On the space of BV functions and a related stochastic calculus in infinite dimensions

Masatoshi Fukushima^{*} and Masanori Hino[†]

Dedicated to Professor Leonard Gross on the occasion of his 70th birthday

Abstract

Functions of bounded variation (BV functions) are defined on an abstract Wiener space (E, H, μ) in a way similar to that in finite dimensions. Some characterizations are given, which justify describing a BV function as a function in $L(\log L)^{1/2}$ with the first order derivative being an *H*-valued measure. It is also shown that the space of BV functions is obtained by a natural extension of the Sobolev space $\mathbb{D}^{1,1}$. Moreover, some stochastic formulae related to BV functions are investigated.

Key words: BV function, abstract Wiener space, Orlicz space, surface measure, Dirichlet form, distorted Ornstein-Uhlenbeck process, generalized Itô's formula

1 Introduction

A real valued function ρ defined on an open set $U \subset \mathbb{R}^d$ is said to be of bounded variation $(\rho \in BV(U) \text{ in notation})$ if the distributional derivatives $\partial_i \rho$, $1 \leq i \leq d$, are finite signed measures on U, or equivalently, if

$$V(\rho) = \sup\left\{\int_{U} \rho \operatorname{div}\varphi \, dx \, \middle| \, \varphi \in C_0^1(U; \mathbb{R}^d), \|\varphi\|_{\infty} \le 1\right\} < \infty.$$
(1.1)

Thus the space BV(U) is a natural extension of the classical Sobolev space $W^{1,1}(U)$ with $V(\rho) = \|\nabla\rho\|_1$ and it has played important roles in solving diverse fine variational problems in finite dimensions ([9, 15, 8, 3]).

In a recent paper [13], the notion of a BV function on an abstract Wiener space (E, H, μ) was introduced as a function ρ on E for which a quantity analogous to (1.1) is finite. However, ρ was required to be in $\bigcup_{p>1} L^p(E;\mu)$, excluding the Malliavin Sobolev space $\mathbb{D}^{1,1}$ from the space BV(E). Furthermore, in order to formulate an analogue to the Gauss formula holding for ρ and an associated measure $||D\rho||$ on E, the closability of a

^{*}Department of Mathematics, Faculty of Engineering, Kansai University, Suita, Osaka 564-8680, Japan; fuku@ipcku.kansai-u.ac.jp; partly supported by Grant-in-aid for Scientific Research No.11640142, Monbusho, Japanese Government.

[†]Department of Applied Analysis and Complex Dynamical Systems, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan; hino@i.kyoto-u.ac.jp; partly supported by Grant-in-aid for Scientific Research No.10440029, Monbusho, Japanese Government.

pre-Dirichlet form \mathcal{E}^{ρ} related to ρ was crucially assumed. Then, under the last assumption, a semimartingale decomposition of the associated distorted Ornstein-Uhlenbeck process living on the support of $\rho d\mu$ was also presented in [13].

A purpose of the present paper is to extend the analytical part of [13] considerably by requiring a BV function to sit in a broader Orlicz space $L(\log L)^{1/2}$ and by establishing an associated Green formula without any closability assumption (§3). The space BV(E)will now contain the Sobolev space $\mathbb{D}^{1,1}$ as a proper subspace and the structures of those spaces will be characterized in terms of the measures $||D\rho||$, $\rho \in BV(E)$. Moreover, we shall give in §3 a refinement of a theorem in [13] concerning the support of the measure $||D\rho||$ by showing that it vanishes outside a quasi support of $\mathbf{1}_{\{\rho \neq a\}} \cdot \mu$ for every $a \in \mathbb{R}$.

In §4, we shall assume that $\rho \in BV(E)$ is non-negative and \mathcal{E}^{ρ} is closable. The martingale part of the associated distorted Ornstein-Uhlenbeck process $\mathbf{M}^{\rho} = (X_t, \mathcal{M}_t, P_z)$ will then be shown to be a Brownian motion on E under P_z for quasi-every starting point z. This fact was proven in [13] only under P_{γ} for smooth probability measures γ . By making use of an analogue to the classical Green formula obtained in §3, we shall then show in §4 a generalized Itô's formula for \mathbf{M}^{ρ} , which has been formulated in [12] in finite dimensions.

When $\rho \in BV(E)$ is an indicator function of a set A, a Green formula (Theorem 3.12) and a result on the support of $||D\rho||$ (Theorem 3.15) indicate that $||D\rho||$ and σ_{ρ} in the formula are regarded as a surface measure and a normal vector field of a 'boundary' of A, respectively. Such notions in infinite dimensions have been investigated in various contexts, such as in [16, 28, 17, 18, 19, 2, 4, 10]. Our approach is based on a theory of Dirichlet forms and aims at applications to stochastic analysis on sets whose boundaries do not have good smoothness.

2 Preliminaries

Let (E, H, μ) be an abstract Wiener space. Namely, E is a separable Banach space, H is a separable Hilbert space densely and continuously embedded in E, and μ is a Gaussian measure on E which satisfies that

$$\int_E \exp\left(\sqrt{-1}\ell(z)\right)\mu(dz) = \exp\left(-\|\ell\|_H^2/2\right), \quad \ell \in E^*.$$

Here, we regard the topological dual E^* of E as a subspace of H by the natural inclusion $E^* \subset H^*$ and the identification $H^* \simeq H$. The inner product and the norm of H is denoted by $\langle \cdot, \cdot \rangle$ and $\|\cdot\|_H$, respectively. Let for each $k \in \mathbb{N} \cup \{\infty\}$,

$$\mathcal{F}C_b^k = \left\{ u: E \to \mathbb{R} \left| \begin{array}{c} u(z) = f(\ell_1(z), \dots, \ell_m(z)), \ \ell_1, \dots, \ell_m \in E^*, \ f \in C_b^k(\mathbb{R}^m) \\ \text{for some } m \in \mathbb{N} \end{array} \right\}.$$

For $u \in \mathcal{F}C_b^1$, the *H*-derivative of *u*, denoted by ∇u , is a map from *E* to *H* defined by the relation

$$\langle \nabla u(z), \ell \rangle = \partial_{\ell} u(z), \quad \ell \in E^* \subset H,$$

where $\partial_{\ell} u(z) = \lim_{\varepsilon \to 0} (u(z + \varepsilon \ell) - u(z))/\varepsilon, \ \ell \in E^* \subset H \subset E.$

For a separable Hilbert space K, a Borel measure ν on a metric space X and $p \in [1, \infty]$, $L^p(X \to K; \nu)$ denotes the usual L^p space consisting of K-valued functions on X. We shall often omit each symbol X, K and ν if X = E, $K = \mathbb{R}$, and $\nu = \mu$, respectively. Also, $L^p_+(\nu)$ denotes the space of all nonnegative functions belonging to $L^p(\nu)$. The norm $\|\cdot\|_p$ always means $L^p(E \to K; \mu)$ -norm. For $\rho \in L^1$, we define a symmetric bilinear form $\mathcal{E}^{\rho} : \mathcal{F}C^1_b \times \mathcal{F}C^1_b \to \mathbb{R}$ by

$$\mathcal{E}^{\rho}(u,v) = \frac{1}{2} \int_{E} \langle \nabla u(z), \nabla v(z) \rangle \rho(z) \, \mu(dz), \quad u,v \in \mathcal{F}C_{b}^{1}.$$

 \mathcal{E}^{ρ} can be regarded as a bilinear form on $L^2(F^{\rho}; |\rho| \cdot \mu)$ where F^{ρ} is a support of $|\rho| \cdot \mu$, since ∇ has the following consistency property by Proposition 7.1.4 in [6, Chapter I]: if $u \in \mathcal{F}C_h^1$ and $v \in \mathcal{F}C_h^1$ coincide on a measurable set A, then $\nabla u = \nabla v$ on A μ -a.e. In the following, a measurable function on E is also regarded as a function on F^{ρ} by the natural restriction. The set of all functions $\rho \in L^1_+$ such that $(\mathcal{E}^{\rho}, \mathcal{F}C^1_b)$ is closable on $L^2(F^{\rho}; \rho \cdot \mu)$ will be denoted by QR(E). Its closure $(\mathcal{E}^{\rho}, \mathcal{F}^{\rho})$ is then automatically a quasi-regular local Dirichlet form by the results of [22, 25] (see also [13, Theorem 2.1]). Functions belonging to \mathbb{H} defined in [13], especially positive L^1 -functions bounded away from 0, are elements of QR(E). We denote by \mathcal{F}_{b}^{ρ} the set of all bounded functions in \mathcal{F}^{ρ} . Following [27, 14], we denote by \mathcal{F}^{ρ}_{e} the extended Dirichlet space of $(\mathcal{E}^{\rho}, \mathcal{F}^{\rho})$: $u \in \mathcal{F}_e^{\rho}$ if and only if $|u| < \infty \rho \cdot \mu$ -a.e. and there exists a sequence $\{u_n\}$ in \mathcal{F}^{ρ} such that $\mathcal{E}^{\rho}(u_m - u_n, u_m - u_n) \to 0$ as $n \ge m \to \infty$ and $u_n \to u \ \rho \cdot \mu$ -a.e. as $n \to \infty$. For example, a function $\ell(\cdot): z \in E \mapsto \ell(z) \in \mathbb{R}$ belongs to \mathcal{F}_{e}^{ρ} for every $\ell \in E^{*}$. Indeed, when Φ_n is a smooth function on \mathbb{R} such that $0 \leq \Phi'_n \leq 1$ on \mathbb{R} , $\Phi_n(x) = x$ on [-n, n] and $|\Phi_n(x)| = n+1$ on $\mathbb{R} \setminus [-n-2, n+2], \{\Phi_n \circ \ell(\cdot)\}_{n \in \mathbb{N}}$ is the desired sequence. \mathcal{E}^{ρ} extends to a bilinear form on \mathcal{F}_e^{ρ} in a natural way.

For each $\rho \in QR(E)$, there exists an associated diffusion process $\mathbf{M}^{\rho} = (X_t, \mathcal{M}_t, P_z)$ on F^{ρ} with $(\mathcal{E}^{\rho}, \mathcal{F}^{\rho})$. We denote by \mathbf{A}^{ρ}_+ the set of all positive continuous additive functionals (PCAF in abbreviation) of \mathbf{M}^{ρ} , and define $\mathbf{A}^{\rho} = \mathbf{A}^{\rho}_+ - \mathbf{A}^{\rho}_+$. For $A \in \mathbf{A}^{\rho}$, its total variation process is denoted by $\{A\}$. We also define $\mathbf{A}^{\rho}_0 = \{A \in \mathbf{A}^{\rho} \mid E_{\rho \cdot \mu}(\{A\}_t) < \infty$ for all $t > 0\}$. Each element in \mathbf{A}^{ρ}_+ has a corresponding positive \mathcal{E}^{ρ} -smooth measure on F^{ρ} by the Revuz correspondence. The totality of such measures will be denoted by S^{ρ}_+ . Accordingly, \mathbf{A}^{ρ} has a correspondence with $S^{\rho} = S^{\rho}_+ - S^{\rho}_+$, the set of \mathcal{E}^{ρ} -smooth signed measures.

For each $u \in \mathcal{F}_e^{\rho}$, we have the following decomposition:

$$\tilde{u}(X_t) - \tilde{u}(X_0) = M_t^{[u]} + N_t^{[u]},$$

where \tilde{u} is an \mathcal{E}^{ρ} -quasicontinuous modification of u, $M^{[u]}$ is a martingale AF of finite energy and $N^{[u]}$ is a CAF of zero energy. Also, $M^{[u]}$ and $N^{[u]}$ are uniquely determined. When $u = \ell(\cdot)$ for some $\ell \in E^*$, we also write $M^{[\ell]}$ and $N^{[\ell]}$, instead of $M^{[u]}$ and $N^{[u]}$, respectively.

Let $\rho \in L^1$ and $\ell \in E^*$. Following [13], we say that ρ is of bounded variation in direction ℓ ($\rho \in BV_{\ell}(E)$ in notation) if there is a positive constant C such that

$$\left| \int_{E} \partial_{\ell} v(z) \rho(z) \, \mu(dz) \right| \le C \|v\|_{\infty} \quad \text{for every } v \in \mathcal{F}C_{b}^{1}.$$

Theorem 2.1 Let $\rho \in L^1_+$ and $\ell \in E^*$.

- (i) The following conditions are mutually equivalent.
 - (a) $\rho \in BV_{\ell}(E)$.
 - (b) There exists a finite signed measure ν_{ℓ} on E such that for every $v \in \mathcal{F}C_b^1$,

$$\frac{1}{2} \int_E \partial_\ell v(z) \rho(z) \,\mu(dz) = -\int_E v(z) \,\nu_\ell(dz). \tag{2.1}$$

In this case, ν_{ℓ} necessarily belongs to $S^{\rho+1}$.

- (ii) Suppose further that $\rho \in QR(E)$. Then the following condition is also equivalent to the above.
 - (c) $N^{[\ell]} \in \mathbf{A}_0^{\rho}$.

In this case, ν_{ℓ} in (b) necessarily satisfies that $\nu_{\ell}|_{E \setminus F^{\rho}} = 0$, $\nu_{\ell}|_{F^{\rho}} \in S^{\rho}$ and $N^{[\ell]}$ is in Revuz correspondence with it. Furthermore, it holds for any \mathcal{E}^{ρ} -quasicontinuous function v in \mathcal{F}^{ρ}_{b} that

$$\mathcal{E}^{\rho}(v,\ell(\cdot)) = -\int_{F^{\rho}} v(z) \,\nu_{\ell}(dz).$$

Proof. We shall use Theorem 6.2 in [11] for the proof. We remark that Proposition 3.1 in [11] holds for u in the extended Dirichlet space. Then Theorems 3.2, 4.2 and 6.2 in [11] also hold for such u.

Since

$$\frac{1}{2} \int_{E} \partial_{\ell} v(z) (\rho(z) + 1) \mu(dz) = \frac{1}{2} \int_{E} \partial_{\ell} v(z) \rho(z) \mu(dz) + \frac{1}{2} \int_{E} v(z) \ell(z) \mu(dz)$$

 $\rho \in BV_{\ell}(E)$ if and only if $\rho + 1 \in BV_{\ell}(E)$. Obviously, $\rho + 1 \in QR(E)$ for any $\rho \in L_{+}^{1}$. The assertion (i) follows from Theorem 6.2 in [11] because $\ell(\cdot) \in \mathcal{F}_{e}^{\rho+1}$ and $\mathcal{E}^{\rho+1}(v, \ell(\cdot)) = \frac{1}{2} \int_{E} \partial_{\ell} v(z)(\rho(z) + 1)\mu(dz)$. For the proof of the assertion (ii), consider the following condition:

(b') There exists some $\nu'_{\ell} \in S^{\rho}$ such that for every $v \in \mathcal{F}C^{1}_{b}$,

$$\mathcal{E}^{\rho}(v,\ell(\cdot)) = -\int_{F^{\rho}} v(z) \,\nu'_{\ell}(dz)$$

From Theorem 6.2 in [11], (a), (b'), and (c) are mutually equivalent and $N^{[\ell]}$ is in Revuz correspondence with ν'_{ℓ} . Suppose (b'). By considering a measure ν_{ℓ} on E defined by $\nu_{\ell}|_{F^{\rho}} = \nu'_{\ell}$ and $\nu_{\ell}|_{E \setminus F^{\rho}} = 0$, the condition (b) holds. Since ν_{ℓ} in (b) is uniquely determined if it exists, we get the rest of the assertions.

3 Structures of BV space

First, we introduce three function spaces on E. The *H*-derivative ∇ defined on $\mathcal{F}C_b^1$ is closable as an operator from L^1 to $L^1(E \to H)$. The domain of its closure is denoted by $\mathbb{D}^{1,1}$, equipped with the norm $||f||_{1,1} = ||f||_1 + ||\nabla f||_1$. The closure of ∇ is denoted by the same symbol.

Let

$$A_{1/2}(x) = \int_0^x (\log(1+s))^{1/2} \, ds, \quad x \ge 0,$$

and let Ψ be its complementary function, namely,

$$\Psi(y) := \int_0^y (A'_{1/2})^{-1}(t) \, dt = \int_0^y (\exp(t^2) - 1) \, dt.$$

Then it holds for $x \ge 0$ and $y \ge 0$ that

$$xy \le A_{1/2}(x) + \Psi(y).$$
 (3.1)

Define

$$L(\log L)^{1/2} = \{f \mid A_{1/2}(|f|) \in L^1\},\$$

$$L^{\Psi} = \{g \mid \Psi(c|g|) \in L^1 \text{ for some } c > 0\}.$$

From the general theory of Orlicz spaces (see e.g. [24, Chapter 3]), we have the following properties.

- (i) $L(\log L)^{1/2}$ and L^{Ψ} are Banach spaces under the norms $||f||_{L(\log L)^{1/2}} = \inf\{\alpha > 0 \mid \int_{E} A_{1/2}(|f|/\alpha) d\mu \leq 1\}$ and $||g||_{L^{\Psi}} = \inf\{\alpha > 0 \mid \int_{E} \Psi(|g|/\alpha) d\mu \leq 1\}$, respectively. (Note: we adopt a terminology different from [24]; e.g. $N_{\Psi}(\cdot)$ is used in [24] instead of $||\cdot||_{L^{\Psi}}$).
- (ii) For $f \in L(\log L)^{1/2}$ and $g \in L^{\Psi}$, we have

$$||fg||_1 \leq 2||f||_{L(\log L)^{1/2}} ||g||_{L^{\Psi}}, \qquad (3.2)$$

$$||fg||_1 \leq (||A_{1/2}(|f|)||_1 + 1)||g||_{L^{\Psi}}.$$
(3.3)

We give only a proof of (ii) here. Taking $x = |f(z)|/||f||_{L(\log L)^{1/2}}$ and $y = |g(z)|/||g||_{L^{\Psi}}$ in (3.1) and integrating both sides, we get (3.2). Taking x = |f(z)| and $y = |g(z)|/||g||_{L^{\Psi}}$ in (3.1) and integrating both sides, we obtain (3.3). We state a direct implication of (3.2) as a next lemma.

Lemma 3.1 Suppose $\varphi \in L^{\Psi}$. Then, $\varphi f \in L^1$ for any $f \in L(\log L)^{1/2}$. If a sequence $\{f_n\}$ converges to f in $L(\log L)^{1/2}$, then $\lim_{n\to\infty} \int_E \varphi f_n d\mu = \int_E \varphi f d\mu$.

Letting $g \equiv 1$ in (3.2), we see that $L(\log L)^{1/2}$ is continuously embedded in L^1 . The following observation is also useful: as a set, $L(\log L)^{1/2} = \{f \mid |f|(\log^+|f|)^{1/2} \in L^1\}$ and $L^{\Psi} = \{g \mid \exp(c|g|^2) \in L^1 \text{ for some } c > 0\}$, where $\log^+ x = \max(\log x, 0)$. This is because the next estimates hold for some positive constants C_1 and C_2 :

$$C_1 x (\log^+ x)^{1/2} \le A_{1/2}(x) \le x + x (\log^+ x)^{1/2}, \quad x \ge 0,$$

 $\exp(y^2/2) - C_2 \le \Psi(y) \le \exp(2y^2), \quad y \ge 0.$

Also, we have the following embedding theorem.

Proposition 3.2 The space $\mathbb{D}^{1,1}$ is continuously embedded in $L(\log L)^{1/2}$.

Proof. The proof is based on the argument in [21, p. 272]. Let $\Phi(r) = (2\pi)^{-1/2} \int_{-\infty}^{r} \exp(-t^2/2) dt$, $r \in \mathbb{R}$ and $\mathcal{U}(x) = \Phi' \circ \Phi^{-1}(x)$, 0 < x < 1. Then $\lim_{x \downarrow 0} \frac{\mathcal{U}(x)}{x\sqrt{2\log 1/x}} = 1$ (cf. [21, p. 271]). We can take a constant $\delta > 0$ such that $\mathcal{U}(x) \ge x\sqrt{\log(1+1/x)}$ for all $x \in (0, \delta]$. We

may also take $\delta \leq 1/(e-1)$.

Suppose $f \in \mathcal{F}C_b^1$ and $||f||_{1,1} \leq 1/\sqrt{\log(1+1/\delta)}$ (≤ 1). The isoperimetric inequality for Gaussian measure implies that

$$\|\nabla f\|_1 \ge \int_0^\infty \mathcal{U}(\mu(\{|f|\ge s\}))\,ds.$$

If $s \ge 1/\delta$, then $\mu(\{|f| \ge s\}) \le ||f||_1/s \le 1/s \le \delta$ and

$$\begin{split} \mathcal{U}(\mu(\{|f| \ge s\})) & \ge \quad \mu(\{|f| \ge s\}) \sqrt{\log(1 + 1/\mu(\{|f| \ge s\}))} \\ & \ge \quad \mu(\{|f| \ge s\}) \sqrt{\log(1 + s)}. \end{split}$$

Therefore,

$$\begin{split} 1 &\geq \sqrt{\log(1+1/\delta)} \|f\|_{1,1} \geq \sqrt{\log(1+1/\delta)} \|f\|_1 + \|\nabla f\|_1 \\ &\geq \sqrt{\log(1+1/\delta)} \int_0^\infty \mu(\{|f| \geq s\}) \, ds + \int_{1/\delta}^\infty \mu(\{|f| \geq s\}) \sqrt{\log(1+s)} \, ds \\ &\geq \int_0^\infty \mu(\{|f| \geq s\}) \left(\sqrt{\log(1+1/\delta)} + \sqrt{\log(1+s)} \cdot \mathbf{1}_{\{s \geq 1/\delta\}}\right) ds \\ &\geq \int_0^\infty \mu(\{|f| \geq s\}) \sqrt{\log(1+s)} \, ds \\ &= \int_E d\mu \int_0^\infty ds \, \mathbf{1}_{\{|f| \geq s\}} \sqrt{\log(1+s)} \\ &= \int_E d\mu \int_0^{|f|} \sqrt{\log(1+s)} \, ds = \|A_{1/2}(|f|)\|_1. \end{split}$$

Therefore, $||f||_{L(\log L)^{1/2}} \leq 1$. This concludes the claim.

We denote by $(\mathcal{F}C_b^1)_{E^*}$ the set of all E^* -valued functions on E expressed as $\sum_{j=1}^m g_j(z)\ell_j$ with $g_j \in \mathcal{F}C_b^1$ and $\ell_j \in E^*$, $j = 1, \ldots, m$ for some $m \in \mathbb{N}$. We also denote by ∇^* the (formal) dual operator with domain $(\mathcal{F}C_b^1)_{E^*}$ of ∇ . When $G(z) = g(z)\ell$, $g \in \mathcal{F}C_b^1$, $\ell \in E^*$, we have $\nabla^*G(z) = -\partial_\ell g(z) + g(z)\ell(z)$.

For $\rho \in L(\log L)^{1/2}$, define

$$V(\rho) = \sup\left\{\int_{E} (\nabla^* G) \rho \, d\mu \, \Big| \, G \in (\mathcal{F}C_b^1)_{E^*}, \ \|G(z)\|_H \le 1 \text{ for every } z \in E \right\} \ (\le \infty).$$

Since $\nabla^* G \in L^{\Psi}$ for each $G \in (\mathcal{F}C_b^1)_{E^*}$, the integral above is well-defined from Lemma 3.1. DEFINITION 3.3 Let $BV(E) = \{\rho \in L(\log L)^{1/2} \mid V(\rho) < \infty\}$. We say that ρ in BV(E) is of bounded variation. By Proposition 3.2 and Lemma 3.1, we see that the next duality relation holds for any $\rho \in \mathbb{D}^{1,1}$,

$$\int_E \nabla^* G(z)\rho(z)\mu(dz) = \int_E \langle G(z), \nabla \rho(z) \rangle \mu(dz), \quad G \in (\mathcal{F}C^1_b)_{E^*},$$

and hence, we have as in [13],

Lemma 3.4 For $\rho \in \mathbb{D}^{1,1}$, $V(\rho) = \|\nabla \rho\|_1$. In particular, $\mathbb{D}^{1,1} \subset BV(E)$.

The Ornstein-Uhlenbeck semigroup $\{T_t\}$ is defined as usual: $T_t f(x) = \int_E f(e^{-t}x + \sqrt{1 - e^{-2t}y}) \mu(dy)$, where f is a function on E taking values in a separable Hilbert space.

Proposition 3.5 For every t > 0, the operator $\nabla T_t : \mathcal{F}C_b^1 \to L^1(E \to H)$ extends uniquely to a bounded operator from $L(\log L)^{1/2}$ to $L^1(E \to H)$.

Proof. This result is implicitly proved in [20], but we give a proof for readers' convenience. Let $\varphi \in \mathcal{F}C_b^1$ with $\|\varphi\|_{L(\log L)^{1/2}} \leq 1, \ell \in E^*$ with $\|\ell\|_H = 1$, and t > 0. Note that $\|\ell(\cdot)\|_{L^{\Psi}}$ is independent of the choice of ℓ . From a direct computation (see e.g. [29]),

$$\partial_{\ell} T_t \varphi(x) = \frac{e^{-t}}{(1 - e^{-2t})^{1/2}} \int_E \varphi(e^{-t} x + (1 - e^{-2t})^{1/2} y) \ell(y) \, \mu(dy)$$

Set $\theta = \arccos(e^{-t})$ and $R_{\theta}(x, y) = (x \cos \theta + y \sin \theta, -x \sin \theta + y \cos \theta)$. Then,

$$\begin{aligned} |\partial_{\ell} T_t \varphi(x)| &= \operatorname{cot} \theta \left| \int_E (\varphi \otimes 1) (R_{\theta}(x, y)) \ell(y) \, \mu(dy) \right| \\ &\leq c \left(\|A_{1/2}(|(\varphi \otimes 1) (R_{\theta}(x, \cdot))|)\|_1 + 1 \right). \end{aligned}$$

Here, (3.3) was used in the second line and c is a constant depending only on t. Then,

$$\begin{aligned} \|\nabla T_t \varphi(x)\|_H &= \sup_{\ell \in E^*, \, \|\ell\|_H = 1} |\partial_\ell T_t \varphi(x)| \\ &\leq c(\|A_{1/2}(|(\varphi \otimes 1)(R_\theta(x, \cdot))|)\|_1 + 1) \end{aligned}$$

From the rotational invariance of $\mu \otimes \mu$,

$$\begin{aligned} \|\nabla T_t \varphi\|_1 &\leq c \left(\iint_{E \times E} A_{1/2}(|(\varphi \otimes 1)(R_{\theta}(x,y))|)\mu(dx)\mu(dy) + 1 \right) \\ &= c \left(\iint_{E \times E} A_{1/2}(|(\varphi \otimes 1)(x,y)|)\mu(dx)\mu(dy) + 1 \right) \\ &= c \left(\int_E A_{1/2}(|\varphi(x)|)\mu(dx) + 1 \right) \leq 2c. \end{aligned}$$

Since $\mathcal{F}C_b^1$ is dense in $L(\log L)^{1/2}$, we get the conclusion.

Proposition 3.6 Take any $f \in L(\log L)^{1/2}$.

- (i) $T_t f \in \mathbb{D}^{1,1}, \qquad t > 0.$
- (ii) $T_t f$ converges to f in $L(\log L)^{1/2}$ as $t \downarrow 0$.

- (iii) $V(T_t f) \le e^{-t} V(f) \le \infty, \quad t > 0.$
- (iv) $\lim_{t\downarrow 0} V(T_t f) = V(f).$

Proof. (i) Take a sequence of functions $\{f_n\}$ in $\mathcal{F}C_b^1$ such that f_n converges to f in $L(\log L)^{1/2}$. From Proposition 3.5, $\{\nabla T_t f_n\}$ converges in $L^1(E \to H)$. On the other hand, $\{T_t f_n\}$ converges to $T_t f$ in L^1 . By the closedness of ∇ on $\mathbb{D}^{1,1}$, we conclude that $T_t f \in \mathbb{D}^{1,1}$.

(ii) This is clear when f is bounded continuous. For a general f, we have by the Jensen inequality

$$A_{1/2}(|T_t f(x)|/\alpha) \le \int_E A_{1/2}(|f(e^{-t}x + \sqrt{1 - e^{-2t}}y)|/\alpha)\,\mu(dy), \quad \alpha > 0.$$

Integrating the both hand sides by $\mu(dx)$, we get

 $||A_{1/2}(|T_t f|/\alpha)||_1 \le ||A_{1/2}(|f|/\alpha)||_1, \quad \alpha > 0,$

which means that $||T_t f||_{L(\log L)^{1/2}} \leq ||f||_{L(\log L)^{1/2}}$. The claim follows from a usual approximation argument.

(iii) By (i), we get the following formula in the same way as in [13]:

$$\int_{E} \nabla^{*} G(z) T_{t} f(z) \mu(dz) = e^{-t} \int_{E} \nabla^{*} (T_{t} G)(z) f(z) \mu(dz), \quad G \in (\mathcal{F}C_{b}^{1})_{E^{*}}, \quad f \in L(\log L)^{1/2},$$

which immediately implies (iii).

(iv) As in Lemma 4.1 in [13], we can prove that $V(f) \leq \underline{\lim}_{t\downarrow 0} V(T_t f)$. By combining (iii), the claim follows.

Now we can give a characterization of the space BV(E) as follows.

Theorem 3.7 It holds that

$$BV(E) = \left\{ \rho \in L^1 \mid \begin{array}{c} \text{there exists a sequence } \{\rho_n\} \subset \mathbb{D}^{1,1} \text{ such that} \\ \rho_n \to \rho \text{ in } L^1 \text{ and } \sup_n \|\nabla \rho_n\|_1 < \infty. \end{array} \right\}.$$
(3.4)

Moreover, if ρ_n and ρ are as in the right hand side of (3.4), then $V(\rho) \leq \underline{\lim}_{n \to \infty} \|\nabla \rho_n\|_1$.

Proof. Let the right-hand side of (3.4) be denoted by BV_1 . First, we prove $BV(E) \subset BV_1$. This is proved in the same way as in Proposition 4.1 in [13]. Let $\rho_n = T_{1/n}\rho$, $n \in \mathbb{N}$. Then $\rho_n \to \rho$ in L^1 as $n \to \infty$, and from Proposition 3.6 and Lemma 3.4, $\rho_n \in \mathbb{D}^{1,1}$, $\|\nabla \rho_n\|_1 = V(\rho_n) \leq V(\rho)$ for every n. Therefore, $\rho \in BV_1$.

Next, we prove $BV_1 \subset BV(E)$. For $\rho \in BV_1$, let $\{\rho_n\}$ be as in the definition of BV_1 . Let $M = \underline{\lim}_{n\to\infty} \|\nabla\rho_n\|_1 < \infty$. From Proposition 3.2, $\{\rho_n\}$ is bounded in $L(\log L)^{1/2}$. By taking a subsequence, we may assume that ρ_n converges to ρ μ -a.e. From Fatou's lemma, $\rho \in L(\log L)^{1/2}$. Let Φ_m be a smooth function on \mathbb{R} such that $0 \leq \Phi'_m \leq 1$ on \mathbb{R} , $\Phi_m(x) = x$ on [-m, m]and $|\Phi_m(x)| = m + 1$ on $\mathbb{R} \setminus [-m - 2, m + 2]$. Then for $G \in (\mathcal{F}C^1_b)_{E^*}$,

$$\begin{aligned} \left| \int_{E} (\nabla^{*} G) \Phi_{m} \circ \rho \, d\mu \right| &= \lim_{n \to \infty} \left| \int_{E} (\nabla^{*} G) \Phi_{m} \circ \rho_{n} \, d\mu \right| &= \lim_{n \to \infty} \left| \int_{E} \langle G, \nabla(\Phi_{m} \circ \rho_{n}) \rangle \, d\mu \right| \\ &\leq \lim_{n \to \infty} \|G\|_{\infty} \|\nabla(\Phi_{m} \circ \rho_{n})\|_{1} \leq \lim_{n \to \infty} \|G\|_{\infty} \|\nabla\rho_{n}\|_{1} \leq M \|G\|_{\infty}. \end{aligned}$$

Since $\Phi_m \circ \rho \to \rho$ as $m \to \infty$ in $L(\log L)^{1/2}$, $\int_E (\nabla^* G) \Phi_m \circ \rho \, d\mu \to \int_E (\nabla^* G) \rho \, d\mu$ by Lemma 3.1. Therefore, $|\int_E (\nabla^* G) \rho \, d\mu| \leq M ||G||_{\infty}$. Hence, $\rho \in BV(E)$ and $V(\rho) \leq M$.

Corollary 3.8 Let Λ be a function on \mathbb{R} so that $|\Lambda(x) - \Lambda(y)| \leq |x - y|$ for all $x, y \in \mathbb{R}$. Then for every $\rho \in BV(E)$, $\Lambda \circ \rho$ also belongs to BV(E) and $V(\Lambda \circ \rho) \leq V(\rho)$. In particular, the space BV(E) is a vector lattice.

Proof. Let $\rho_n = T_{1/n}\rho$, $n \in \mathbb{N}$. Then $\{\Lambda \circ \rho_n\} \subset \mathbb{D}^{1,1}$, $\Lambda \circ \rho_n \to \Lambda \circ \rho$ in L^1 as $n \to \infty$, and

$$\sup_{n} \|\nabla(\Lambda \circ \rho_n)\|_1 \le \sup_{n} \|\nabla \rho_n\|_1 \le V(\rho)$$

by Lemma 3.4 and Proposition 3.6. This implies that $\Lambda \circ \rho \in BV(E)$ and $V(\Lambda \circ \rho) \leq V(\rho)$ by virtue of Theorem 3.7.

We now extend Theorem 3.1 (ii) in [13] together with a uniqueness statement.

Theorem 3.9 For each $\rho \in BV(E)$, there exists a positive finite measure ν on E and an H-valued Borel function σ on E such that $\|\sigma\|_{H} = 1$ ν -a.e. and for every $G \in (\mathcal{F}C_{b}^{1})_{E^{*}}$,

$$\int_{E} (\nabla^* G) \rho \, d\mu = \int_{E} \langle G, \sigma \rangle \, d\nu. \tag{3.5}$$

The measure ν belongs to $S^{|\rho|+1}$. If moreover $\rho \in QR(E)$, then $\nu|_{E\setminus F^{\rho}} = 0$ and $\nu|_{F^{\rho}} \in S^{\rho}$. Also, ν and σ are uniquely determined; namely, if ν' and σ' are another pair satisfying the relation (3.5) for all $G \in (\mathcal{F}C_b^1)_{E^*}$, then $\nu = \nu'$ and $\sigma = \sigma' \nu$ -a.e.

Proof. First, suppose $\rho \geq 0$ μ -a.e. By Theorem 2.1, for each $\ell \in E^*$, there exists a signed measure ν_{ℓ} on E which belongs to $S^{\rho+1}$ (resp. such that $\nu_{\ell}|_{E\setminus F^{\rho}} = 0$ and $\nu_{\ell}|_{F^{\rho}} \in S^{\rho}$ if $\rho \in BV(E) \cap QR(E)$) satisfying

$$\frac{1}{2}\int_E \partial_\ell v(z)\rho(z)\mu(dz) = -\int_E v(z)\,\nu_\ell(dz), \quad v \in \mathcal{F}C_b^1.$$

Define $D_{\ell}\rho = 2\nu_{\ell} + \ell(\cdot)\rho \cdot \mu$. Then for an *H*-valued function *G* expressed as $G(z) = g(z)\ell$ with $g \in \mathcal{F}C_b^1$, $\ell \in E^*$ and $\|\ell\|_H = 1$, we have

$$\int_{E} (\nabla^* G) \rho \, d\mu = \int_{E} (-\partial_{\ell} g + g\ell(\cdot)) \rho \, d\mu = \int_{E} g(z) \, D_{\ell} \rho(dz).$$

Therefore, $V(D_{\ell}\rho)$, the total variation measure of $D_{\ell}\rho$, satisfies $V(D_{\ell}\rho)(E) \leq V(\rho)$.

For a general ρ , let ρ_+ and ρ_- be the positive part and the negative part of ρ , respectively. Then from Corollary 3.8, $\rho_{\pm} \in BV(E)$ and $V(\rho_{\pm}) \leq V(\rho)$. Therefore, $V(D_{\ell}\rho_{\pm})(E) \leq V(\rho)$. Define $D_{\ell}\rho = D_{\ell}\rho_+ - D_{\ell}\rho_-$. Then $V(D_{\ell}\rho)(E) \leq 2V(\rho)$.

Take $\{h_j\}_{j=1}^{\infty} \subset E^*$ as a c.o.n.s. of H. Let $\gamma = \sum_{j=1}^{\infty} 2^{-j} V(D_{h_j}\rho)$ and $v_j(z) = \frac{dD_{h_j}\rho}{d\gamma}(z)$, $j \in \mathbb{N}$. Then γ is a positive finite measure, $\gamma(E) \leq 2V(\rho)$, and $\gamma \in S^{|\rho|+1}$ (resp. $\gamma|_{E \setminus F^{\rho}} = 0$ and $\gamma|_{F^{\rho}} \in S^{\rho}$ if $\rho \in BV(E) \cap QR(E)$). We may assume that each v_j is Borel measurable. From the same argument as in the proof of Theorem 3.1 (ii) in [13], we can construct ν and σ from γ and v_j so that (3.5) holds for all G expressed as $G(z) = \sum_{j=1}^{n} g_j(z)h_j$ with $g_j \in \mathcal{F}C_b^1$, $j = 1, \ldots, n$ for some $n \in \mathbb{N}$. In order to finish the proof of the first claim, it suffices to prove the validity of (3.5) for $G(z) = g(z)\ell$, where $g \in \mathcal{F}C_b^1$ and $\ell \in E^*$ with $\|\ell\|_H = 1$. The relation to prove is

$$-\int_{E} (\partial_{\ell} g) \rho \, d\mu + \int_{E} g\ell(\cdot) \rho \, d\mu = \int_{E} g\langle \ell, \sigma \rangle \, d\nu.$$
(3.6)

Let $\ell_n = \sum_{j=1}^n \langle \ell, h_j \rangle h_j$, $n \in \mathbb{N}$. Denote the linear span of $\{\ell_n, \ell\}$ in H by H_n , and its orthogonal complement by H_n^{\perp} . Take a unitary operator U_n on H satisfying that H_n is U_n -invariant, $U_n(\ell_n) = \ell$, and $U_n|_{H_n^{\perp}}$ is an identity mapping. U_n can be extended to a continuous operator on E, leaving μ invariant. Set $g_n(z) = g(U_n(z)), z \in E$. We already know that (3.6) holds if ℓ and g are replaced by ℓ_n and g_n , respectively. We shall observe that each term converges appropriately as $n \to \infty$. Since $\partial_{\ell_n} g_n(z) = (\partial_{\ell} g)(U_n(z))$, it holds by the dominated convergence theorem that

$$\lim_{n \to \infty} \int_E (\partial_{\ell_n} g_n) \rho \, d\mu = \int_E (\partial_\ell g) \rho \, d\mu$$

and

$$\lim_{n \to \infty} \int_E g_n \langle \ell_n, \sigma \rangle \, d\nu = \int_E g \langle \ell, \sigma \rangle \, d\nu$$

From the U_n -invariance of μ , it holds that $\rho \circ U_n^{-1} \to \rho$ in $L(\log L)^{1/2}$ as $n \to \infty$. Indeed, this is proved by approximating ρ by bounded continuous functions and using a triangle inequality. Then from Lemma 3.1,

$$\int_E g_n \ell_n(\cdot) \rho \, d\mu = \int_E g\ell(\cdot) (\rho \circ U_n^{-1}) \, d\mu \to \int_E g\ell(\cdot) \rho \, d\mu \quad \text{as } n \to \infty.$$

Therefore, (3.6) holds.

We shall proceed to the proof of uniqueness. Suppose that σ' and ν' are another pair. Then,

$$\int_{E} \langle G, \gamma \rangle \, d\xi = 0 \quad \text{for every } G \in (\mathcal{F}C_{b}^{1})_{E^{*}},$$

where $\xi = \nu + \nu'$ and $\gamma = \sigma \frac{d\nu}{d\xi} - \sigma' \frac{d\nu'}{d\xi}$. Taking a uniformly bounded sequence $\{G_n\} \subset (\mathcal{F}C_b^1)_{E^*}$ so that $\langle G_n, \gamma \rangle \to \|\gamma\|_H \xi$ -a.e., we get $\gamma = 0$ ξ -a.e. Therefore, $\|\sigma\|_H \frac{d\nu}{d\xi} = \|\sigma'\|_H \frac{d\nu'}{d\xi} \xi$ -a.e. Since $\|\sigma\|_H = 1$ ν -a.e., $\|\sigma\|_H \frac{d\nu}{d\xi} = \frac{d\nu}{d\xi} \xi$ -a.e. Similarly, $\|\sigma'\|_H \frac{d\nu'}{d\xi} = \frac{d\nu'}{d\xi} \xi$ -a.e. Then, $\frac{d\nu}{d\xi} = \frac{d\nu'}{d\xi} \xi$ -a.e., which implies $\nu = \nu'$. Also, it follows that $\sigma = \sigma' \nu$ -a.e. from $\gamma = 0$ ξ -a.e. and $\nu = \nu'$.

We shall hereafter write $||D\rho||$ and σ_{ρ} in place of ν and σ , respectively.

Corollary 3.10 It holds that

$$BV(E) = \left\{ \rho \in L(\log L)^{1/2} \middle| \begin{array}{l} \text{there exist a sequence } \{\rho_n\} \subset \mathbb{D}^{1,1}, \text{ a positive finite} \\ \text{measure } \nu \text{ on } E \text{ and an } H \text{-valued Borel function } \sigma \text{ on } E \\ \text{such that } \rho_n \to \rho \text{ in } L(\log L)^{1/2}, \\ \sup_n \|\nabla \rho_n\|_1 < \infty, \|\sigma\|_H = 1 \ \nu \text{-a.e., and} \\ \lim_{n \to \infty} \int_E \langle G, \nabla \rho_n \rangle \, d\mu = \int_E \langle G, \sigma \rangle \, d\nu \text{ for all } G \in (\mathcal{F}C_b^1)_{E^*}. \end{array} \right\}$$

$$(3.7)$$

Furthermore, σ and ν in the right-hand side coincide with σ_{ρ} and $\|D\rho\|$, respectively.

Proof. Let the right-hand side in (3.7) be denoted by BV_2 . Take $\rho \in BV(E)$, and let $\rho_n = T_{1/n}\rho$ for $n \in \mathbb{N}$. Then $\rho_n \in \mathbb{D}^{1,1}$, $\rho_n \to \rho$ in $L(\log L)^{1/2}$, and $V(\rho_n) \leq V(\rho)$ by Proposition 3.6. For any $G \in (\mathcal{F}C_b^1)_{E^*}$,

$$\int_{E} \langle G, \nabla \rho_n \rangle \, d\mu = \int_{E} (\nabla^* G) \rho_n \, d\mu \to \int_{E} (\nabla^* G) \rho \, d\mu = \int_{E} \langle G(z), \sigma_\rho(z) \rangle \, \|D\rho\|(dz) \quad \text{as } n \to \infty.$$

Therefore, $\rho \in BV_2$. The inverse inclusion is trivial from Theorem 3.7. The latter assertion follows from Theorem 3.9.

REMARK 3.11 We can also replace $\mathbb{D}^{1,1}$ by $\mathcal{F}C_b^1$ and two $L(\log L)^{1/2}$'s by L^1 in the righthand side of (3.7). Compare (3.7) with characterizations of $\mathbb{D}^{1,1}$:

$$\mathbb{D}^{1,1} = \left\{ \rho \in L^1 \mid \text{there exist a sequence } \{\rho_n\} \subset \mathcal{F}C_b^1 \text{ and } J \in L^1(E \to H) \text{ such } \\ \text{that } \rho_n \to \rho \text{ in } L^1 \text{ and } \nabla \rho_n \to J \text{ in } L^1(E \to H). \end{array} \right\}$$
$$= \left\{ \rho \in L(\log L)^{1/2} \mid \text{there exist a sequence } \{\rho_n\} \subset \mathcal{F}C_b^1 \text{ and } \\ J \in L^1(E \to H) \text{ such that } \rho_n \to \rho \text{ in } L(\log L)^{1/2} \\ \text{and } \nabla \rho_n \to J \text{ in } L^1(E \to H). \end{array} \right\}.$$

We can now present a formula analogous to the classical Green formula. We consider the Ornstein-Uhlenbeck operator $L = -\nabla^* \nabla$, which can be expressed as

$$Lu(z) = \sum_{i=1}^{m} \partial_i^2 f(\ell_1(z), \dots, \ell_m(z)) - \sum_{i=1}^{m} \partial_i f(\ell_1(z), \dots, \ell_m(z)) \ell_i(z)$$

if $u(z) = f(\ell_1(z), \dots, \ell_m(z)) \in \mathcal{F}C_b^2$ and $\ell_1, \dots, \ell_m \in E^*$ are orthonormal in H.

Theorem 3.12 Let $\rho \in BV(E)$. For any $u \in \mathcal{F}C_b^2$ and any $v \in \mathcal{F}C_b^1$,

$$\mathcal{E}^{\rho}(u,v) = -\frac{1}{2} \int_{E} v(Lu)\rho \,d\mu - \frac{1}{2} \int_{E} v(z) \langle \nabla u(z), \sigma_{\rho}(z) \rangle \|D\rho\|(dz).$$
(3.8)

If further $\rho \in QR(E)$, then the equation obtained by replacing E by F^{ρ} in (3.8) holds for any $u \in \mathcal{F}C_b^2$ and any \mathcal{E}^{ρ} -quasicontinuous function $v \in \mathcal{F}_b^{\rho}$.

Proof. Take ρ_n as in the right hand side of (3.7). An integration by part gives

$$\int_{E} \langle \nabla u, \nabla v \rangle \rho_n \, d\mu = -\int_{E} v(Lu)\rho_n \, d\mu - \int_{E} v \langle \nabla u, \nabla \rho_n \rangle \, d\mu.$$

Letting n tend to infinity, we get the desired formula.

The next theorem is a converse to Lemma 3.4 and characterizes the space $\mathbb{D}^{1,1}$ as a subspace of BV(E).

Theorem 3.13 Let $\rho \in BV(E)$. If $||D\rho|| \ll \mu$, Then $\rho \in \mathbb{D}^{1,1}$ and

$$\|D\rho\| = \|\nabla\rho\|_H \cdot \mu, \quad \sigma_\rho = \frac{\nabla\rho}{\|\nabla\rho\|_H} \cdot \mathbf{1}_{\{\nabla\rho\neq 0\}}.$$

Proof. It suffices to prove that if there exists $J \in L^1(E \to H)$ such that

$$\int_{E} (\nabla^* G) \rho \, d\mu = \int_{E} \langle G, J \rangle \, d\mu, \qquad \text{for all } G \in (\mathcal{F}C^1_b)_{E^*},$$

then $\rho \in \mathbb{D}^{1,1}$ and $\nabla \rho = J$. Since $\rho \in L(\log L)^{1/2}$, $T_t \rho$ belongs to $\mathbb{D}^{1,1}$ and for any $G \in (\mathcal{F}C_b^1)_{E^*}$,

$$\int_E \langle G, \nabla T_t \rho \rangle \, d\mu = \int_E e^{-t} (\nabla^* T_t G) \rho \, d\mu = e^{-t} \int_E \langle T_t G, J \rangle \, d\mu = e^{-t} \int_E \langle G, T_t J \rangle \, d\mu.$$

Therefore, $\nabla T_t \rho = e^{-t} T_t J$. This converges to J in L^1 as $t \to 0$, which implies that $\rho \in \mathbb{D}^{1,1}$ and $\nabla \rho = J$.

REMARK 3.14 We have a coarea formula

$$V(\rho) = \int_{-\infty}^{\infty} V(\mathbf{1}_{\{\rho > t\}}) dt, \quad \rho \in BV(E),$$

just as Theorem 4.1 in [13]. Then for every $\rho \in BV(E)$, $\mathbf{1}_{\{\rho>t\}}$ belongs to BV(E) for a.e. t with respect to the Lebesgue measure. However, $\mathbf{1}_A \in \mathbb{D}^{1,1}$ if and only if $\mu(A) = 0$ or 1. Indeed, if $\mathbf{1}_A \in \mathbb{D}^{1,1}$, then $\nabla \mathbf{1}_A = \nabla (\mathbf{1}_A)^2 = 2 \cdot \mathbf{1}_A \nabla \mathbf{1}_A$, which implies that $\nabla \mathbf{1}_A = 0 \mu$ -a.e. Then for all t > 0, $\nabla T_t \mathbf{1}_A = e^{-t} T_t \nabla \mathbf{1}_A = 0 \mu$ -a.e. Since $T_t \mathbf{1}_A \in \mathcal{F}^1$, it is well-known that $T_t \mathbf{1}_A = \text{constant } \mu$ -a.e., therefore, $\mathbf{1}_A = \text{constant } \mu$ -a.e. Hence, there are many functions which belong to BV(E) but do not belong to $\mathbb{D}^{1,1}$.

Finally in this section, we study the support of $||D\rho||$. Let $\rho \in QR(E)$. We denote the \mathcal{E}^{ρ} -quasi support of $\nu \in S^{\rho}_+$ by \mathcal{E}^{ρ} -q. Supp ν . When A is a measurable subset of E, we define

$$\overline{A}^{\rho} = \mathcal{E}^{\rho} \text{-q. Supp}(\mathbf{1}_A \cdot \rho \cdot \mu), \quad \partial^{\rho} A = \overline{A}^{\rho} \cap \overline{E \setminus A}^{\rho}.$$

Theorem 3.15 Let $\rho \in BV(E)$. Then for every $a \in \mathbb{R}$, we have $||D\rho||(E \setminus \overline{\{\rho \neq a\}}^{|\rho|+1}) = 0$, namely,

$$\mathcal{E}^{|\rho|+1}$$
-q. Supp $||D\rho|| \subset \overline{\{\rho \neq a\}}^{|\rho|+1}$ $\mathcal{E}^{|\rho|+1}$ -q.e.

When $\rho = \mathbf{1}_A \in BV(E)$ for a certain set A, we have

$$\mathcal{E}^1$$
-q. Supp $\|D\rho\| \subset \partial^1 A \quad \mathcal{E}^1$ -q.e.

Proof. Let $a \in \mathbb{R}$. From the way of construction of $||D\rho||$ in the proof of Theorem 3.9, it is enough to prove that $D_{\ell}\rho(E \setminus F_a) = 0$ for each $\ell \in E^*$, where $F_a := \overline{\{\rho \neq a\}}^{|\rho|+1}$. By Lemma 4.6.1 in [14], there is a nonnegative and $\mathcal{E}^{|\rho|+1}$ -quasicontinuous function u in $\mathcal{F}_b^{|\rho|+1}$ such that $F_a = \{u = 0\} \mathcal{E}^{|\rho|+1}$ -q.e. We can take a uniformly bounded sequence $\{u_n\} \subset \mathcal{F}C_b^1$ such that $u_n \to u$ in $\mathcal{F}^{|\rho|+1}$ and $\mathcal{E}^{|\rho|+1}$ -q.e. as $n \to \infty$. For any $g \in \mathcal{F}C_b^1$, we have

$$\begin{split} \int_E g(z)u_n(z) D_\ell \rho(dz) &= \int_E g(z)u_n(z) D_\ell(\rho - a)(dz) \\ &= -\int_E \partial_\ell(gu_n)(\rho - a) d\mu + \int_E gu_n \ell(\cdot)(\rho - a) d\mu \\ &= -\int_E \{(\partial_\ell g)u_n + g\langle \nabla u_n, \ell \rangle\}(\rho - a) d\mu + \int_E gu_n \ell(\cdot)(\rho - a) d\mu. \end{split}$$

Keeping $\mathcal{E}^{|\rho|+1}$ -smoothness of $D_{\ell}\rho$ in mind, we obtain by letting $n \to \infty$ that

$$\int_{E} g(z)u(z) D_{\ell}\rho(dz) = -\int_{E} \{(\partial_{\ell}g)u + g\langle \nabla u, \ell \rangle\}(\rho - a) d\mu + \int_{E} gu\ell(\cdot)(\rho - a) d\mu. \quad (3.9)$$

Since u = 0 on $F_a \mu$ -a.e., $\nabla u = 0$ on $F_a \mu$ -a.e. by Theorem 7.1.1 in [6, Chapter I]. Therefore, the right-hand side of (3.9) vanishes. This means that $D_{\ell}\rho(E \setminus F_a) = 0$, which finishes the proof of the first part.

When $\rho = \mathbf{1}_A \in BV(E)$, by applying the first claim with a = 0 and a = 1, we get

$$\mathcal{E}^1$$
-q. Supp $||D\rho|| \subset \overline{A}^1 \cap \overline{E \setminus A}^1 = \partial^1 A \quad \mathcal{E}^1$ -q.e.

4 Distorted Ornstein-Uhlenbeck process and Itô's formula

Since E is separable, E^* is also separable in the weak*-topology (see e.g. [26, p.90]). Let $\{\ell_n\}$ be a countable dense subset of E^* .

Lemma 4.1 Let $\{B_t\}$ be an *E*-valued continuous process starting at 0. If $\{\ell_n(B_t)\}$ is an $\{\mathcal{M}_t\}$ -martingale with quadratic variation $t \|\ell_n\|_H^2$ for every *n*, then $\{B_t\}$ is an $\{\mathcal{M}_t\}$ -Brownian motion on *E*.

Proof. By the martingale representation theorem, each $\{\ell_n(B_t)\}$ is a 1-dimensional $\{\mathcal{M}_t\}$ -Brownian motion with a constant time change. Take any $\ell \in E^*$ with $\|\ell\|_H = 1$. There exists a subsequence $\{\ell_{n_k}\}$ of $\{\ell_n\}$ converging to ℓ in the weak* sense. Then,

$$\lim_{k \to \infty} \exp\left(-\|\ell_{n_k}\|_H^2/2\right) = \lim_{k \to \infty} \int_E \exp\left(\sqrt{-1}\ell_{n_k}(z)\right) \mu(dz)$$
$$= \int_E \exp\left(\sqrt{-1}\ell(z)\right) \mu(dz) = \exp\left(-1/2\right),$$

therefore $\lim_{k\to\infty} \|\ell_{n_k}\|_H = 1$. For $\xi \in \mathbb{R}$, t > s > 0 and an \mathcal{M}_s -measurable bounded function f,

$$\mathbb{E}\left[\exp\left(\sqrt{-1}\xi(\ell(B_t) - \ell(B_s))\right)f\right] = \lim_{k \to \infty} \mathbb{E}\left[\exp\left(\sqrt{-1}\xi(\ell_{n_k}(B_t) - \ell_{n_k}(B_s))\right)f\right]$$
$$= \lim_{k \to \infty} \exp\left(-(t - s)\xi^2 \|\ell_{n_k}\|_H^2/2\right)\mathbb{E}[f]$$
$$= \exp\left(-(t - s)\xi^2/2\right)\mathbb{E}[f].$$

Namely, $\{\ell(B_t)\}$ is a 1-dimensional $\{\mathcal{M}_t\}$ -Brownian motion. Therefore, $\{B_t\}$ is an $\{\mathcal{M}_t\}$ -Brownian motion on E.

By using this lemma, Theorem 3.2 in [13] is improved as follows.

Theorem 4.2 Let $\rho \in BV(E) \cap QR(E)$. Then the sample path of the distorted Ornstein-Uhlenbeck process $\mathbf{M}^{\rho} = (X_t, \mathcal{M}_t, P_z)$ associated with $(\mathcal{E}^{\rho}, \mathcal{F}^{\rho})$ admits the following expression as a sum of three E-valued CAF's:

$$X_t(\omega) - X_0(\omega) = W_t(\omega) - \frac{1}{2} \int_0^t X_s(\omega) \, ds + \frac{1}{2} \int_0^t \sigma_\rho(X_s(\omega)) \, dA_s^{\|D\rho\|}(\omega), \quad t \ge 0.$$
(4.1)

Here, the \mathcal{E}^{ρ} -smooth measure $||D\rho||$ and the H-valued function σ_{ρ} are defined as in Theorem 3.9; $A^{||D\rho||}$ is a real valued PCAF associated with $||D\rho||$ via the Revuz correspondence. Moreover, for \mathcal{E}^{ρ} -q.e. $z \in F^{\rho}$, $\{W_t(\omega)\}$ is an $\{\mathcal{M}_t\}$ -Brownian motion on E under P_z .

Proof. We can define an *E*-valued CAF W_t by the equation (4.1). As in the same way of the proof of Theorem 3.2 in [13], for every $\ell \in E^*$, for \mathcal{E}^{ρ} -q.e. z, $\{\ell(W_t)\}$ is a martingale under P^z with quadratic variation $t \|\ell\|_H^2$. Since a countable union of exceptional sets is also exceptional, Lemma 4.1 completes the proof.

We now turn to a generalized Itô's formula which has been formulated in [12] for the additive functionals of the distorted Brownian motion on \mathbb{R}^d . For this purpose, we prepare a lemma for quasi-sure analysis on Hilbert space valued functions. Though it is quite standard and we need it only for the Ornstein-Uhlenbeck semigroup, we shall formulate it under a general framework and give a proof for completeness. Let $(\mathcal{E}, \mathcal{F})$ be a quasi-regular symmetric Dirichlet form on a state space (Ω, m) , where Ω is a Hausdorff topological space with a countable base and m is a σ -finite Borel measure on Ω . Let $\{P_t\}$ and (ω_t, Q_z) be a Markovian semigroup on $L^2(\Omega; m)$ and a Markov process on Ω associated with $(\mathcal{E}, \mathcal{F})$, respectively. The expectation with respect to Q_z is denoted by E^{Q_z} . Let K be a separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|_K$. For a K-valued step function G on Ω expressed as $G = \sum_{i=1}^{n} \mathbf{1}_{A_i} k_i$ with $k_i \in K$, $m(A_i) < \infty$, and $A_i \cap A_j = \emptyset$ if $i \neq j$, define $P_t G = \sum_{i=1}^n (P_t \mathbf{1}_{A_i}) k_i, t > 0$. Then P_t extends uniquely to a bounded operator on $L^2(\Omega \to K; m)$ and satisfies that $\|P_t G\|_K \leq P_t(\|G\|_K)$ m-a.e. for all $G \in L^2(\Omega \to K; m)$. In the following lemma, f means an \mathcal{E} -quasicontinuous modification of a function f on Ω if it exists. Note that an \mathcal{E} -quasicontinuous modification of a Kvalued function is uniquely determined up to \mathcal{E} -exceptional set like real-valued functions, because of the separability of K.

Lemma 4.3 (i) Let $\{G_n\}$ be a sequence of \mathcal{E} -quasicontinuous functions in $L^2(\Omega \to K; m)$ and $G \in L^2(\Omega \to K; m)$. If there exists a sequence $\{w_n\} \subset \mathcal{F}$ such that

 $||G_n - G||_K \leq w_n$ m-a.e. for all n and $w_n \to 0$ in \mathcal{F} as $n \to \infty$,

then G has an \mathcal{E} -quasicontinuous modification \tilde{G} , and $G_{n_k} \to \tilde{G} \mathcal{E}$ -q.e. for some subsequence $\{G_{n_k}\}$.

(ii) Let G be a Borel measurable function in $L^2(\Omega \to K; m)$ and t > 0. Then $E^{Q}[G(\omega_t)]$ is an \mathcal{E} -quasicontinuous modification of P_tG .

(iii) Let G_n , $G \in L^2(\Omega \to K; m)$ and $G_n \to G$ in $L^2(\Omega \to K; m)$ as $n \to \infty$. Then for each t > 0, there is a subsequence $\{G_{n_k}\}$ such that $\widetilde{P_t G_{n_k}} \to \widetilde{P_t G} \mathcal{E}$ -q.e.

Proof. Let Cap denote the capacity associated with $(\mathcal{E}, \mathcal{F})$.

(i): Let $\varepsilon > 0$. Since $w_n \to 0$ in \mathcal{F} , there exists a sequence $\{n_l\} \uparrow \infty$ and an open set U_1 such that $\operatorname{Cap}(U_1) < \varepsilon/2$ and $\widetilde{w_{n_l}}$ converges to 0 uniformly on $E \setminus U_1$. Since $\|G_m - G_n\|_K \leq |w_m| + |w_n|$ m-a.e., it holds that $\|G_m - G_n\|_K \leq |\widetilde{w_m}| + |\widetilde{w_n}| \mathcal{E}$ -q.e. There is an open set U_2 such that $\operatorname{Cap}(U_2) < \varepsilon/2$, $G_n|_{E \setminus U_2}$ is continuous for every n, and the inequality above holds on $E \setminus U_2$ for every m and n. Let $U = U_1 \cup U_2$. Then $\operatorname{Cap}(U) < \varepsilon$ and $\{G_{n_l}\}$ converges uniformly on $E \setminus U$. By diagonalization argument, we can take a subsequence of $\{G_n\}$ which converges to some \mathcal{E}^1 -quasicontinuous function \tilde{G} \mathcal{E} -q.e., and clearly $G = \tilde{G}$ m-a.e.

(ii): Take K-valued step functions $\{G_n\}$ such that $G_n \to G$ in $L^2(\Omega \to K; m)$ as $n \to \infty$. Each P_tG_n has an \mathcal{E} -quasicontinuous modification in view of the result for scalar valued functions. It holds that

$$\|\widetilde{P_tG_n} - P_tG\|_K \le P_t(\|G_n - G\|_K) \quad m\text{-a.e.},$$

and the right-hand side of the inequality above converges to 0 in \mathcal{F} as $n \to \infty$. By (i), $P_t G$ has an \mathcal{E}^1 -quasicontinuous modification. On the other hand, $E^{Q_z}[G(\omega_t)]$ exists for \mathcal{E} -q.e. z since $E^{Q_z}[||G(\omega_t)||_K] < \infty \mathcal{E}$ -q.e.

For each $k \in K$, we have

$$\langle \widetilde{P_tG}, k \rangle = P_t(\langle G, k \rangle) = E^{Q_{\cdot}}[\langle G, k \rangle(\omega_t)]$$
 m-a.e.

Therefore, $\langle P_t G, k \rangle = E^{Q_{\cdot}}[\langle G, k \rangle(\omega_t)] \mathcal{E}$ -q.e. since both are \mathcal{E} -quasicontinuous. This implies that $P_t G(z) = E^{Q_z}[G(\omega_t)]$ for \mathcal{E} -q.e. z.

(iii): From (ii), P_tG_n has an \mathcal{E} -quasicontinuous modification for every n. Since

$$\|\widetilde{P_tG_n} - P_tG\|_K \le P_t(\|G_n - G\|_K)$$
 m-a.e

and the right-hand side converges to 0 in \mathcal{F} as $n \to \infty$, the assertion follows from (i).

Recall Theorem 3.12 where the Ornstein-Uhlenbeck operator $L = -\nabla^* \nabla$ appears. Let $\{T_t\}$ be its associated Ornstein-Uhlenbeck semigroup as before. Its corresponding Dirichlet form is nothing but $(2\mathcal{E}^1, \mathcal{F}^1)$. The following theorem is a counterpart of Theorem 3.3 in [12]. Below, all functions are regarded as Borel measurable.

Theorem 4.4 Suppose either of the following.

- (a) $\rho \in BV(E) \cap QR(E), u(z) = f(\ell_1(z), \dots, \ell_m(z)) \in \mathcal{F}C_b^1$, and $u^{\varepsilon}(z) = f^{\varepsilon}(\ell_1(z), \dots, \ell_m(z))$, where f^{ε} is an ordinary mollification of f on \mathbb{R}^m .
- (b) $\rho \in BV(E) \cap QR(E) \cap L^{\infty}$, $u = w|_{F^{\rho}}$ for some $w \in \mathcal{F}_{b}^{1}$ such that $\|\nabla w\|_{H}$ is μ essentially bounded and ∇w has an \mathcal{E}^{1} -quasicontinuous modification, and $u^{\varepsilon} = T_{\varepsilon}w$.
 In this case, ∇u denotes $\nabla w|_{F^{\rho}}$.

Then, the next conditions are equivalent.

- (i) $N^{[u]} \in \mathbf{A}_0^{\rho}$.
- (ii) There exists a finite signed measure $\nu_{u,\rho}$ on F^{ρ} such that

$$\lim_{\varepsilon \to 0} \int_{F^{\rho}} v(Lu^{\varepsilon}) \rho \, d\mu = \int_{F^{\rho}} v \, d\nu_{u,\rho} \quad \text{for every } v \in \mathcal{F}C_b^1.$$

In this case, it holds that for any $v \in \mathcal{F}C_b^1$,

$$\mathcal{E}^{\rho}(u,v) = -\frac{1}{2} \int_{F^{\rho}} v \, d\nu_{u,\rho} - \frac{1}{2} \int_{F^{\rho}} v(z) \langle \widetilde{\nabla u}(z), \sigma_{\rho}(z) \rangle \, \|D\rho\|(dz),$$

where $\widetilde{\nabla u}$ is an \mathcal{E}^{ρ} -quasicontinuous modification of ∇u . Moreover, $\nu_{u,\rho} \in S^{\rho}$. Let A^{Lu} and $A^{\|D\rho\|}$ denote the CAFs associated with $\nu_{u,\rho}$ and $\|D\rho\|$, respectively. Then P_z -a.e. for \mathcal{E}^{ρ} -q.e. $z \in F^{\rho}$, the equation

$$u(X_t) - u(X_0) = M_t^{[u]} + \frac{1}{2}A_t^{Lu} + \frac{1}{2}\int_0^t \langle \widetilde{\nabla u}, \sigma_\rho \rangle(X_s) \, dA_t^{\|D\rho\|}$$

holds. Here $M^{[u]}$ is a continuous martingale AF with quadratic variation

$$\langle M^{[u]} \rangle_t = \int_0^t \|\nabla u\|_H^2(X_s) \, ds.$$

Further, for some sequence $\{\varepsilon_n\} \downarrow 0$,

$$\lim_{n \to \infty} \int_0^t (Lu^{\varepsilon_n})(X_s) \, ds = A_t^{Lu} \quad \text{locally uniformly in } t.$$

Proof. We shall give a proof only in the case (b). The case (a) is similarly (and more easily) proved. First we remark that \mathcal{E}^1 -exceptional sets are \mathcal{E}^{ρ} -exceptional sets and \mathcal{E}^1 convergence implies \mathcal{E}^{ρ} -convergence because $\rho \in L^{\infty}$. From the theorem of [7] and an argument in the proof of [1, Theorem 2.4], we can take a sequence $\{v_n\} \subset \mathcal{F}C_b^{\infty}$ such that $v_n \to w \mu$ -a.e. and both $\{\|v_n\|_{\infty}\}$ and $\{\|\nabla v_n\|_{\infty}\}$ are uniformly bounded. By the Banach-Saks theorem, a sequence of the Cesàro mean $\{u_n\}$ of some subsequence of $\{v_n\}$ satisfies that $u_n \in \mathcal{F}C_b^{\infty}$, $u_n \to w \mu$ -a.e. and in \mathcal{F}^1 , and both $\{\|u_n\|_{\infty}\}$ and $\{\|\nabla u_n\|_{\infty}\}$ are uniformly bounded.

For each $\varepsilon > 0$, $T_{\varepsilon}u_n \to u^{\varepsilon}$ in \mathcal{F}^1 and $LT_{\varepsilon}u_n \to Lu^{\varepsilon}$ in $L^2(\mu)$ as $n \to \infty$. Also, $\nabla T_{\varepsilon}u_n = e^{-\varepsilon}T_{\varepsilon}\nabla u_n$, $\nabla u^{\varepsilon} = e^{-\varepsilon}T_{\varepsilon}\nabla w$ and $\nabla u_n \to \nabla w$ in $L^2(E \to H; \mu)$ as $n \to \infty$. By Lemma 4.3, ∇u^{ε} has an \mathcal{E}^1 -quasicontinuous modification ∇u^{ε} and, by taking a subsequence if necessary,

$$\nabla T_{\varepsilon} u_n \to \widetilde{\nabla u^{\varepsilon}} \quad \mathcal{E}^1$$
-q.e. as $n \to \infty$.

Then, letting $n \to \infty$ in our version of the Green formula (Theorem 3.12) for $T_{\varepsilon}u_n$ in place of u, we have

$$\mathcal{E}^{\rho}(u^{\varepsilon}, v) = -\frac{1}{2} \int_{F^{\rho}} v(Lu^{\varepsilon}) \rho \, d\mu - \frac{1}{2} \int_{F^{\rho}} v(z) \langle \widetilde{\nabla u^{\varepsilon}}(z), \sigma_{\rho}(z) \rangle \|D\rho\|(dz), \quad v \in \mathcal{F}C^{1}_{b},$$

and accordingly

$$N_t^{[u^{\varepsilon}]} = \frac{1}{2} \int_0^t (Lu^{\varepsilon})(X_s) ds + \frac{1}{2} \int_0^t \langle \widetilde{\nabla u^{\varepsilon}}, \sigma_{\rho} \rangle(X_s) \, dA_s^{\|D\rho\|}.$$

Let $\widetilde{\nabla w}$ be an \mathcal{E}^1 -quasicontinuous modification of ∇w . We may assume that $\widetilde{\nabla w}$ is Borel measurable. Then $\widetilde{\nabla u} := \widetilde{\nabla w}|_{F^{\rho}}$ is an \mathcal{E}^{ρ} -quasicontinuous modification of ∇u and Borel measurable. Also, by Lemma 4.3 (ii),

$$\widetilde{\nabla u^{\varepsilon}}(z) = e^{-\varepsilon} \widetilde{T_{\varepsilon} \nabla w}(z) = e^{-\varepsilon} E_z^{O-U} [\widetilde{\nabla w}(X_{\varepsilon}^{O-U})] \quad \mathcal{E}^1\text{-q.e. } z,$$

where (X_t^{O-U}) is the Ornstein-Uhlenbeck process on E and E_z^{O-U} represents an expectation with respect to the distribution of the process starting at z. Since $\widetilde{\nabla w}$ is finely continuous \mathcal{E}^1 -q.e., which is proved in the same way as in Theorem 4.2.2. in [14], we get

$$e^{-\varepsilon}E_z^{O-U}[\widetilde{\nabla w}(X_{\varepsilon}^{O-U})] \to \widetilde{\nabla w}(z) \quad \mathcal{E}^1$$
-q.e. $z \text{ as } \varepsilon \downarrow 0.$

Therefore, $\widetilde{\nabla u^{\varepsilon_n}} \to \widetilde{\nabla u} \mathcal{E}^{\rho}$ -q.e. as $n \to \infty$ for an arbitrary sequence $\{\varepsilon_n\}$ decreasing to 0. Keeping the fact that $u^{\varepsilon} \to u$ in \mathcal{F}^{ρ} as $\varepsilon \downarrow 0$ in mind, we have

$$\mathcal{E}^{\rho}(u,v) = -\lim_{\varepsilon \downarrow 0} \frac{1}{2} \int_{F^{\rho}} v(Lu^{\varepsilon}) \rho \, d\mu - \frac{1}{2} \int_{F^{\rho}} v(z) \langle \widetilde{\nabla u}(z), \sigma_{\rho}(z) \rangle \, \|D\rho\|(dz), \quad v \in \mathcal{F}C_b^1.$$
(4.2)

By Theorem 2.2 in [12], the equivalence of (i) and (ii) and all other assertions hold except for the last one, which in turn follows from Corollary 5.2.1 in [14].

Acknowledgment. Part of this work was done while the second author was visiting Cornell University. He thanks L. Gross for his hospitality and fruitful discussion.

References

- S. Aida, T. Masuda, and I. Shigekawa: Logarithmic Sobolev inequalities and exponential integrability, J. Funct. Anal. 126 (1994), 83–101.
- [2] H. Airault and P. Malliavin: Intégration géométrique sur l'espace de Wiener, Bull. Sci. Math. (2) 112 (1988), 3–52.
- [3] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford University Press, 2000.
- [4] V. I. Bogachev: Smooth measures, the Malliavin calculus and approximations in infinite-dimensional spaces, 18th Winter School on Abstract Analysis (Srní, 1990). Acta Univ. Carolin.—Math. Phys. **31** (1990), 9–23.
- [5] V. I. Bogachev: Gaussian Measures, American Mathematical Society, 1998.
- [6] N. Bouleau and F. Hirsch: Dirichlet forms and analysis on Wiener space, de Gruyter Studies in Mathematics 14, Walter de Gruyter, Berlin, 1991.

- [7] O. Enchev, and D. W. Stroock: Rademacher's theorem for Wiener functionals, Ann. Probab. 21 (1993), 25–33.
- [8] L. C. Evans and R. F. Gariepy: Measure theory and fine properties of functions, CRC Press, Boca Raton, New York, Tokyo, 1992.
- [9] H. Federer: Geometric measure theory, Springer, Berlin-Heidelberg-New York, 1969.
- [10] D. Feyel and A. de La Pradelle: Hausdorff measures on the Wiener space, Potential Anal. 1 (1992), 177–189.
- [11] M. Fukushima: On semimartingale characterizations of functionals of symmetric Markov processes, Electronic Journal of Probability 4 (1999), paper no.18, pp. 1–32.
- [12] M. Fukushima: On Ito's formulae for additive functionals of symmetric diffusion processes, Stochastic Processes, Physics and Geometry: New Interplays, A volume in Honor of Sergio Albeverio, CMS Conference Proc., to appear.
- [13] M. Fukushima: BV functions and distorted Ornstein Uhlenbeck processes over the abstract Wiener space, J. Funct. Anal. 174 (2000), 227–249.
- [14] M. Fukushima, Y. Oshima and M. Takeda: Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics 19, Walter de Gruyter, Berlin, 1994.
- [15] E. Giusti: Minimal surfaces and functions of bounded variation, Monographs in Mathematics 80, Birkhäuser, 1984.
- [16] V. Goodman: A divergence theorem for Hilbert space, Trans. Amer. Math. Soc. 164 (1972), 411–426.
- [17] A. Hertle: Gaussian surface measures and the Radon transform on separable Banach spaces, Measure theory, Oberwolfach 1979 (Proc. Conf., Oberwolfach, 1979), pp. 513–531, Lecture Notes in Math. 794, Springer, Berlin, 1980.
- [18] A. Hertle: Gaussian plane and spherical means in separable Hilbert spaces, Measure theory, Oberwolfach 1981 (Oberwolfach, 1981), pp. 314–335, Lecture Notes in Math. 945, Springer, Berlin-New York, 1982.
- [19] A. Hertle: On the asymptotic behaviour of Gaussian spherical integrals, Probability in Banach spaces, IV (Oberwolfach, 1982), 221–234, Lecture Notes in Math. 990, Springer, Berlin-New York, 1983.
- [20] Y. Inahama: Meyer's inequality of type $L(\log L)^{\alpha}$ on abstract Wiener spaces, J. Math. Kyoto Univ. **39**(1999), 87–113.
- [21] M. Ledoux: Isoperimetry and Gaussian analysis, Lectures on Probability Theory and Statistics (Saint-Flour, 1994), 165–294, Lecture Notes in Math. 1648, Springer, 1996.

- [22] Z. M. Ma and M. Röckner: Introduction to the theory of (nonsymmetric) Dirichlet forms, Universitext, Springer-Verlag, Berlin, 1992.
- [23] G. Pisier: Riesz transform; A simple analytic proof of P. A. Meyer's inequality, Lecture Notes in Math. 1321, Springer, 1988, 485–501.
- [24] M. M. Rao and Z. D. Ren: Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics 146, Marcel Dekker, Inc., New York, 1991.
- [25] M. Röckner and B. Schmuland: Tightness of general $C_{1,p}$ capacities on Banach space, J. Funct. Anal. **108** (1992), 1–12.
- [26] W. Rudin: Functional Analysis, second ed., McGraw-Hill.
- [27] M. L. Silverstein: Symmetric Markov processes, Lecture Notes in Math. 426, Springer-Verlag, Berlin-New York, 1974.
- [28] A. V. Skorohod: Integration in Hilbert space, Translated from the Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete 79, Springer-Verlag, New York-Heidelberg, 1974.
- [29] H. Sugita: Positive generalized Wiener functions and potential theory over abstract Wiener spaces, Osaka J. Math. 25 (1988), 665–696.