressed as

Lu(z) =
m∑

i=1

∂2
i f(`1(z), . . . , `m(z)) −

m∑
i=1

∂if(`1(z), . . . , `m(z))`i(z)

if u(z) = f(`1(z), . . . , `m(z)) ∈ FC2
b and `1, . . . , `m ∈ E∗ are orthonormal in H.

Theorem 3.12 Let ρ ∈ BV (E). For any u ∈ FC2
b and any v ∈ FC1

b ,

Eρ(u, v) = −1

2

∫
E

v(Lu)ρ dµ − 1

2

∫
E

v(z)〈∇u(z), σρ(z)〉‖Dρ‖(dz). (3.8)

If further ρ ∈ QR(E), then the equation obtained by replacing E by F ρ in (3.8) holds for
any u ∈ FC2

b and any Eρ-quasicontinuous function v ∈ Fρ
b .

Proof. Take ρn as in the right hand side of (3.7). An integration by part gives∫
E
〈∇u,∇v〉ρn dµ = −

∫
E

v(Lu)ρn dµ −
∫

E
v〈∇u,∇ρn〉 dµ.

Letting n tend to infinity, we get the desired formula.
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The next theorem is a converse to Lemma 3.4 and characterizes the space D1,1 as a
subspace of BV (E).

Theorem 3.13 Let ρ ∈ BV (E). If ‖Dρ‖ ¿ µ, Then ρ ∈ D1,1 and

‖Dρ‖ = ‖∇ρ‖H · µ, σρ =
∇ρ

‖∇ρ‖H

· 1{∇ρ 6=0}.

Proof. It suffices to prove that if there exists J ∈ L1(E → H) such that∫
E
(∇∗G)ρ dµ =

∫
E
〈G, J〉 dµ, for all G ∈ (FC1

b )E∗ ,

then ρ ∈ D1,1 and ∇ρ = J . Since ρ ∈ L(log L)1/2, Ttρ belongs to D1,1 and for any
G ∈ (FC1

b )E∗ ,∫
E
〈G,∇Ttρ〉 dµ =

∫
E

e−t(∇∗TtG)ρ dµ = e−t
∫

E
〈TtG, J〉 dµ = e−t

∫
E
〈G, TtJ〉 dµ.

Therefore, ∇Ttρ = e−tTtJ . This converges to J in L1 as t → 0, which implies that ρ ∈ D1,1

and ∇ρ = J .

Remark 3.14 We have a coarea formula

V (ρ) =
∫ ∞

−∞
V (1{ρ>t}) dt, ρ ∈ BV (E),

just as Theorem 4.1 in [13]. Then for every ρ ∈ BV (E), 1{ρ>t} belongs to BV (E) for a.e. t
with respect to the Lebesgue measure. However, 1A ∈ D1,1 if and only if µ(A) = 0 or 1.
Indeed, if 1A ∈ D1,1, then ∇1A = ∇(1A)2 = 2 ·1A ∇1A, which implies that ∇1A = 0 µ-a.e.
Then for all t > 0, ∇Tt1A = e−tTt∇1A = 0 µ-a.e. Since Tt1A ∈ F1, it is well-known that
Tt1A = constant µ-a.e., therefore, 1A = constant µ-a.e. Hence, there are many functions
which belong to BV (E) but do not belong to D1,1.

Finally in this section, we study the support of ‖Dρ‖. Let ρ ∈ QR(E). We denote
the Eρ-quasi support of ν ∈ Sρ

+ by Eρ-q. Supp ν. When A is a measurable subset of E,
we define

A
ρ

= Eρ-q. Supp(1A · ρ · µ), ∂ρA = A
ρ ∩ E \ A

ρ
.

Theorem 3.15 Let ρ ∈ BV (E). Then for every a ∈ R, we have ‖Dρ‖(E\{ρ 6= a}|ρ|+1
) =

0, namely,

E |ρ|+1-q. Supp ‖Dρ‖ ⊂ {ρ 6= a}|ρ|+1 E |ρ|+1-q.e.

When ρ = 1A ∈ BV (E) for a certain set A, we have

E1-q. Supp ‖Dρ‖ ⊂ ∂1A E1-q.e.

12



Proof. Let a ∈ R. From the way of construction of ‖Dρ‖ in the proof of Theorem 3.9,

it is enough to prove that D`ρ(E \ Fa) = 0 for each ` ∈ E∗, where Fa := {ρ 6= a}|ρ|+1
.

By Lemma 4.6.1 in [14], there is a nonnegative and E |ρ|+1-quasicontinuous function u in

F |ρ|+1
b such that Fa = {u = 0} E |ρ|+1-q.e. We can take a uniformly bounded sequence

{un} ⊂ FC1
b such that un → u in F |ρ|+1 and E |ρ|+1-q.e. as n → ∞. For any g ∈ FC1

b , we
have∫

E
g(z)un(z) D`ρ(dz) =

∫
E

g(z)un(z) D`(ρ − a)(dz)

= −
∫

E
∂`(gun)(ρ − a) dµ +

∫
E

gun`(·)(ρ − a) dµ

= −
∫

E
{(∂`g)un + g〈∇un, `〉}(ρ − a) dµ +

∫
E

gun`(·)(ρ − a) dµ.

Keeping E |ρ|+1-smoothness of D`ρ in mind, we obtain by letting n → ∞ that∫
E

g(z)u(z) D`ρ(dz) = −
∫

E
{(∂`g)u + g〈∇u, `〉}(ρ − a) dµ +

∫
E

gu`(·)(ρ − a) dµ. (3.9)

Since u = 0 on Fa µ-a.e., ∇u = 0 on Fa µ-a.e. by Theorem 7.1.1 in [6, Chapter I].
Therefore, the right-hand side of (3.9) vanishes. This means that D`ρ(E \Fa) = 0, which
finishes the proof of the first part.

When ρ = 1A ∈ BV (E), by applying the first claim with a = 0 and a = 1, we get

E1-q. Supp ‖Dρ‖ ⊂ A
1 ∩ E \ A

1
= ∂1A E1-q.e.

4 Distorted Ornstein-Uhlenbeck process and Itô’s for-

mula

Since E is separable, E∗ is also separable in the weak*-topology (see e.g. [26, p.90]). Let
{`n} be a countable dense subset of E∗.

Lemma 4.1 Let {Bt} be an E-valued continuous process starting at 0. If {`n(Bt)} is
an {Mt}-martingale with quadratic variation t‖`n‖2

H for every n, then {Bt} is an {Mt}-
Brownian motion on E.

Proof. By the martingale representation theorem, each {`n(Bt)} is a 1-dimensional {Mt}-
Brownian motion with a constant time change. Take any ` ∈ E∗ with ‖`‖H = 1. There
exists a subsequence {`nk

} of {`n} converging to ` in the weak* sense. Then,

lim
k→∞

exp
(
−‖`nk

‖2
H/2

)
= lim

k→∞

∫
E

exp
(√

−1`nk
(z)

)
µ(dz)

=
∫

E
exp

(√
−1`(z)

)
µ(dz) = exp (−1/2) ,

therefore limk→∞ ‖`nk
‖H = 1. For ξ ∈ R, t > s > 0 and an Ms-measurable bounded

function f ,

E
[
exp

(√
−1ξ(`(Bt) − `(Bs))

)
f

]
= lim

k→∞
E

[
exp

(√
−1ξ(`nk

(Bt) − `nk
(Bs))

)
f

]
= lim

k→∞
exp

(
−(t − s)ξ2‖`nk

‖2
H/2

)
E[f ]

= exp
(
−(t − s)ξ2/2

)
E[f ].

13



Namely, {`(Bt)} is a 1-dimensional {Mt}-Brownian motion. Therefore, {Bt} is an {Mt}-
Brownian motion on E.

By using this lemma, Theorem 3.2 in [13] is improved as follows.

Theorem 4.2 Let ρ ∈ BV (E)∩QR(E). Then the sample path of the distorted Ornstein-
Uhlenbeck process Mρ = (Xt,Mt, Pz) associated with (Eρ,Fρ) admits the following expres-
sion as a sum of three E-valued CAF’s:

Xt(ω) − X0(ω) = Wt(ω) − 1

2

∫ t

0
Xs(ω) ds +

1

2

∫ t

0
σρ(Xs(ω)) dA‖Dρ‖

s (ω), t ≥ 0. (4.1)

Here, the Eρ-smooth measure ‖Dρ‖ and the H-valued function σρ are defined as in Theo-
rem 3.9; A‖Dρ‖ is a real valued PCAF associated with ‖Dρ‖ via the Revuz correspondence.
Moreover, for Eρ-q.e. z ∈ F ρ, {Wt(ω)} is an {Mt}-Brownian motion on E under Pz.

Proof. We can define an E-valued CAF Wt by the equation (4.1). As in the same way of
the proof of Theorem 3.2 in [13], for every ` ∈ E∗, for Eρ-q.e. z, {`(Wt)} is a martingale
under P z with quadratic variation t‖`‖2

H . Since a countable union of exceptional sets is
also exceptional, Lemma 4.1 completes the proof.

We now turn to a generalized Itô’s formula which has been formulated in [12] for
the additive functionals of the distorted Brownian motion on Rd. For this purpose, we
prepare a lemma for quasi-sure analysis on Hilbert space valued functions. Though it
is quite standard and we need it only for the Ornstein-Uhlenbeck semigroup, we shall
formulate it under a general framework and give a proof for completeness. Let (E ,F) be
a quasi-regular symmetric Dirichlet form on a state space (Ω,m), where Ω is a Hausdorff
topological space with a countable base and m is a σ-finite Borel measure on Ω. Let
{Pt} and (ωt, Qz) be a Markovian semigroup on L2(Ω; m) and a Markov process on Ω
associated with (E ,F), respectively. The expectation with respect to Qz is denoted by
EQz . Let K be a separable Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖K . For
a K-valued step function G on Ω expressed as G =

∑n
i=1 1Ai

ki with ki ∈ K, m(Ai) < ∞,
and Ai∩Aj = ∅ if i 6= j, define PtG =

∑n
i=1(Pt1Ai

)ki, t > 0. Then Pt extends uniquely to a
bounded operator on L2(Ω → K; m) and satisfies that ‖PtG‖K ≤ Pt(‖G‖K) m-a.e. for all
G ∈ L2(Ω → K; m). In the following lemma, f̃ means an E-quasicontinuous modification
of a function f on Ω if it exists. Note that an E-quasicontinuous modification of a K-
valued function is uniquely determined up to E-exceptional set like real-valued functions,
because of the separability of K.

Lemma 4.3 (i) Let {Gn} be a sequence of E-quasicontinuous functions in L2(Ω →
K; m) and G ∈ L2(Ω → K; m). If there exists a sequence {wn} ⊂ F such that

‖Gn − G‖K ≤ wn m-a.e. for all n and wn → 0 in F as n → ∞,

then G has an E-quasicontinuous modification G̃, and Gnk
→ G̃ E-q.e. for some

subsequence {Gnk
}.

(ii) Let G be a Borel measurable function in L2(Ω → K; m) and t > 0. Then EQ· [G(ωt)]
is an E-quasicontinuous modification of PtG.
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(iii) Let Gn, G ∈ L2(Ω → K; m) and Gn → G in L2(Ω → K; m) as n → ∞. Then for

each t > 0, there is a subsequence {Gnk
} such that P̃tGnk

→ P̃tG E-q.e.

Proof. Let Cap denote the capacity associated with (E ,F).

(i): Let ε > 0. Since wn → 0 in F , there exists a sequence {nl} ↑ ∞ and an open
set U1 such that Cap(U1) < ε/2 and w̃nl

converges to 0 uniformly on E \ U1. Since
‖Gm −Gn‖K ≤ |wm|+ |wn| m-a.e., it holds that ‖Gm −Gn‖K ≤ |w̃m|+ |w̃n| E-q.e. There
is an open set U2 such that Cap(U2) < ε/2, Gn|E\U2 is continuous for every n, and the
inequality above holds on E \U2 for every m and n. Let U = U1 ∪U2. Then Cap(U) < ε
and {Gnl

} converges uniformly on E \ U . By diagonalization argument, we can take a
subsequence of {Gn} which converges to some E1-quasicontinuous function G̃ E-q.e., and
clearly G = G̃ m-a.e.

(ii): Take K-valued step functions {Gn} such that Gn → G in L2(Ω → K; m) as n → ∞.
Each PtGn has an E-quasicontinuous modification in view of the result for scalar valued
functions. It holds that

‖P̃tGn − PtG‖K ≤ Pt(‖Gn − G‖K) m-a.e.,

and the right-hand side of the inequality above converges to 0 in F as n → ∞. By (i),
PtG has an E1-quasicontinuous modification. On the other hand, EQz [G(ωt)] exists for
E-q.e. z since EQz [‖G(ωt)‖K ] < ∞ E-q.e.

For each k ∈ K, we have

〈P̃tG, k〉 = Pt(〈G, k〉) = EQ· [〈G, k〉(ωt)] m-a.e.

Therefore, 〈P̃tG, k〉 = EQ· [〈G, k〉(ωt)] E-q.e. since both are E-quasicontinuous. This im-
plies that P̃tG(z) = EQz [G(ωt)] for E-q.e. z.

(iii): From (ii), PtGn has an E-quasicontinuous modification for every n. Since

‖P̃tGn − PtG‖K ≤ Pt(‖Gn − G‖K) m-a.e.

and the right-hand side converges to 0 in F as n → ∞, the assertion follows from (i).

Recall Theorem 3.12 where the Ornstein-Uhlenbeck operator L = −∇∗∇ appears. Let
{Tt} be its associated Ornstein-Uhlenbeck semigroup as before. Its corresponding Dirich-
let form is nothing but (2E1,F1). The following theorem is a counterpart of Theorem 3.3
in [12]. Below, all functions are regarded as Borel measurable.

Theorem 4.4 Suppose either of the following.

(a) ρ ∈ BV (E)∩QR(E), u(z) = f(`1(z), . . . , `m(z)) ∈ FC1
b , and uε(z) = f ε(`1(z), . . . , `m(z)),

where f ε is an ordinary mollification of f on Rm.

(b) ρ ∈ BV (E) ∩ QR(E) ∩ L∞, u = w|F ρ for some w ∈ F1
b such that ‖∇w‖H is µ-

essentially bounded and ∇w has an E1-quasicontinuous modification, and uε = Tεw.
In this case, ∇u denotes ∇w|F ρ.
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Then, the next conditions are equivalent.

(i) N [u] ∈ Aρ
0.

(ii) There exists a finite signed measure νu,ρ on F ρ such that

lim
ε→0

∫
F ρ

v(Luε)ρ dµ =
∫

F ρ
v dνu,ρ for every v ∈ FC1

b .

In this case, it holds that for any v ∈ FC1
b ,

Eρ(u, v) = −1

2

∫
F ρ

v dνu,ρ −
1

2

∫
F ρ

v(z)〈∇̃u(z), σρ(z)〉 ‖Dρ‖(dz),

where ∇̃u is an Eρ-quasicontinuous modification of ∇u. Moreover, νu,ρ ∈ Sρ. Let ALu

and A‖Dρ‖ denote the CAFs associated with νu,ρ and ‖Dρ‖, respectively. Then Pz-a.e. for
Eρ-q.e. z ∈ F ρ, the equation

u(Xt) − u(X0) = M
[u]
t +

1

2
ALu

t +
1

2

∫ t

0
〈∇̃u, σρ〉(Xs) dA

‖Dρ‖
t

holds. Here M [u] is a continuous martingale AF with quadratic variation

〈M [u]〉t =
∫ t

0
‖∇u‖2

H(Xs) ds.

Further, for some sequence {εn} ↓ 0,

lim
n→∞

∫ t

0
(Luεn)(Xs) ds = ALu

t locally uniformly in t.

Proof. We shall give a proof only in the case (b). The case (a) is similarly (and more
easily) proved. First we remark that E1-exceptional sets are Eρ-exceptional sets and E1-
convergence implies Eρ-convergence because ρ ∈ L∞. From the theorem of [7] and an
argument in the proof of [1, Theorem 2.4], we can take a sequence {vn} ⊂ FC∞

b such
that vn → w µ-a.e. and both {‖vn‖∞} and {‖∇vn‖∞} are uniformly bounded. By the
Banach-Saks theorem, a sequence of the Cesàro mean {un} of some subsequence of {vn}
satisfies that un ∈ FC∞

b , un → w µ-a.e. and in F1, and both {‖un‖∞} and {‖∇un‖∞}
are uniformly bounded.

For each ε > 0, Tεun → uε in F1 and LTεun → Luε in L2(µ) as n → ∞. Also,
∇Tεun = e−εTε∇un, ∇uε = e−εTε∇w and ∇un → ∇w in L2(E → H; µ) as n → ∞. By
Lemma 4.3, ∇uε has an E1-quasicontinuous modification ∇̃uε and, by taking a subse-
quence if necessary,

∇Tεun → ∇̃uε E1-q.e. as n → ∞.

Then, letting n → ∞ in our version of the Green formula (Theorem 3.12) for Tεun in
place of u, we have

Eρ(uε, v) = −1

2

∫
F ρ

v(Luε)ρ dµ − 1

2

∫
F ρ

v(z)〈∇̃uε(z), σρ(z)〉‖Dρ‖(dz), v ∈ FC1
b ,
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and accordingly

N
[uε]
t =

1

2

∫ t

0
(Luε)(Xs)ds +

1

2

∫ t

0
〈∇̃uε, σρ〉(Xs) dA‖Dρ‖

s .

Let ∇̃w be an E1-quasicontinuous modification of ∇w. We may assume that ∇̃w is Borel
measurable. Then ∇̃u := ∇̃w|F ρ is an Eρ-quasicontinuous modification of ∇u and Borel
measurable. Also, by Lemma 4.3 (ii),

∇̃uε(z) = e−εT̃ε∇w(z) = e−εEO−U
z [∇̃w(XO−U

ε )] E1-q.e. z,

where (XO−U
t ) is the Ornstein-Uhlenbeck process on E and EO−U

z represents an expec-
tation with respect to the distribution of the process starting at z. Since ∇̃w is finely
continuous E1-q.e., which is proved in the same way as in Theorem 4.2.2. in [14], we get

e−εEO−U
z [∇̃w(XO−U

ε )] → ∇̃w(z) E1-q.e. z as ε ↓ 0.

Therefore, ∇̃uεn → ∇̃u Eρ-q.e. as n → ∞ for an arbitrary sequence {εn} decreasing to 0.
Keeping the fact that uε → u in Fρ as ε ↓ 0 in mind, we have

Eρ(u, v) = − lim
ε↓0

1

2

∫
F ρ

v(Luε)ρ dµ−1

2

∫
F ρ

v(z)〈∇̃u(z), σρ(z)〉 ‖Dρ‖(dz), v ∈ FC1
b . (4.2)

By Theorem 2.2 in [12], the equivalence of (i) and (ii) and all other assertions hold except
for the last one, which in turn follows from Corollary 5.2.1 in [14].
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