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1. Introduction

In the present work, we will be concerned with a formula going back to Douglas ([6]):

(1.1)
1
2

∫
D
|∇Hf(x)|2 dx =

1
2

∫
∂D×∂D\d

(f(ξ) − f(η))2 U(ξ, η)dξdη,

where Hf denotes the harmonic function on the planer unit disk D with boundary value
f and U(ξ, η) = 1

4π(1−cos(ξ−η)) .

In 1962, J.L. Doob [4] extended formula (1.1) to the case where D is a general Green
space and ∂D is its Martin boundary by adopting as U the Naim kernel. The first author
identified the Naim kernel with the Feller kernel soon after in [8] and then utilized the
resulting formula (1.1) as a basis to describe all possible symmetric Markovian extensions
of the absorbing Brownian motion on a bounded Euclidean domain in [9]. The Feller
kernel had been introduced by W. Feller [7] for the minimal Markov process on a countable
state space for the purpose of describing all possible boundary conditions on some ideal
boundaries. A common feature of the mentioned approaches was in that we are only
given a minimal process on D a priori and we try to capture its Markovian extensions
including the construction of intrinsic boundaries.

Since that decade, the investigations of Markov processes and associated Dirichlet
forms have been developed considerably and we can now take the following different
but much more stochastic view on the formula (1.1). What is given in advance is the
reflecting Brownian motion X on D and we consider its time changed process Y on ∂D
with respect to a local time on ∂D. The left hand side of (1.1) is the Dirichlet form
for Y (the trace of the Dirichlet form for X), while the right hand side is its specific
Beurling-Deny representation. (1.1) tells us that Y is of pure jump and that its jumping
mechanism, namely, the Lévy system is governed by the Feller kernel U which can be
easily and intrinsically defined depending only on the absorbing Brownian motion XD

on D.
This view point allows us to extend the formula (1.1) with a great generality. Indeed,

we will consider in this paper a general symmetric diffusion processX with a general state
space E and its time changed process Y on an arbitrary closed subset F of E. We will
show in §5 that the jumping measure and the killing measure for Y can be identified with
the Feller measure U and the supplementary Feller measure V respectively introduced in
§2 depending only on the absorbed process XG on G = E \ F.
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The organization of the present paper is as follows. In §2, we consider a conservative
Borel right process X which is symmetric with respect to a σ-finite measure m on a
general state space E. Let F be a closed subset of E and XG be the process on G = E \F
obtained from X by killing upon its hitting time of F. We shall introduce a notion of
the energy functional LG for each pair of XG-almost excessive functions on G, a variant
of the concept due to P.A. Meyer (cf. [13]). By means of LG, we can readily define the
Feller measure U(dξ, dη) ( a bi-measure on F × F ), the supplementary Feller measure
V (dξ) (a measure on F informally called an escape measure) and also the Feller kernel
U(ξ, η) when the Poisson kernel exists. In Example 2.1, we exhibit explicit expressions
of those quantities for the case that X is the d-dimensional Brownian motion (d ≥ 3)
and F is the (d− 1)-dimensional compact smooth hypersurface.

From §3 on, we assume that X is a diffusion, namely, its sample paths are continuous.
In §3, we will focus our attention on the excursions of the sample paths ofX away from the
closed set F and we shall identify the Feller measure and supplementary Feller measure
with the expectations of certain homogeneous random measures generated by the end
points of excursions. Here we shall make use of a description of the joint distribution
of end points of excursions previously studied by Hsu [14] for the reflecting Brownian
motion on a smooth domain.

From §4 on, we further assume that X is associated with a regular Dirichlet space
(E,m,F , E) (without loss of generality owing to the transfer method). In §4, we shall
first prove that F always admits an admissible measure µ in the sense that µ charges
no set of zero capacity and possesses full quasi-support F . We then show, by applying
a general reduction theorem formulated in the final section §8, that the time changed
process Y of X with respect to the positive continuous additive functional with Revuz
measure µ can be restricted outside some X-and Y -polar set to be a Hunt process. This
reduction will enable us to use a general theorem in [11] directly to express the jumping
measure and the killing measure in the Beuring-Deny representation of the Dirichlet form
for Y by means of the Lévy system of Y .

By making use of the results in §3 and §4, we shall prove in §5 the stated main
assertion (Theorem 5.1) that the jumping measure and killing measure for the time
changed process Y are identical with the Feller measure and the supplementary Feller
measure respectively. In particular, we shall see that the Lévy system of Y admits a
simple expression in terms of the Feller kernel when the Poisson kernel exists.

Theorem 5.1 tells us that the trace Dirichlet form E(Hf,Hf) always dominates the
generalized Douglas integral with the Feller measure. By assuming that m(G) is finite,
we shall prove in §6 that they are identical under the condition that the energy measures
µ〈u〉 do not charge the set F for any u ∈ F . This condition is satisfied when the energy
measures are absolutely continuous with respect to m (the densities are so called square
field operators Γ(u)) and m(F ) = 0. We shall also characterize this condition in terms
of the notion of the reflected Dirichlet space of the part of E on the set G formulated by
M.L. Silverstein [19],[20] and Z.Q. Chen [3]. In the course of the proof, we shall make
a full use of several results in [11] to recover and extend the method in [4] and [8] of
computing the Dirichlet norm of the classical harmonic function.

In §7, we shall apply the obtained results to the reflecting Brownian motion on the
closure of a bounded Lipschitz domainD ⊂ R

d associated with the Dirichlet spaceH1(D).
In this case, the relative boundary ∂D is known to be identical with the Martin boundary
of D so that Doob’s representation of (1.1) shall be recovered by the present approach.

In §8, we shall formulate a general theorem of reduction of a right process to a Hunt
process properly associated with a regular Dirichlet form.



TIME CHANGE AND FELLER MEASURE 3

2. Feller measure U , supplementary Feller measure V and Feller kernel

Let E be a Lusin topological space andm be a σ-finite positive Borel measure on E. Let
X = (Xt, P

x) be a conservative Borel right Markov process on E which is m-symmetric
in the sense that its transition function pt satisfies∫

E
ptf(x) g(x)m(dx) =

∫
E
f(x) ptg(x)m(dx), ∀f, g ∈ B+.

Fix a closed set F and put G := F c. Denote by T the hitting time of F . Let

p0
t (x,A) := P x(Xt ∈ A, t < T ), x ∈ G, A ⊂ G

be the transition function of XG, the absorbed process of X on G, which is obtained by
killing X at leaving G. Then XG is symmetric with respect to the measure mG = 1G ·m
([11]). The resolvent of XG will be denoted by R0

α.
A measurable function u on G is said to be α-excessive for XG if for every x ∈ G

u(x) ≥ 0, e−αtp0
tu(x) ↑ u(x), t ↓ 0.

If the above properties holds for mG-a.e. x ∈ G, then u is said to be α-almost excessive.
A 0-excessive (resp. 0-almost excessive) function is simply called excessive (resp. almost
excessive). Let us denote by SG the totality of XG-almost excessive functions on G finite
mG-a.e.
〈u, v〉mG

will denote the integral of uv with the measure mG.

Lemma 2.1. For any u, v ∈ SG,

(2.1)
1
t
〈u− p0

tu, v〉mG

is non-decreasing as t ↓ 0. If moreover v is p0
t -invariant in the sense that p0

t v = v, t > 0,
then (2.1) is independent of t > 0.

Proof. We set
e(t) = 〈u− p0

tu, v〉mG
.

Then, for t, s ≥ 0,

e(t+ s) = e(t) + 〈p0
tu− p0

t+su, v〉mG
= e(t) + 〈u− p0

su, p
0
t v〉mG

≤ e(t) + e(s),

the last inequality being replaced by equality if v is p0
t -invariant. �

Let us define the energy functional of u, v ∈ SG by

(2.2) LG(u, v) = lim
t↓0

1
t
〈u− p0

tu, v〉mG
.

We note that LG(u, v) is nothing but the value of the energy functional of the excessive
measure u ·mG and the excessive function v for XG in the sense of Dellacherie-Meyer
and Getoor when XG is transient and u ·mG is purely excessive([13, Prop.3.6]). We also
have the formula

(2.3) LG(u, v) = lim
α→∞α〈u− αR0

αu, v〉mG
,

as an increasing limit because, by the Fubini theorem,

(2.4) α〈u − αR0
αu, v〉mG

=
∫ ∞

0
e−t(t/α)−1〈u− p0

t/αu, v〉mG
tdt.

For α ≥ 0 let Hα be the α-order hitting measure for F , i.e.,

Hα(x,B) := Ex(e−αT 1B(XT );T <∞), x ∈ G,B ∈ B(E).
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H0 will be denoted by H. Hα(x, ·) is carried by F , since F is closed. It is easy to see
that, for any f ∈ B(F )+, Hαf is α-excessive for XG.

We also consider the function on G defined by

(2.5) q(x) = P x(T = ∞)(= 1 −H1(x)), x ∈ D.

Then q is not only excessive for XG but also p0
t -invariant.

We now let, for f, g ∈ bB(F )+,

(2.6) U(f ⊗ g) = LG(Hf,Hg), V (f) = LG(Hf, q).

We call U the Feller measure for F with respect to m because it is a bi-measure in the
sense that U(IB ⊗ IC) is a (possibly infinite) measure in B ∈ B(F ) (resp. C ∈ B(F )) for
each fixed C (resp. B). V is a (possibly infinite) measure on F and will be called the
supplementary Feller measure or more informally the escape measure for F . We will see
in §4 that U is a σ-finite measure on F × F off the diagonal and V is a σ-finite measure
on F .

For α > 0, we also define the α-order Feller measure Uα for F by

(2.7) Uα(f ⊗ g) = α〈Hαf,Hg〉mG
f, g ∈ bB(F )+.

Lemma 2.2. We have the following formulae for f, g ∈ bB(F )+:

(2.8) U(f ⊗ g) = lim
t→0

1
t
EHg·mG(T ≤ t, f(XT )),

(2.9) U(f ⊗ g) = lim
α→∞Uα(f ⊗ g).

Proof. The first formula follows from

P x(T ≤ t, f(XT )) = Hf(x) − p0
tHf(x), x ∈ G.

The second one is a consequence of (2.3) and Hαf = Hf − αR0
αHf. �

The notion U goes back to W. Feller[7] where a version of U was introduced by (2.9)
and utilized to describe possible boundary conditions for a minimal Markov process on
a countable state space.

The supplementary Feller measure V has more specific properties:

Lemma 2.3. (i) For any t > 0, α > 0,

(2.10) V (f) =
1
t
Eq·mG(T ≤ t, f(XT )), f ∈ bB(F )+.

(2.11) V (f) = α〈Hαf, q〉mG
, f ∈ bB(F )+.

(ii) If m(G) <∞, then V = 0.
(iii) If m(G) < ∞ and P x(T < ∞) > 0 for m-a.e. x ∈ G, then P x(T < ∞) = 1 for q.e.
x ∈ G.
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Proof. (i) follows from p0
t -invariance of q, Lemma 2.1 and (2.4). If m(G) is finite, then

the right hand side of (2.10) tends to zero as t → ∞ and we get (ii). (iii) follows from
(i) and (ii). �

When the hitting measure H(x, ·) has a suitable density with respect to a certain
measure µ on F , then the Feller measure U has also a density with respect to µ × µ.
In the rest of this section, we assume that there exists a σ-finite measure µ on F and a
finite-valued function K(x, ξ), x ∈ G, ξ ∈ F, strictly positive mG × µ-a.e. such that

(2.12) H(x,B) =
∫

B
K(x, ξ)µ(dξ) ∀B ∈ B(F ), for mG − a.e. x ∈ G,

and K(·, ξ) is XG-almost excessive for every ξ ∈ F. The function Kξ(x) = K(x, ξ) will
be called a Poisson kernel with respect to µ.

We put

(2.13) U(ξ, η) = LG(Kξ,Kη), ξ, η ∈ F,

which will be called a Feller kernel with respect to µ.
In fact, if we define the α-order Poisson kernel by

(2.14) Kα(x, ξ) = K(x, ξ) − αR0
αK

ξ(x), x ∈ G, ξ ∈ F,

and the α-order Feller kernel by

(2.15) Uα(ξ, η) = α〈Kξ
α,K

η〉mG
ξ, η ∈ F,

then, by (2.3),

(2.16) U(ξ, η) = lim
α→∞Uα(ξ, η), ξ, η ∈ F

and we get from (2.9) that

U(dξ, dη) = U(ξ, η)µ(dξ)µ(dη).

Example 2.1 (Brownian motion and a compact hypersurface). Let X be the standard
Brownian motion on R

d with d ≥ 3. Let S be a C3 compact hypersurface so that G =
R

d \ S is the union of the interior domain Di and exterior domain De. The absorbed
Brownian motion XG has the transition density
(2.17)

p0
t (x, y) = n(t, x− y) − Ex[n(t− T,XT , y);T < t], n(t, x) =

1
(2πt)d/2

exp(−|x|2
2t

),

where T is the hitting time of S by X. p0
t (x, y), x, y ∈ Di (resp. x, y ∈ De) is the

fundamental solution of the heat equation

(2.18)
∂u(t, x)
∂t

=
1
2
∆xu(t, x), , t > 0, x ∈ Di, (resp. x ∈ De)

with the Dirichlet boundary condition

u(t, x) = 0, x ∈ S.

Denote by σ the surface measure on S. Then we can get the expressions

P x(T ∈ ds,XT ∈ dξ) = g(s, x, ξ)dsσ(dξ)

with

(2.19) g(s, x, ξ) =
1
2
∂p0

s(x, ξ)
∂ni

ξ

, x ∈ Di, ξ ∈ S,
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(2.20) g(s, x, ξ) =
1
2
∂p0

s(x, ξ)
∂ne

ξ

, x ∈ De, ξ ∈ S,

where ni
ξ and ne

ξ denote the inward normal and outward normal at ξ ∈ S respectively. A
proof of (2.19) was given in [1, pp262]. We give a similar proof of (2.20) for completeness.

We extend a smooth function h on S to De by

h(y) = Ey(h(XT );T <∞), y ∈ De.

It can be seen that h is a harmonic function on De vanishing at ∞ and hence the first
dervatives of h are bounded on De (see the paragraph below (2.25)). On the other hand,
we can see from (2.17) that, for each T > 0 and a > 0, there are positive constants C1, C2

such that

(2.21)
∣∣∣∣∂p

0
t (x, y)
∂yk

∣∣∣∣ ≤ C1 exp(−C2|x− y|2), 0 < t < T, 1 ≤ k ≤ d, |x− y| > a.

For large R > 0, we put DR
e = {x ∈ De : |x| < R} and denote its outer boundary by ΣR.

For a fixed x ∈ DR
e , we have by Green’s formula

1
2

∫
S

∂p0
s(x, y)
∂ne

y

h(y)dσ(y) =
∫

DR
e

(
−1

2
∆yp

0
s(x, y)

)
h(y)dy

−1
2

∫
ΣR

∂p0
s(x, y)
∂ny

h(y)dσ(y) +
1
2

∫
ΣR

p0
s(x, y)

∂h(y)
∂ny

dσ(y).

By the above observations, the last two integrals vanish as R → ∞. Substituting (2.18)
into the resulting equality and integrating in s, we arrive at∫ t

0
ds

∫
1
2
∂p0

s(x, y)
∂ne

y

h(y)dσ(y) = h(x) − p0
sh(x) = Ex(h(Xt);T ≤ t)

proving (2.20).
Accordingly, the Poisson kernel and the α-order Poisson kernel with respect to σ admit

the expressions

(2.22) K(x, ξ) =
∫ ∞

0
g(s, x, ξ)ds, Kα(x, ξ) =

∫ ∞

0
e−αsg(s, x.ξ)ds, x ∈ G, ξ ∈ S.

The α-order Feller kernel Uα(ξ, η) is the sum of U i
α(ξ, η) and U e

α(ξ, η) where

U i
α(ξ, η) = α

∫
Di

Kξ
α(x)Kη(x)dx, U e

α(ξ, η) = α

∫
De

Kξ
α(x)Kη(x)dx, ξ, η ∈ S.

From (2.19),(2.20) and (2.22), we can get, for ξ, η ∈ ∂D, ξ �= η,

U i
α(ξ, η) =

1
4

∫ ∞

0
(1 − e−αt)

∂2p0
t (ξ, η)

∂ni
ξ∂n

i
η

dt, U e
α(ξ, η) =

1
4

∫ ∞

0
(1 − e−αt)

∂2p0
t (ξ, η)

∂ne
ξ∂n

e
η

dt.

By letting α→ ∞, we are led to the following expressions of the Feller kernel:

(2.23) U(ξ, η) =
1
4

∫ ∞

0

∂2p0
t (ξ, η)

∂ni
ξ∂n

i
η

dt+
1
4

∫ ∞

0

∂2p0
t (ξ, η)

∂ne
ξ∂n

e
η

dt ξ �= η,
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(2.24) U(ξ, η) =
1
2
∂K(ξ, η)
∂ni

ξ

+
1
2
∂K(ξ, η)
∂ne

ξ

, ξ �= η.

We consider the special case that S = ΣR the sphere of radius R centered at the origin.
The Poisson kernel with respect to the surface measure σ are then expressed as

K(x, η) =
1

ΩdR
· R

2 − |x|2
|x− η|d , |x| < R, η ∈ ΣR,

=
1

ΩdR
· |x|

2 −R2

|x− η|d , |x| > R, η ∈ ΣR,(2.25)

where Ωd denotes the area of the unit sphere in R
d.

Note that, for De = {|x| > R} and a continuous function f on ΣR,

(Hf)(x) =
∫

ΣR

K(x, η)f(η)dσ(η), x ∈ De,

is the unique harmonic function on De taking value f on ΣR and vanishing at ∞.
By (2.24), we obtain an explicit expression of the Feller kernel:

(2.26) U(ξ, η) =
2

Ωd
|ξ − η|−d, ξ, η ∈ ΣR, ξ �= η.

We can also obtain an explicit expression of the supplementary Feller measure V . By

virtue of the above observation, H1(x) =
Rd−2

|x|d−2
, x ∈ De, and consequently, we get from

(2.10) and (2.20) that
V (dξ) = v(ξ)σ(dξ)

with

v(ξ) =
1
2t

∫ t

0
ds

∫
{|x|>R}

(
1 − Rd−2

|x|d−2

)
∂p0

s(x, ξ)
∂ne

ξ

dx, ξ ∈ ΣR.

The integral on the right hand side converges in view of (2.21). This expression shows
that v(ξ) is actually a positive constant, say, v0 independent of ξ so that

(2.27) V (dξ) = v0 σ(dξ), dξ ∈ B(ΣR).

The value of the escape constant v0 will be computed at the end of §5.

Some computations similar to the above have been carried out in [17] for a certain
Markov process and also in [8] and [14] for diffusions on an interior Euclidean domain.

3. End points of excursions and U and V

In the sequel, we further assume that X is a diffusion, namely, all of its sample paths
are continuous on [0,∞). For any ω ∈ Ω, we define

J(ω) = {t ∈ [0,∞) : Xt(ω) ∈ G},
which is open and consists of all of excursions away from F of the sample path of ω.

We set, for t ≥ 0,

R(t) = inf(t,∞) ∩ Jc = inf{s > t : Xs ∈ F}, (inf ∅ = ∞, )

and, for t > 0

L(t) = sup[0, t) ∩ Jc = sup{0 < s < t : Xs ∈ F}, (sup ∅ = 0.)
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Clearly R(t) = T ◦ θt + t and for any s, t ≥ 0, R(t) ◦ θs + s = R(t+ s). By continuity of
paths, XR(t) ∈ F if R(t) < ∞ and XL(t) ∈ F on T < t. The process XL(t) stays on F
until X hits F again and is adapted, but XR(t) is not adapted in general.

For t > 0, we introduce the time reversal operator at t by

rtω(s) = ω(t− s),

so that Xs ◦ rt = Xt−s, s ∈ [0, t].
Since X is m-symmetric and conservative, we have

(3.1) Em(Y ◦ rt) = Em(Y ),

for any Ft-measurable random variable Y (cf. [11, Lemma 4.1.2].)
We can see that

L(t) ◦ rt = t− T, XL(t) ◦ rt = Xt−L(t)◦rt
= XT ,

on T < t.

Lemma 3.1. For t > 0, let I1 ⊂ [0, t], I2 ⊂ [t,∞) be non-empty intervals, and A,B ∈
B(F ). Then

Pm(L(t) ∈ I1,XL(t) ∈ A,Xt ∈ G,R(t) ∈ I2,XR(t) ∈ B)

=
∫
G P

x(T ∈ t− I1,XT ∈ A))Px(T ∈ I2 − t,XT ∈ B)m(dx).(3.2)

In particular,

Pm(L(t) ∈ I1,XL(t) ∈ A,Xt ∈ G,XR(t) ∈ B,R(t) <∞)

=
∫
G P

x(T ∈ t− I1,XT ∈ A)H(x,B)m(dx).(3.3)

Furthermore,

Pm(L(t) ∈ I1,XL(t) ∈ A,Xt ∈ G,R(t) = ∞)

=
∫
G P

x(T ∈ t− I1,XT ∈ A)q(x)m(dx).(3.4)

Proof. Clearly {L(t) ∈ I1,XL(t) ∈ A} ∈ Ft. Since R(t) = T ◦ θt + t, by the Markov
property and (3.1), we have

Pm(L(t) ∈ I1,XL(t) ∈ A,Xt ∈ G,R(t) ∈ I2,XR(t) ∈ B)

= Em(L(t) ∈ I1,XL(t) ∈ A,PXt(X0 ∈ G,XT ∈ B,T ∈ I2 − t))

= Em[(1{L(t)∈I1 ,XL(t)∈A}φ(Xt)) ◦ rt]
= Em[φ(X0);XT ∈ A,T ∈ t− I1]

where φ(x) = 1G(x)P x(XT ∈ B,T ∈ I2 − t). This completes the proof of (3.2) and (3.3).
(3.4) follows from (3.3).

�

Denote by I the set of all left end points of open (excursion) intervals in J . We note
for s > 0 that s ∈ I if and only if R(s−) < R(s) and that, in this case, R(s−) = s. It is
convenient to add an extra point ∆ to E and let

X∞ = ∆.

For any subset S of E, we write S∆ for S ∪ ∆.
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For any non-negative measurable function Ψ on F∆ × F∆, let us consider a random
measure κ(Ψ, ·) defined by

(3.5) κ(Ψ, dt) =
∑

0<s: R(s−)<R(s)

Ψ(XR(s−),XR(s))εs(dt),

where εs is the point mass at s. By the above note, the random measure κ may also be
written as

κ(Ψ, dt) =
∑

0<s: s∈I

Ψ(Xs,XR(s))εs(dt).

Any function f on F will be extended to F∆ by setting f(∆) = 0. By this convention,
f⊗g will denote the function on F∆×F∆ defined by Ψ(x, y) = f(x)g(y) for f, g ∈ B+(F ).
We further let (f ⊗ I∆)(x, y) = f(x)I∆(y). Obviously, we have, for f, g ∈ B+(F ),

(3.6) κ(f ⊗ g, dt) =
∑

0<s: R(s−)<R(s)<∞
f(XR(s−))g(XR(s))εs(dt),

(3.7) κ(f ⊗ I∆, dt) =
∑

0<s:R(s−)<∞,R(s)=∞
f(XR(s−))εs(dt).

For later reference, we introduce the last exit time from F defined by

(3.8) SF = sup{t > 0 : Xt ∈ F}, (sup ∅ = 0).

Then, s = SF > 0 if and only if R(s−) <∞, R(s) = ∞, and accordingly

κ(f ⊗ I∆, dt) = f(XSF−)εSF
(dt).

Lemma 3.2. The random measure κ(Ψ, ·) is homogeneous for any Ψ ∈ B+(F∆ × F∆).

Proof. Since R(s) ◦ θu + u = R(u+ s), we have XR(s) ◦ θu = XR(u+s) and

κ(Ψ, dt) ◦ θu =
∑

u<s+u: R(u+s−)<R(u+s)

F (XR(u+s−),XR(u+s))εs(dt)

=
∑

u<s: R(s−)<R(s)

F (XR(s−),XR(s))εs(dt+ u)

= κ(Ψ, dt+ u)

�

Theorem 3.1. Let f, g ∈ B+(F ). Then

Emκ(f ⊗ g, (0, t]) = tU(f ⊗ g), Emκ(f ⊗ I∆, (0, t]) = tV (f), t > 0.

Proof. For n ≥ 1, let Dn := {tn,k−1 = k−1
2n : k ≥ 1} and In,k = [tn,k−1, tn,k).

For 0 < s, we observe that R(s−) < R(s) and (R(s−), R(s)) ∩Dn �= ∅ if and only if
R(s−) = L(tn,k) ∈ In,k, Xtn,k

∈ G and R(s) = R(tn,k) for a unique k depending on n.
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Therefore, by the monotone convergence theorem and using (3.3) and (2.8), we get

Emκ(f ⊗ g, (0, t]) = Em
∑

0<s≤t: R(s−)<R(s)<+∞
f(XR(s−))g(XR(s))

= lim
n
Em

∑
k: tn,k≤t

f(XL(tn,k))g(XR(tn,k ))1{L(tn,k)∈In,k,Xtn,k
∈G,R(tn,k)<∞}

= lim
n

∑
k: tn,k≤t

Emf(XL(tn,k))g(XR(tn,k ))1{L(tn,k)∈In,k,Xtn,k
∈G,R(tn,k)<∞}

= lim
n

∑
k: tn,k≤t

∫
G
Ex(T ∈ (0, 2−n], f(XT ))Hg(x)mG(dx)

= lim
n

[2nt]
∫

G
Ex(T ∈ (0, 2−n], f(XT ))Hg(x)mG(dx)

= tU(f ⊗ g),

where [2nt] is the biggest integer dominated by 2nt.
In the same way, we get from (3.4) and (2.10),

Emκ(f ⊗ I∆, (0, t]) = Em
∑

0<s≤t,R(s−)<∞,R(s)=∞
f(XL(s))

= lim
n

∑
k: tn,k≤t

Emf(XL(tn,k))1{L(tn,k)∈In,k,Xtn,k
∈G,R(tn,k)=∞}

= lim
n

∑
k: tn,k≤t

∫
G
Ex(T ∈ (0, 2−n], f(XT ))q(x)mG(dx)

= lim
n

[2nt]
∫

G
Ex(T ∈ (0, 2−n], f(XT ))q(x)mG(dx)

= tV (f).

�

4. Admissible measure and time changed process Y

We still work with an m-symmetric conservative diffusion process X on E. Let (E ,F)
be the associated Dirichlet form on L2(E;m).

By virtue of the transfer method (cf.[16],[10]), we can and shall assume without loss
of generality that the Dirichlet space (E,m,F , E) is regular and X is an associated
strong Markov process on E with continuous sample paths with infinite life time. By the
regularity, we mean that, E is a locally compact separable metric space, m is a positive
Radon measure on E with full support and that F ∩C0(E) is dense in F and in C0(E).
Here C0(E) denotes the space of continuous functions on E with compact support. The
capacity associated with this Dirichlet form will be denoted by Cap. A set N with
Cap(N) is called an E-polar set. The phrase ‘E-q.e.’ will mean ‘except for an E-polar
set’.

A quasi-support of a Borel measure is a smallest quasi-closed set outside of which the
measure vanishes. It is unique up to the E-q.e. equivalence.
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Lemma 4.1. For a closed set F ⊂ E with Cap(F ) > 0, there exists a non-trivial positive
Radon measure µ on E such that µ charges no E-polar set, µ(E \ F ) = 0 and the quasi-
support of µ coincides with F , E-q.e.

Proof. As in the preceding sections, we denote by T the hitting time of F . Take an
m-integrable strictly positive function g on E and set

µ(B) = P g·m(XT ∈ B,T <∞), B ∈ B(E).

Clearly µ(E\F ) = 0 and µ is a non-trivial positive Radon measure charging no set of zero
capacity. If a quasi-continuous function f ∈ F vanishes µ-a.e., then Eg·m(e−T f(XT )) = 0,
which implies that the quasi-continuous function E·(e−T f(XT )) vanishes m-a.e. Hence
f = 0 E-q.e. on F , since E-q.e. point of F is regular for F , and we can conclude on
account of [11, Th.4.6.2] that F is a quasi-support of µ. �

We call a measure µ admissible for the closed set F if it possesses the properties stated
in the above lemma and its topological support Supp[µ] equals F. The following sufficient
condition for a measure µ to be admissible for F can be shown in the same way as the
above proof of Lemma 4.1 (see also [11, Problem 4.6.1].)

Lemma 4.2. Let F be a closed set with Cap(F ) > 0. If there exists a σ-finite measure
µ with Supp[µ] = F such that F admits a Poisson kernel with respect to µ in the sense
of §2, then µ is admissible for F .

From now on, we consider a closed set F with Cap(F ) > 0. We fix an admissible
measure µ for F . Then µ is a smooth measure. Let φ(t) be the PCAF (positive continuous
additive functional) with Revuz measure µ and F̃ be its support, namely,

F̃ = {x ∈ E : P x(Rφ = 0) = 1}
where

Rφ = inf{t > 0 : φ(t) > 0}.
Then F̃ is a quasi-support of µ (cf. [11, Th.5.1.5]), and hence, by choosing the exceptional
set for φ appropriately, we may assume that

(4.1) F̃ ⊂ F, Cap(F \ F̃ ) = 0.

Let τ = (τt) be the right continuous inverse of φ:

(4.2) τt = inf{s : φ(s) > t}, (inf ∅ = ∞).

We set

(4.3) Yt = Xτt , t < ζ̌, where ζ̌ = φ(∞).

Then Y = (Yt, ζ̌ , P
x)x∈F̃ is a right process on the state space F̃ with life time ζ̌, which

is called a time change of X or the time changed process (cf. [18]). We add a cemetery
∆ to F̃ and define

Yt = ∆, t ≥ ζ̌,

so that the time changed process Y is a right process on F̃∆ = F̃ ∪∆. We also note that

(4.4) Yt− = Xτt− ∈ F, t ≤ ζ̌,

owing to the continuity of the sample path of X.
In general, the process Y = (Yt, ζ̌ , P

x)x∈F̃ is not a Hunt process. It could happen that
Yt− ∈ F \ F̃ and Y may be neither quasi-left continuous. By making use of a general
reduction theorem formulated in §8 however, we can show that the restriction of Y to
the outside of a suitable exceptional set is actually a Hunt process.



12 MASATOSHI FUKUSHIMA†, PING HE, JIANGANG YING*

To this end, we recall some basic facts about the time changed process Y on F̃ shown
in [11, Th. 6.2.1]. Y is µ-symmetric and the associated Dirichlet form (denoted by
(Ě , F̌)) on L2(F,µ) is regular. Further Y is properly associated with (Ě , F̌) in the sense
that p̌tu is a Ě-quasi-continuous version of Ťtu for any u ∈ L2(F ;µ), where p̌t (resp. Ťt)
denotes the transition function of Y (resp. the L2-semigroup associated with (Ě , F̌)).

It is also clear from the preceding definition of the path Yt that the left limit Yt−
exists in F∆ for all t > 0. Hence all the conditions in Theorem 8.1 are satisfied by the
time changed process Y and we are led to the next theorem for Y . The capacity on F
associated with (Ě , F̌) is denoted by ˇCap. A set N ⊂ F with ˇCap(N) = 0 is called an
Ě-polar set.

Theorem 4.1. There exists a Borel subset F̌ of F̃ such that

(4.5) F \ F̌ is Ě−polar and E−polar,

F̌ is Y -invariant and the restriction Y |F̌ of the time changed process Y to F̌ is a Hunt
process properly associated with Ě.

By the general theorem Theorem 8.1, we only know that the set F \ F̌ is Ě-polar. But
then F̃ \ F̌ is E-polar by virtue of [11, Lemma 6.2.5]. Hence

F \ F̌ = (F \ F̃ ) + (F̃ \ F̌ )

is E-polar as well in view of (4.1).
Finally we notice that the Dirichlet form (Ě , F̌) admits the following description. De-

note by Fe the extended Dirichlet space of F and any u ∈ Fe will be taken to be
E-quasi-continuous. Then, on account of (4.1) and [11, Th.6.2.1],

F̌ = {f ∈ L2(F ;µ) : f = u µ-a.e. on F for some u ∈ Fe}
Ě(f, f) = E(Hu,Hu), f ∈ F̌ , f = u µ-a.e. on F, u ∈ Fe,(4.6)

where Hu is defined by

Hu(x) = Ex(u(XT );T <∞) x ∈ E.

5. Identification of jumping and killing measures of Y with U and V

For simplicity, the restriction of the time changed process Y to the set F̌ of Theorem
4.1 will be denoted by Y again. Then Y is a Hunt process on F̌ ∪∆ properly associated
with the regular Dirichlet form (Ě , F̌) on L2(F ;µ) and F \ F̌ is not only Ě-polar but also
E-polar.

Since the Dirichlet form (Ě , F̌) on L2(F ;µ) is regular, it admits the Beurling-Deny
decomposition; for any Ě-quasi-continuous functions f, g ∈ F̌ ,

Ě(f, g) = Ě(c)(f, g)

+
∫

F×F\d
(f(x) − f(y))(g(x) − g(y))J(dx, dy) +

∫
F
f(x)g(x)k(dx),(5.1)

where, Ě(c) is a symmetric form with a strong local property, J is a symmetric positive
Radon measure on F × F off the diagonal d and k is a positive Radon measure on F .
J and k are called the jumping measure and the killing measure for the Dirichlet form
(Ě , F̌) respectively.

Since Y is a Hunt process properly associated with (Ě , F̌), we can use directly the
general result of [11, §5.3] to describe J and k in terms of the Lévy system of Y. Let
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(N(x, dy), ψ) be a Lévy system of Y . More precisely N(x, dy) is a kernel on (F̌∆,B(F̌∆))
with N(x, {x}) = 0, x ∈ F̌ , and ψ = ψ(t) is a PCAF of Y such that, for any Ψ ∈
B+(F̌∆ × F̌∆) vanishing on the diagonal,

(5.2) Ex

⎛
⎝∑

s≤t

Ψ(Ys−, Ys)

⎞
⎠ = Ex

(∫ t

0

∫
F̌∆

N(Ys, dy)Ψ(Ys, y)dψ(s)
)
, x ∈ F̌ .

Let ν be the Revuz measure of ψ with respect to Y . Then, by [11, Th. 5.3.1],

(5.3) J(dx, dy) =
1
2
N(x, dy)ν(dx), k(dx) = N(x,∆)ν(dx).

On account of the Revuz correspondence, we have, for any Ψ ∈ B+(F̌∆×F∆) vanishing
on the diagonal,∫

F̌×F̌\d
Ψ(x, y)J(dx, dy) = limt↓0 1

2tE
µ

∑
0<s≤t Ψ(Ys−, Ys)IF̌ (Ys)

= limα→∞ α
2E

µ
∑

0<t<∞ e−αtΨ(Yt−, Yt)IF̌ (Yt),(5.4)

∫
F̌

Ψ(x,∆)k(dx) = limt↓0 1
tE

µ
∑

0<s≤t Ψ(Ys−,∆)I∆(Ys)

= limα→∞ αEµ
∑

0<t<∞ e−αtΨ(Yt−,∆)I∆(Yt),(5.5)

Theorem 5.1. We have the following identities:

(5.6) J =
1
2
U on F̌ × F̌ \ d, U = 0 on (F × F \ d) \ (F̌ × F̌ ),

(5.7) k = V on F̌ , V = 0 on F \ F̌ .
Proof. It is known that Rφ = T̃ where T̃ is the hitting time of the support F̃ of φ. Hence

τφ(t) = inf{s : φ(s) > φ(t)} = inf{s > t : φ(s− t) ◦ θt > 0} = T̃ ◦ θt + t.

Since F \ F̃ is E-polar, we have

P x(T̃ = T ) = 1, E-q.e. x ∈ E,

and hence

(5.8) τφ(t) = R(t) ∀t > 0, P x-a.e. for E-q.e. x ∈ E.

For any Ψ ∈ B+(F ×F ) vanishing on the diagonal, we have from (5.4),(4.4) and (5.8)

2
∫

F̌×F̌\d
Ψ(x, y)J(dx, dy) = lim

α→∞αEµ
∑

0<t<∞
e−αtΨ(Yt−, Yt)IF̌ (Yt)

= lim
α→∞αEµ

∑
0<t<∞

e−αtΨ(Xτt− ,Xτt)IF̃ (Xτt)

= lim
α→∞αEµ(Σα),

where
Σα =

∑
0<t<∞,R(t)<∞

e−αφ(t)Ψ(XR(t−),XR(t)).
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Since µ is the Revuz measure of φ with respect to the conservativem-symmetric process
X, we have from [11, Th. 5.1.3] and [18, (32.6)] that

αEµ(Σα) = α
1
s
Em

(∫ s

0
EXu(Σα)dφ(u)

)
= α

1
s
Em

∫ s

0
Σα ◦ θu dφ(u)

= α
1
s
Em

∫ s

0

∑
0<t<∞,R(t+u)<∞

e−α(φ(t+u)−φ(u))Ψ(XR(t+u−),XR(t+u))dφ(u)

= α
1
s
Em

∫ s

0
eαφ(u)dφ(u)

∑
u<t<∞,R(t)<∞

e−αφ(t)Ψ(XR(t−),XR(t))

=
1
s
Em

⎛
⎝ ∑

R(t)<∞
e−αφ(t)Ψ(XR(t−),XR(t))

∫ s

0
I{t>u}(u)deαφ(u)

⎞
⎠ ,

=
1
s
Em

(
Σα · (eαφ(s∧t) − 1)

)
.

Choose Ψ for which the integral
∫
F̌×F̌\d Ψ(x, y)J(dx, dy) is finite. Then Em(Σα) <∞

and

αEµ(Σα) =
1
s
Em

∑
0<t≤s,R(t)<∞

Ψ(XR(t−),XR(t))

+
1
s
Em

∑
0<s<t,R(t)<∞

e−(φ(t)−φ(s))Ψ(XR(t−),XR(t)) −
1
s
Em(Σα).

Notice that, for the last exit time SF from F , we have
1
s
Em

∑
0<s<t,R(t)<∞

e−(φ(t)−φ(s))Ψ(XR(t−),XR(t))

=
1
s
Em

⎡
⎣ ∑

0<s<t,R(t)<∞
e−(φ(t)−φ(s))Ψ(XR(t−),XR(t)); s < SF

⎤
⎦

=
1
s
Em(Σα ◦ θs; s < SF ) ≤ 1

s
Em(Σα),

because the time set {t : s < t, R(t) <∞} is non-empty if and only if s < SF . Since

lim
α→∞Em(Σα) = 0,

we arrive at the equality

2
∫

F̌×F̌\d
Ψ(x, y)J(dx, dy) =

1
s
Em

∑
0<t≤s,R(t−)<R(t)<∞

Ψ(XR(t−),XR(t)).

By substituting Ψ = f ⊗ g for any f, g ∈ C0(F ) with disjoint support in the above
equality, we get the desired identity (5.6) by virtue of Theorem 3.1.

Exactly the same computation works to get from (5.5) the following formula holding
for any f ∈ B+(F ):∫

F̌
f(x)k(dx) = limα→∞ αEµ

∑
0<t<∞,R(t−)<∞,R(t)=∞ e−φ(t)f(XR(t−))

= 1
sE

m
∑

0<t≤s,R(t−)<∞,R(t)=∞ f(XR(t−)),

which, combined with Theorem 3.1 leads us to (5.7). �
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Corollary 5.1. Suppose that the hitting measure has the Poisson kernel K(x, ξ), x ∈
G, ξ ∈ F with respect to a σ-finite measure µ with Supp[µ] = F. Then µ is admissible
and the associated time changed process Y (with a possible q.e. modification of its state
space F̌ ) has as its Lévy system

(5.9) (U(ξ, η)µ(dη), t),

where U is the Feller kernel defined by (2.13) in terms of K and t denotes the non-random
PCAF ψ(t) = t of Y .

Proof. µ is admissible by Lemma 4.2. By Theorem 5.1,

J(dξ, dη) =
1
2
U(ξ, η)µ(dξ)µ(dη) on F̌ × F̌ \ d,

and µ is the Revuz measure of the PCAF t of Y . Hence, it suffices to show that the value
of the right hand side of (5.2) depends only on the function Ψ and the jumping measure
J for q.e. x and that it does not depend on the special choice of N and ν expressing J
as in (5.3). But this can been readily seen from known formulae [11, (5.1.12),(5.1.14)] on
the Revuz correspondence of the PCAF and the smooth measure. �

Example 5.1 (escape measure for Brownian motion and sphere). Just as in the last
part of Example 2.1, we let X be the standard Brownian motion on R

d with d ≥ 3, F be
the sphere ΣR centered at the origin with radius R > 0 and σ be the surface measure on
ΣR. We have seen in (2.27) that the escape measure V on ΣR for X is a constant times
of σ:

V (dξ) = v0 σ(dξ), dξ ∈ B(ΣR).
By making use of Theorem 5.1, we will show that

(5.10) v0 =
d− 2
2R

.

Since ΣR admits the Poisson kernel (2.25) with respect to σ, σ is an admissible measure
for ΣR by Lemma 4.2. Let Y be the time changed process of X with respect to the PCAF
with Revuz measure σ and (Ě , F̌) be the Dirichlet form of Y on L2(ΣR, σ). By virtue of
Theorem 5.1 and (2.26), we have, for any f ∈ F̌ ,
(5.11)

Ě(f, f) = Ě(c)(f, f)+
1

Ωd

∫
ΣR×ΣR\d

(f(ξ)−f(η))2
1

|ξ − η|dσ(dξ)σ(dη)+ v0

∫
ΣR

f(ξ)2σ(dξ),

where Ě(c) is a (possibly vanishing) strongly local form.
The Dirichlet form of the Brownian motion X on L2(Rd) is given by

F = H1(Rd), E(u, u) =
1
2

∫
Rd

|∇u(x)|2dx,

and the left hand side of (5.11) is equal to E(Hf,Hf) in view of (4.5). Since ΣR is
compact and 1 ∈ F̌ , we get from (5.11) that

(5.12) v0 σ(ΣR) =
1
2

∫
Rd

|∇H1(x)|2 dx.

As was observed in Example 2.1, H1(x) = 1 for |x| < R, while H1(x) = Rd−2/|x|d−2 for
|x| > R. Hence the right hand side equals

(d− 2)Ωd

2
Rd−2

and we arrive at (5.10).
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6. Trace Dirichlet form and Douglas integral with Feller measure

In the preceding two sections, we have proved the following: let (E,m,F , E) be a
regular Dirichlet space and X be an associated conservative diffusion process on E. Any
function in the extended Dirichlet space Fe is taken to be E-quasi-continuous. Let F be a
closed subset of X with Cap(F ) > 0, µ be an admissible measure for F with Supp[µ] = F ,
φ be a PCAF of X with Revuz measure µ and Y be a time changed process of X by
means of φ. Y is µ-symmetric and its Dirichlet form on L2(F ;µ) is denoted by (Ě , F̌),
which is also called the trace Dirichlet form of E on F . In fact, in view of (4.6) and [11,
Lemma 6.2.5], we have

F̌ = Fe|F ∩ L2(F ;µ)

Ě(f, f) = E(Hu,Hu), f = u|F , u ∈ Fe.(6.1)

Furthermore we have obtained in Theorem 5.1 that ,for any f, g ∈ F̌ ,

Ě(f, g) = Ě(c)(f, g)

+
1
2

∫
F×F\d

(f(x) − f(y))(g(x) − g(y))U(dx, dy) +
∫

F
f(x)g(x)V (dx),(6.2)

the representation of the trace Dirichlet form Ě in terms of the Feller measure U and the
supplementary Feller measure V introduced in §2. In particular, the first integral on the
right hand side is called the Douglas integral with the Feller measure U .

The Feller measure U and the supplementary Feller measure V are completely deter-
mined by the absorbed (minimal) process XG of X on the set G = X \F, while the local
term Ě(c) in the above decomposition is determined by the behavior of X on the set F .
On the other hand, the value of the Dirichlet form E(u, u) for u ∈ Fe is known to be
equal to the half of the total mass of the energy measure µ〈u〉 of u. Therefore we may
expect that

(6.3) Ě(c)(f, f) =
1
2
µ〈Hu〉(F ), f = u|F , u ∈ Fe.

We will not prove this. But more specifically, we show in this section that, if µ〈u〉(F )
vanishes for any u ∈ Fe, then the trace Dirichlet form equals the Douglas integral with
the Feller measure under the assumption that m(G) is finite.

To this end, we first show the domination of the trace Dirichlet form by the Douglas
integral under the setting that (E,m,F , E) is a regular irreducible Dirichlet space and
X is an associated Hunt process on E which is assumed to be conservative. We do not
assume that X is of continuous sample paths.

But we make an additional assumption that

(6.4) m(G) <∞, Cap(F ) > 0.

We note that (6.4) and the irreducibility of E implies that

(6.5) P x(T <∞) = 1 q.e. x ∈ G,

because then P x(T <∞) > 0 for q.e x ∈ E by [11, Th. 4.6.6] and Lemma 2.3 applies.
For any u ∈ Fe,b = Fe ∩ L∞(E;m), its energy measure µ〈u〉 is defined by

(6.6)
∫

E
f(x)µ〈u〉(dx) = 2E(uf, u) − E(u2, f), f ∈ F ∩ C0(E).
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The energy measure uniquely extends to any u ∈ Fe and it holds that

(6.7) E(u, u) =
1
2
µ〈u〉(E) u ∈ Fe.

Let
F0 = {u ∈ F : u = 0 q.e. on F}.

Then (F0, E) is a regular Dirichlet space on L2(G;m) which is associated with the ab-
sorbed process XG ([11, Th. 4.4.3]). Recall that R0

α denotes the resolvent operator for
XG. Since

R0
11(x) = 1 −Ex(e−T ) < 1, q.e. x ∈ G,

by (6.5), we see that (F0, E) is transient by virtue of [11, Lemma 1.6.5] and moreover
the extended Dirichlet space F0

e of F0 admits the expression

F0
e = {u ∈ Fe : u = 0 q.e. on F},

on account of [11, Th. 4.4.4].
Denote by S(0)

0 (G) the space of positive Radon measures of finite 0-order energy integral
with respect to (F0

e , E). If ν ∈ S
(0)
0 (G), then there exists an unique R0ν ∈ F0

e called the
0-order potential of ν such that

(6.8) E(R0ν, v) =
∫

G
vdν v ∈ F ∩ C0(G).

(6.7) extends to any quasi-continuous function v ∈ F0
e .

We write (f, g)G =
∫

G
fgdm.

We know from [11, Th. 1.5.4] that, if a non-negative measurable function f on G
satisfies that (f,R0

0+f)G <∞, then R0
0+f ∈ F0

e and

(6.9) E(R0
0+f, v) = (f, v)G v ∈ F0

e .

We further know from [11, Th.4.6.5] that Hu ∈ Fe for any u ∈ Fe and

(6.10) E(Hu, v) = 0 ∀v ∈ F0
e .

We prepare a lemma which generalizes the methods of computing the Dirichlet norms
of classical harmonic functions employed in [4], [8].

Lemma 6.1. For any u ∈ Fe,b, let

w = H(u2) − (Hu)2 (∈ Fe,b).

Then,

(6.11) w ∈ F0
e,b and w = R0ν for ν = µ〈Hu〉|G.

Further

(6.12) µ〈Hu〉(G) = lim
α→∞α(Hα1, w)G.
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Proof. Since Fe,b is an algebra and w = 0 q.e. on F, we have that w ∈ F0
e,b. From (6.6)

and (6.10), we have, for any f ∈ F ∩ C0(D)(⊂ F0)

E(w, f) = −E((Hu)2, f)

= 2E(Hu · f,Hu) − E((Hu)2, f) =
∫

G
fdµ〈Hu〉,

arriving at (6.11).
Since H1 = 1 q.e. on G by (6.5), we have

1 −Hα1 = αR0
0+H

α1

and hence (Hα1, R0
0+H

α1)G < ∞. Accordingly, for any ν ∈ S
(0)
0 (G), we get from (6.8)

and (6.9)

α(Hα1, R0ν)G = E(αR0
0+H

α1, R0ν) = 〈αR0
0+H

α1, ν〉 = 〈1 −Hα1, ν〉 ↑ ν(G).

Hence (6.12) follows from (6.11). �

Theorem 6.1. For any u ∈ Fe,

(6.13) µ〈Hu〉(G) ≤
∫

F×F
(u(ξ) − u(η))2U(dξ, dη).

Proof. This follows from (6.12) and the following identity in [8, (15)]:

α(Hα1, w)G + α

∫
F×G

(Hu(x) − u(ξ))2Hα(x, dξ)m(dx)

=
∫

F×F
(u(ξ) − u(η))2Uα(dξ, dη),(6.14)

which can be easily verified. �

Theorem 6.1 combined with (6.7) leads us to

Corollary 6.1. Suppose that

(6.15) µ〈u〉(F ) = 0, ∀u ∈ Fe.

Then, for any u ∈ Fe,

(6.16) E(Hu,Hu) ≤ 1
2

∫
F×F

(u(ξ) − u(η))2U(dξ, dη).

We emphasize that the condition (6.15) is satisfied if the energy measure of u is abso-
lutely continuous with respect to m, i.e., carré de champ operator Γ(u, u) exists for any
u ∈ F and m(F ) = 0.

We can now state the main theorem of this section.

Theorem 6.2. Let (E,m,F , E) be a regular irreducible Dirichlet space whose associ-
ated Markov process on E is a conservative diffusion. For a closed set F ⊂ E and its
complement G, we assume the condition (6.4). We further assume condition (6.15) for
the energy measures associated with E. Then, for any u ∈ L2(F,µ) ∩ Fe,

(6.17) E(Hu,Hu) =
1
2

∫
F×F

(u(ξ) − u(η))2U(dξ, dη).
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Proof. By (6.1) and (6.2), we have already the converse inequality to (6.16). �

We may view Theorem 6.2 from a quite different angle. The Dirichlet form (F , E) on
L2(E;m) is in a sense an extension of the absorbed Dirichlet space (F0, E) on L2(G;m).
What kind of extension are we dealing with under condition (6.15) ? This question can
be answered in terms of the notion of the reflected Dirichlet space initially formulated
by M.L. Silverstein [19],[20] and finally by Z.Q. Chen [3].

We continue to consider a regular irreducible Dirichlet space (E,m,F , E) associated
with a conservative diffusion X on E and we assume condition (6.4) for a closed set
F ⊂ E and its complement G.

Let (Fref
a , Eref ) be the L2 reflected Dirichlet space (in the sense of [3]) relative to the

regular Dirichlet space (F0, E) on L2(G;m) associated with the absorbed process XG.

Theorem 6.3. The condition (6.15) is equivalent to the following one:

(6.18) F|G ⊂ Fref
a , E(u, v) = Eref (u|G, v|G) u, v ∈ F .

Proof. By (6.10) and the preceding description of the space F0
e , we have, for any u ∈ Fe,

(6.19) u0 = u−Hu ∈ F0
e , E(u, u) = E(u0, u0) + E(Hu,Hu).

We further know from (6.7) that condition (6.15) is equivalent to

(6.20) E(Hu,Hu) =
1
2
µ〈Hu〉(G) ∀u ∈ Fe.

Let Gk be relatively compact open sets increasing to G and Lk be the equilibrium
measures of the 0-order equilibrium potentials ek for the sets Gk relative to the extended
Dirichlet space (F0

e , E):

ek ∈ F0
e , 0 ≤ ek ≤ 1, ek = 1 on Gk, E(ek, v) = 〈v,Lk〉G, v ∈ F0

e .

We then have

(6.21) µ〈Hu〉(G) = lim
k→∞

〈H(u2) − (Hu)2, Lk〉G, u ∈ Fe,b.

In fact, using the notation in Lemma 6.1, we see that

〈w,Lk〉G = E(w, ek) = 〈ek, ν〉G,
which tends as k → ∞ to ν(G) = µ〈Hu〉(G). By comparing the combination of (6.19),
(6.20) and (6.21) with Definition 3.1 in [3] of the L2 reflected Dirichlet space, we get the
equivalence of (6.15) and (6.18). �

It has been shown by M. Takeda [22, Th.3.3] that the L2 reflected Dirichlet space is
the maximum Silverstein extension of (F0, E) in a specific semi-order. When (F0, E) is
the Dirichlet space of the absorbing Brownian motion on an arbitrary bounded domain
D, Fref

a equals H1(D), which had been described by the first author [9] in terms of the
Feller kernel on the Martin boundary (see also the next section). In view of Theorem
6.3, we thus see that the Dirichlet space (F , E) satisfying condition (6.15) corresponds
to a member of the class G1 of [9, §8] in this special case.
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7. Application to reflecting Brownian motion on a Lipschitz domain

Let D be a bounded Lipschitz domain of R
d with d ≥ 2 and D = D ∪ ∂D be its

closure. As is well known ([15].[2]), ∂D (resp. D) can then be identified with the Martin
boundary M of D (resp. the Martin space D ∪M) and M consists only of the minimal
boundary points. In what follows, we regard the relative boundary ∂D also as the Martin
boundary of D under this identification.

Denote by K(x, ξ), x ∈ D, ξ ∈ ∂D, a Martin kernel. By the Martin representation
theorem ([5]), any positive harmonic function h on D can be expressed as the integral
of the Martin kernel against a unique positive Radon measure on ∂D called the Martin
representing measure of h corresponding to K. We let µ be the Martin representing
measure of the constant harmonic function 1 corresponding to K:

(7.1) 1 =
∫

∂D
K(x, ξ)µ(dξ) x ∈ D.

We now consider the space

(7.2) F = H1(D), E(u, v) =
1
2

∫
D
∇u · ∇v dx, u, v ∈ H1(D),

which can be regarded as a strongly local regular Dirichlet space on L2(D) (rather
than L2(D)) and hence there exists an associated conservative diffusion process X =
(Xt, P

x)x∈D on D uniquely up to the q.e. equivalence([11, Example 4.5.3]). We fix such
a process X and call it a reflecting Brownian motion on D.

Let T be the hitting time of ∂D of X and H(x, ·) be the hitting distribution of X on
∂D:

H(x,B) = P x(XT ∈ B, T <∞) x ∈ D, B ∈ B(∂D).

Lemma 7.1. The hitting distribution H(x, ·) of X and the measure µ in (7.1) are related
by

H(x,B) =
∫

B
K(x, ξ)µ(dξ) ∀B ∈ B(∂D), for q.e. x ∈ D.

Proof. Let XD be the absorbed process of X obtained by killing X at time T . Thus,
XD = (Xt, P

x, ζD) with life time ζD given by

(7.3) ζD = T.

By virtue of [11, Th. 4.4.3], XD is associated with the part of the Dirichlet form (7.2)
on the open set D, namely,

(7.4) FD = H1
0 (D), ED(u, v) =

1
2

∫
D
∇u · ∇vdx, u, v ∈ H1

0 (D).

Since the absorbing Brownian motion on D (the standard Brownian motion on R
d killed

upon leaving the set D) is also associated with the Dirichlet form (7.4) ([11, Example
4.4.1]), we see that XD = (Xt, P

x, ζD) coincides in law with the absorbing Brownian
motion on D for q.e. starting point x ∈ D.

According to Doob’s description of the structure of Brownian motion on the Martin
space [5, pp727], we therefore have that

(7.5) P x(XζD− ∈ B) =
∫

B
K(x, ξ)µ(dξ), ∀B ∈ B(∂D), for q.e. x ∈ D.
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The lemma follows from (7.3) and (7.5). �

Since the Martin kernel K(x, ξ) is harmonic in x ∈ D, it is excessive with respect to
the absorbing Brownian motion on D and consequently almost excessive with respect to
XD for each ξ ∈ ∂D. Therefore Lemma 7.1 means that the Martin kernel K(x, ξ) is a
Poisson kernel with respect to µ in the sense of §2. Hence, by defining the Feller kernel as
(2.16) in terms of the present Martin kernel, we have the expression of the Feller measure

(7.6) U(dξ, dη) = U(ξ, η)σ(dξ)σ(dη).

We also see by Lemma 4.2 that µ is an admissible measure for ∂D in the sense of §4.
On the other hand, we can see from (7.2) and (6.6) that the energy measure µ〈u〉 of

u ∈ Fe admits the expression

(7.7) µ〈u〉(dx) = |∇u|2(x)dx
which does not charge the boundary ∂D. Hence all the conditions of Theorem 6.2 are
satisfied for F = ∂D.

Theorem 7.1. (i) The measure µ on ∂D defined by (7.1) is admissible with respect to
the form (7.2) in the sense of §4.
(ii) For any E-quasicontinuous u ∈ L2(∂D;µ) ∩ Fe,

(7.8) E(Hu,Hu) =
1
2

∫
∂D×∂D

(u(ξ) − u(η))2U(ξ, η)µ(dξ)µ(dη),

where Hu(x) = Ex(u(XT );T < ∞), x ∈ D, and U(ξ, η) is the Feller kernel defined in
terms of the Martin kernel K.
(iii) Let Y be the time changed process of X by means of PCAF with Revuz measure µ.
Y is then recurrent and of pure jump. Y admits as its Lévy system

(7.9) (U(ξ, η)µ(dη), t),

where t denotes the non-random PCAF φ(t) = t of Y.
(iv) Let (F̌ , Ě) be the Dirichlet space on L2(∂D,µ) of the time changed process Y . Then

(7.10) F̌ = {f ∈ L2(∂D;µ) :
∫

∂D×∂D
(f(ξ) − f(η))2U(ξ, η)µ(dξ)µ(dη) <∞},

(7.11) Ě(f, f) =
1
2

∫
∂D×∂D

(f(ξ) − f(η))2U(ξ, η)µ(dξ)µ(dη), f ∈ F̌ .

Proof. (ii) follows from Theorem 6.2 and (7.6). (iii) follows from (ii) and Corollary
5.1. As for (iv), the inclusion ⊂ in (7.10) and identity (7.11) are clear from (ii) and
(6.1). Suppose that a function f belongs to the space appearing in the right hand side
of (7.10). By virtue of [4, Th. 3.1], we then have the following expression of the function
w(x) = Hf2(x) − (Hf(x))2:

w(x) = R0
0−|∇(Hf)|2(x) x ∈ D,

where R0
α denotes the resolvent operator of the absorbing Brownian motion on D. Hence

by setting Hα1(x) =
∫
∂D Kα(x, ξ)µ(dξ) by the kernel defined in (2.13), we easily see that∫

D
|∇(Hf)(x)|2dx = lim

α→∞α(Hα1, w)D.
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On account of the identity (6.14), we see that the right hand side of the above equality
is dominated by ∫

∂D×∂D
(f(ξ) − f(η))2 U(ξ, η)µ(dξ)µ(dη) <∞,

proving that Hf ∈ H1
e (D) (see [11, Example 1.6.1]) and consequently f ∈ F̌ . �

(7.8) and (7.10) recover the Douglas integral description of the space of harmonic
functions with finite Dirichlet integrals in [4] (but with the Feller kernel instead of the
Naim kernel) for the present specific Martin space (cf. [8]).

8. Reduction to Hunt processes

This section is devoted to the proof of the following general reduction theorem espe-
cially applicable to the time changed process Y in §4.

Theorem 8.1. Let (E,m,F , E) be a regular Dirichlet space and X = (Xt, P
x) be a

right process over a subset E1 ⊂ E with Cap(E \E1) = 0. We assume that X is properly
associated with E in the sense that ptu is an E-quasicontinuous verson of Ttu for any
u ∈ L2(X;m), where pt (resp. Tt) is the transition function of X (resp. the L2-semigroup
associated with (E ,F)). We further assume that the left limit Xt− exists in E∆ for every
t > 0.
Then, there exists a Borel set E2 ⊂ E1 such that Cap(E \ E2) = 0, E2 is X-invariant
and the restriction X|E2 of X to E2 is a Hunt process properly associated with E.

We prepare two lemmas.

Lemma 8.1. (i) For an open set A ⊂ E of finite capacity, the function

p1
A(x) = Ex(e−σA) x ∈ E1

is an E-quasi continuous version of the 1-equilibrium potential eA ∈ F of A. Here σA

denotes the hitting time of the process X for the set A.
(ii) If {An} is a decreasing sequence of open subsets of E with limn Cap(An) = 0, then

lim
n→∞ p1

An
(x) = 0 for E−q.e. x ∈ E1.

Proof. (i) It is known that p1
A is a version of eA (cf. [11, Lemma 4.2.1]). Since ptp

1
A is

an E-quasicontinuous version of TteA, we get the result by letting t ↓ 0.
(ii) Since E(eAn , eAn) ↓ 0 as n→ ∞, (ii) follows from (i). �

Lemma 8.2. For any set N ⊂ E1 with Cap(N) = 0, there exists a Borel set E′ ⊂ E1\N
such that Cap(E \ E′) = 0 and E′ is X-invariant:

P x(Xt ∈ E′
∆ for all t ≥ 0, Xt− ∈ E′

∆ for all t > 0) = 1,

for all x ∈ E′.

Proof. There is a decreasing sequence of open sets An including the set (E \ E1) ∪ N
such that limn→∞ Cap(An) = 0. Lemma 8.1 then implies that

P x(Xt or Xt− ∈ B0 for some t ≥ 0) = 0, ∀x ∈ E1 \N1,

where B0 = ∩nAn(⊃ (E \ E1) ∪N) and N1 is some subset of E1 with Cap(N1) = 0.
We next find a decreasing sequence of open sets A′

n ⊃ B0∪N1 with limn→∞ ˇCap(A′
n) =

0 and let B1 = ∩nA
′
n. Repeating the same argument, we can find an increasing sequence

of Borel subsets {Bn} of zero E-capacity containing (E \ E1) ∪N such that

P x(Xt or Xt− ∈ Bn for some t ≥ 0) = 0, for all x ∈ E \Bn+1.
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Put B = ∪nBn. E
′ = E \B satisfies the desired properties . �

Proof of Theorem 8.1. From Lemma 8.1, we can see as in the proof of [11, Lemma 4.2.2]
that, for any E-quasi-continuous function u on E,

P x(lim
t′↑t

u(Xt′) = u(Xt−) ∀t > 0) = 1, E-q.e. x ∈ E1.

Choose a countable subfamily C1 of F∩C0(E) which is dense in C0(E) and denote by Q+

the set of all positive rational numbers. Since the functions psf for s ∈ Q+, f ∈ C1 are
E-quasi-continuous, we can find a set N with Cap(N) = 0 such that the above identity
holds for each u = ptf, s ∈ Q+, f ∈ C1, and for all x ∈ E1 \N . We then use Lemma 8.2
to get a Borel set E2 ⊂ E1 \N such that E2 is X-invariant and Cap(E \ E2) = 0. Since
X|E2 is a right process on E2 and

P x(lim
t′↑t

psf(Xt′) = psf(Xt−) ∀t > 0) = 1,

for all x ∈ E2 and for any s ∈ Q+, f ∈ C1, we can also prove that X|E2 is quasi-
left continuous on [0,∞) in exactly same manner as in the proof of [11, Lemma 7.2.5],
completing the proof that X|E2 is a Hunt process on E2.
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